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Preface 

This is a beginning graduate level textbook on applied group theory. Only 
those aspects of group theory are treated which are useful in the physical 
sciences, but the mathematical apparatus underlying the applications is pre- 
sented with a high degree of rigor. 

The principal characters in this book are symmetry groups of mathematical 
physics. The first four chapters are primarily concerned with finite or discrete 
symmetry groups, e.g., the point, space, and permutation groups. The last 
six chapters are devoted to Lie groups. 

The theory presented here is largely algebraic in nature; the more com- 
plicated global topological problems are avoided. Thus topics such as the 
representation theory of Euclidean, Poincar;, and space groups are omitted. 
(These topics will be included in a projected second volume by the author 
which will be primarily devoted to topological aspects of applied group 
theory.) I t  is assumed that the reader is proficient in linear algebra and 
advanced calculus. Such concepts as finite-dimensional vector spaces, linear 
operators, and Jacobians are used without prior definition. An appendix on 
Hilbert space lists all the information the reader needs on that topic. There 
are a few places where greater mathematical sophistication is needed. In 
Chapter 5 the existence and uniqueness theorem for solutions of ordinary dif- 
ferential equations and some simple properties of power series are employed. 
In Chapter 6 the Peter-Weyl theorem is stated but not proved. 

Most of the theory presented here is applied to quantum mechanics. Thus, 
i t  is desirable, though not essential, for the reader to be familiar with the basic 
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concepts of quantum theory, particularly the probabilistic and physical 
interpretations. To make the applications clearer and to avoid unnecessary 
detail, the version of quantum theory presented here is slightly oversimplified. 
(in particular, only a qualitative perturbation theory of energy eigenvalues of 
the Hamiltonian is presented, and the physical interpretation in terms of 
spectral lines is omitted.) The author hopes in this way to explain some of the 
beautiful applications of group theory in atomic and nuclear physics to 
mathematics students unfamiliar with the physical literature. 

There are several features which together differentiate this book from prior 
works on applications of group theory: (1) A rigorous derivation of point 
and space groups including a derivation of the fourteen Bravais lattices. ( 2 )  A 
simplified but rigorous presentation of the theory of local linear Lie groups. 
(3) A construction of the representations of the classical groups using both 
weights and Young diagrams. (4) An integrated theory which includes ap- 
plications not only to classical and quantum physics but also to geometry 
and special function theory. 

Finally, the author wishes to acknowledge his debt to those mathema- 
ticians and physicists whose writings form the main content of this volume, 
especially H. Boerner, I. Gel’fand, S. Lie, G .  Liubarskii, M. Naimark, 
N. Vilenkin, H. Weyl, and E. Wigner. (In particular, Chapter 9 is adapted 
from Weyl’s Princeton lecture notes [ 2 ] . )  



Chapter 1 

Elementary Group Theory 

1.1 Abstract Groups 

A group is an  abstract mathematical entity which expresses the intuitive 
concept of symmetry. 

Defintion. A group G is a set of objects (8, / I ,  k ,  . . .I (not necessarily count- 
able) together with a binary operation which associates with any ordered 
pair of elements g, Ii in G a third element gli. The binary operation (called 
group multiplication) is subject to the following requirements: 

( I )  There exists a n  element e in G called the identity element such that 
ge - eg = g for all g F- G. 

(2)  For every g c G there exists in  G an  inverse element g- '  such that 

(3) Associative law. The identity (gh)k = g(hk)  is satisfied for all 
gg-1 : g-lg = e. 

g, 11, k E G. 

Thus, any set together with a binary operation which satisfies conditions 
(1)-(3) is called a group. I f  gk hg we say that the elements g and / I  commute. 
I f  all elements of G commute then G is a commutative or  abelian group. I f  
G has a finite number of elements it has finite order n(G), where n(G)  is the 
number of elements. Otherwise. G has infinite order. 

A subgroup H of G is a subset which is itself a group under the group 
multiplication defined in G. The subgroups G and { e }  are called improper 
subgroups of G. All other subgroups are proper. 

1 



2 1 ELEMENTARY GROUP THEORY 

Theorem 1.1. A nonempty subset H of a group G is a subgroup if and only 
if the following two conditions hold: 

(1) If h, k E H then hk t H .  
( 2 )  If h E H then h - *  E H .  

Proof. If H is a subgroup then (1) and (2) clearly hold. Conversely, suppose 
these conditions hold. We show that Hsatisfies the requirements for a group. 
The associative law holds since it holds for G. There exists some h E H 
since H is nonempty and by ( 2 )  we have h-' E H. By (I ) ,  Ah-' = e t H, 
so H has an identity. Q.E.D. 

The identity element e of a group is unique: Suppose e' E G such that 
e'g = ge' = g for all g E G. Setting g = e, we find ee' = e'e = e. But 
e'e = e' since e is an identity element. Therefore, e' = e.  

A similar proof shows that the inverse element g- '  of g is unique. Suppose 
g '  t G such that gg' = e. Multiplying on the left by g-' and using the 
associative law, we get g- '  = g-le = g-'(gg') = (g-lg)g' = eg' = g'. 

The following examples indicate the variety of mathematical objects which 
have the structure of groups. (For most groups in this book the associative 
law will be trivial to verify. We shall specifically verify the law only in those 
cases where it is not obvious.) 

Example 1. The real numbers R with addition as the group product. The 
product of two elements r l r  r2 is their sum r ,  + r 2 .  The identity is 0 and the 
inverse of an element is its negative. R is an infinite abelian group. Among the 
subgroups of R are the integers, the even integers, and the group consisting 
of the element zero alone. 

Example 2. The nonzero real numbers in R with multiplication of real 
numbers as the group product. The identity is 1 and the inverse of r t R 
is l/r. Group multiplication is again commutative. One of the subgroups is 
the group of positive numbers. 

Example 3. The group containing two elements {O, 1) with group multipli- 
cation given by 0.0 = 0, 0 -  I = I . O  = I ,  1 . 1  = 0. The identity element is 
0. This is an abelian group of order two. It has only two subgroups, {O} and 
lo, 1). 

Example 4. The complex general linear group GL(n, 6). Here n is a positive 
integer. The group elements A are nonsingular n x n matrices with complex 
coefficients : 
(1.1) GL(n, E) = { A  = (A i j ) ,  1 I i , j  < n: A i j  E Q and det A f 01. 



I .  I Abstract Groups 3 

Group multiplication is ordinary matrix multiplication. The identity element 
is the identity matrix E = (&,,), where a,, is the Kronecker delta, (see the 
Symbol Index). The inverse of an element A is its matrix inverse, which exists 
since A is nonsingular. Clearly GL(n, Q) is infinite and nonabelian. Among its 
subgroups are the real general linear group GL(n, R )  which consists of the 
real n x n nonsingular matrices, the complex special linear group 

(1.2) SL(n, 6 )  = { A  F GL(n, 6 ) :  det A = I ) ,  

and the real special linear group 

(1.3) SL(n, R )  = { A  E GL(n, R ) :  det A = 1 1 .  

Example 5. The symmetric group S,. Let n be a positive integer. A permuta- 
tion of n objects (say the set X = { I ,  2, . . . , n ) )  is a 1-1 mapping of X onto 
itself. Such a permutation s is written 

s: (;, ;2 1:: P" " )  
and we say: 1 is mapped into p , ,  2 into p 2 , .  . . , n into p,. The numbers 
p ,  , . . . , p ,  are a reordering of I ,  2, . . . , n and no two of the p ,  are the same. 
The order in which the columns of (1.4) are written is unimportant. The 
inverse permutation s-* is given by 

s - L  ~ (4 '  ; 1.' A)  
n . .  

The product of two permutations s and t ,  

41 92 ' . '  
I 2 . . .  n 

is given by the permutation 

st = ( Y l  Y z  . . .  Y"), 

PI Pz . . .  P" 

where the product is read from right to left. That is, the integer q, is mapped to 
i by r and i is mapped to p ,  by s, so y, is mapped to p,  by st. The identity 
permutation is 

With these definitions it is easy to show that the permutations of 17 objects 
form a group S, called the symmetric group. S, has order n ! .  

Instead of (1.4) we will often use the convenient cycle notation, which is 



4 1 ELEMENTARY GROUP THEORY 

best explained by an example. Consider the permutation 
I 2 3 4 5 6 7 8  

5 1 6 7 4 3 2 8  

Starting with the symbol 1,  we see that s maps 1 into 5, 5 into 4, 4 into 7, 
7 into 2, and 2 into I ,  closing a cycle. We write (15472). We now chose a 
symbol in the top line which is not in the first cycle, say 3. The permutation 
generates a second cycle (36). The only remaining symbol in the top row is 8, 
which is mapped into itself and generates the cycle (8). Finally we write 

s = (1 5472)(36)(8) = ( 1  5472)(36), 

where in the second expression we have omitted the unpermuted symbol. 
(This last simplification can only be used if we keep in mind the number of 
elements permuted.) In writing an  individual cycle it makes no difference 
where we start. Thus, (36) = (63) and (15472) = (21547) = (72154) = 

(47215) = (54721). Furthermore, it makes no difference in which order we 
write the cycles in a given permutation as long as the cycles contain no com- 
mon elements, e.g., (15472)(36) = (36)(15472). We present a final example 
showing the computation of a product of permutations in S, with the cycle 
notation: (872)(34)(432) = (2387). 

1.2 Subgroups and Cosets 

Let H be a subgroup of the group G and g E G. The set 
g H = { g h :  h E H J  

is called a left coset of H .  There is a similar definition for right cosets. Every 
element g in G is contained in some left coset of H .  In particular, g = ge E 

g H .  Furthermore, two left cosets are either identical or have no element in 
common. T o  see this, assume the cosets g H  and k H  have at least one element 
a in common. Thus, a = g h ,  = kh,  with I t , ,  h ,  E H ,  which implies g = 

kh,h;' E k H  and g H  s k H .  Similarly, k = gh,h;I E g H  and k H  c g H .  
We conclude that g H  = k H ,  i.e., the sets g H  and k H  have the same elements. 

Suppose G is a finite group of order n(G). Then the subgroup H is also 
finite and it is easy to show that each left coset g H  contains exactly n ( H )  
distinct elements. As we have seen, it is possible to partition the elements of 
G into a finite number of disjoint left cosets g , H ,  g , H ,  . . . , g,H.  That is, 
every element of G lies in exactly one of the cosets g , H .  Since there are m 
cosets and each coset contains n ( H )  elements, it follows that n(G) = n t - n ( H ) .  
The integer m = n(G)/n(H)  is called the index of H in G. We have proved 
the following theorem due to Lagrange. 
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Theorem 1.2. 
of the group. 

The order of a subgroup of a finite group divides the order 

Lagrange's theorem severely restricts the possible orders of subgroups. 
Thus, a group G of order 15 can have at  most subgroups of order I ,  3, 5 ,  or 
15. The subgroup of order 15 is G itself, the group of order 1 is {e} ,  while the 
other possibilities lead to proper subgroups of G. A group of order p ,  where 
p is prime, has no proper subgroups. 

By using left (or right) cosets we have partitioned the elements of G into 
disjoint sets. Another way to partition G is by means of conjugacy classes. 
A group element h is said to be conjugate to the group element k ,  11 N k ,  
if there exists a g E G such that k = glrg-' . It is easy to show that conjugacy 
is an equivalence relation, i.e., ( 1 )  h - k (reflexive), ( 2 )  h - k implies k - h 
(symmetric), and (3) 11 - k ,  k - j implies h - j (transitive). Thus, the ele- 
ments of G can be divided into conjugacy classes of mutually conjugate ele- 
ments. The class containing e consists of just one element since geg-' = e 
for all g E G. Different conjugacy classes do  not necessarily contain the same 
number of elements. We will study specific examples of conjugacy classes 
later where it will become apparent that such classes have simple geometrical 
interpretations. 

If G is finite the number of elements in each conjugacy class is a factor of 
n(G). To see this, choose some g E G and consider the set 

H e  (I7  E G :  h g k '  = g ] .  

H g  is clearly a subgroup of G. The number of elements conjugate tog is equal 
to the number of distinct elements k g k - ]  which can be formed by letting k 
run over G. We show that this is just the number of left cosets of H B ,  a factor 
of n(G). Indeed,if k ,gk ; '  = k , g k ; ' ,  then (k; 'k,)g(k; 'k,)- '  = g ,  so k ; ' k 2  E 

H g o r k ,  E k , H e .  Conversely,ifk, t k , H e t h e n  k ,gk; l  = k , g k ; ' .  Q.E.D. 

The subgroup H of G is said to be conjugate to the subgroup K if there is 
a g E G such that K = gHg-'  as sets, i.e., Kg = gH. Note that gHg-'  is a 
subgroup of G for any g E G. Just as above, we can use this notion to parti- 
tion the subgroups of G into conjugacy classes. A subgroup N is normal 
(invariant, self-conjugate) i f g N g - '  N for all g E G. Equivalently, N is nor- 
mal if and only if gN = Ng for all g t G. 

If N is a normal subgroup we can construct a group from the cosets of 
N ,  called the factor group GIN. The elements of GIN are the cosets gN,  g E C.  
Of course two cosets g N ,  g'N containing the same elements of C define the 
same element of GIN: g N  = g'N. Since N is normal it follows that ( g l N ) ( g 2 N )  
= (g,N)(Ng,) = g,Ng, = g,g2N as sets. (Note that N N  = N as sets.) There- 
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fore, we define group multiplication in GjN by 

(g,"g,N) = g,g,N. 
I f  G is finite, the order of GjN is clearly the index of N in G. 

a n  integer, by 
Corresponding to any element g of G we define the group element g", n 

if t7 = 0 
g" - gg . . .  g ( n  times) if n > O  r g-lg-' . .  . g (-0 times) if n < 0. 

The reader can easily verify that g" '  
Suppose S = {g ,  / I , .  . .} is an arbitrary subset of G. Consider the set 

G, consisting ofall finite products of the form g; 'gy . . I g;', where g ,  , . . . , g, 
c S , n , ,  . . . , n, run over the integers, a n d j  runs over the positive integers. 
Under the group product inherited from G, G, is a subgroup called the 
subgroup generated by the set S. Here G, can be characterized as follows: 
If H is a subgroup of G and  S c H then G, E H.  That is, G, is the smallest 
subgroup of G containing S. If a group H i s  generated by S = [gj, i.e., i f  every 
/ I  E H can be written in the form / I  ~ g", then H I S  cyclic. 

The order of an element g c G is the order of the cyclic subgroup gen- 
erated by {g}, i.e., the smallest positive integer m such that g" = e. By 
Theorem 1.2, nz divides the order of G. 

= g"gm and g"g-" = e .  

Theorem 1.3. 
17 then N is normal and the factor group G/N is cyclic of order two. 

Proof. Since 2n(N) = n(G) there are only two left cosets in G:  eN = N a n d  
g N ,  where g 6 N. Similarly, there are only two right cosets N a n d  Ng. Since 
every element of G is contained in exactly one left coset and exactly one right 
coset, we must have g N  Ng for all g E G, g 4 N .  This last relation is also 
true if g 5 N .  Therefore, N is normal. The relations N N  = N, N(gN) ~ 

(gN)N ~ gN, and (gN)(gN) N, g $ N, imply GIN is cyclic of order two 
The last relation follows from the fact that g 2  E N .  For, if gz E g N  then 
g c N ,  a contradiction. 

I f  G is a finite group of order 2n and N is a subgroup of order 

Q.E.D. 

1.3 Homomorphisms, Isomorphisms, and Automorphisms 

A homomorphism p is a mapping from a group G into a group G' which 
transforms products into products. Thus, to every g E G there is associated 
p ( g )  G G' such that p ( g , g , )  p(g , )p (g2)  for all g , ,  g2 E G. Let e,  e' be the 
identity elements of G, G', respectively. Then p ( e )  - p f e e )  ~ p(e)p(e) .  
which implies p ( e )  ~ e' by multiplication on the right with p ( e ) - '  5 G'. 
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Thus, p maps the identity element of G into the identity element of G‘. A 
similar argument shows p(8-I)  = p ( g ) - ’ ,  i.e., p maps inverses into inverses. 

Homomorphisms are important because they are exactly the maps from 
one group to another that preserve group structure. They are the group anal- 
ogy of linear transformations on vector spaces. Here we discuss homomorph- 
isms from an abstract viewpoint, but in the following sections we will return 
to this topic and stress its geometrical aspects. 

A homomorphism p from G to G’ is often designated by p :  G - G’. 
The domain of p is G, the range of p is p(G) = ( p ( g )  E G‘: g E GI. Clearly, 
p(G) is a subgroup of G‘. If p ( G )  = G’ then p is said to be onto. In case 
p ( g , )  f p(g2)  whenever g, f g, we say p is 1-1. A homomorphism which is 
1-1 and onto is an isomorphism. If p is an isomorphism then it can be inverted 
in an obvious manner to define an isomorphism p- l  of G’ onto G. From the 
point of view of abstract group theory, isomorphic groups can be identified. 
In particular, isomorphic groups have identical multiplication tables. 
However, for the purposes of physical and geometrical applications it is fre- 
quently useful to distinguish between groups which are abstractly isomorphic. 
We shall return to this point in Section 1.4. 

The above concepts are obvious analogies for groups of concepts related 
to a linear mapping of one vector space into another. We continue this 
analogy by defining the kernel K of p as the set 

K = {g  E G :  p ( g )  = e’} .  

The kernel of p is the analogy of the nu l l  space of a linear transformation. 

Theorem 1.4. K is a normal subgroup of G. 

Proof. If k , ,  k ,  t K then p(k ,k , )  : p ( k l ) p ( k 2 )  = e’e’ = e’,  so k , k 2  E K.  
Furthermore, if k E K then p ( k - l )  = p(k)- l  = (e’)-l = e‘, so k - ’  t K. 
By Theorem 1 .  I ,  K is a subgroup of G. To prove that K is normal it  is enough 
to show gkg-’ E K for all k E K ,  g E C. This follows from p(gkg- ’ )  = 

p ( g ) p ( k ) p k - ’  = p(g)e’p(g) - ’  = e‘. Q.E.D. 

All elements in  a left coset gK are mapped into the same element p ( g )  
in C‘ since p(gk) = p(g)p(k) = p ( g )  for all k E K. Furthermore, two 
elements with the same image under p lie in the same left coset. Indeed, if 
p ( g l )  = p ( g 2 )  then p(g; lg , )  = e’,  which implies g;lg, t K or g, E g,K.  
This argument leads to several important results. First of all, p is 1-1 if and 
only if the kernel consists of the identity element alone. Second, the fact that 
p is constant on left cosets of K means that we can define a transformation 
p‘: G / K  + p ( G )  mapping the factor space G / K  (which makes sense since 
K is normal) onto the subgroup p ( G )  of C’. This map is defined by p’(gK)  = 
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Theorem 1.5. Let K be the kernel of the homomorphism p :  G --t C'. Then 
p(G) is isomorphic to the factor group G/K. 

An isomorphism v :  G - G of a group G onto itself is called an auto- 
morphism. For fixed h E G the map v,(g) = hgh-' is an automorphism, since 
v,(g,g,) = hg,g2h-' = (hg,h-l)(hg,/i-l) = vh(gl)uh(g2) and v, is clearly 1-1 
and onto. The mappings v,, h E G, are called inner automorphisms. It is not 
necessarily true that all automorphisms of a group are inner. The set of all 
automorphisms of G itself forms a group A(G), the automorphism group. 
The product Y , V ,  of two automorphisms is defined by vIvz(g) = v,(vz(g)), 
g E G, and the identity automorphism is the identity map of G onto itself. 
The set Z(G) of inner automorphisms of G forms a subgroup of A(G). 

1.4 Transformation Groups 

Up to  now our presentation of group theory has been entirely abstract 
and there has been little apparent connection with the study of symmetry. 
The missing link between abstract group theory and the notion of symmetry 
is the transformation group. 

Definition. A permutation of a nonempty set X is a 1-1 mapping of X onto 
itself. 

Thus, if the elements of X are denoted x, y ,  z ,  . . . a permutation cr 
is a map from X to X such that ( I )  ~ ( x )  = a(y) if and only if x = y and (2) 
for every z E X there exists an x E X such that a(x) = z .  One such permuta- 
tion is the identity permutation l(x) = x for all x t X .  The set S, of all per- 
mutations of X forms a group, the full symmetric group on X .  The product 
az of two permutations cr ,  z E S, is given by az(x) = a(z(x)) for all x t X .  
clearly (17 is again a permutation of X .  The identity element of S, is 1 and the 
inverse Q - I  of cr is defined by the requirement a-'(x) = y  if and only if 
a(y) = x. Elements of S, are said to  act or operate on elements of X .  

The set X may have an  infinite number of elements, e.g., it may consist 
of all the points in the plane. If X is infinite then S, is an  infinite group. If 
X has a finite number of elements, say n, then we can identify S,  with the 
symmetric group S,, defined in Section 1.1. In other words, the groups S,y 
and S, are isomorphic in case X has n elements. Recall that S, has order n!.  

Definition. A transformation (permutation) group on X is a subgroup of S,. 
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If G is a transformation group on X then the elements g of G define per- 
mutations g(x) of X .  (Henceforth we will drop the parentheses and write 
gx for these mappings. This should not result in any confusion.) These 
permutations can be used to decompose X into mutually disjoint subsets. 
Let x, y t X .  

Definition. We say x is C-equivalent to y (x - y )  if gx = y for some g E G. 

Let us show that - is an equivalence relation. Now lx  = x implies 
x - x. Furthermore, if gx = J' then x = g-'gx = g-ly, so x - y implies 
y - x. Suppose x - y and y - z .  Then there exist elements g,  , g, in G such 
that g,x = y ,  g,y = z .  But (g2gl)x = g ,y  = z ,  so x - z and - is an equiva- 
lence relation. 

Definition. - are called C-orbits or  just orbits. 
The equivalence classes of X under the equivalence relation 

Thus x and y belong to the same orbit if and only if y = gx for some 
g t G. The orbit containing x is the set {gx: g t G). If there is only one 
G-orbit in X we say G is transitive. In this case for every pair of points x, y 
in X there is a g t G such that y ~ gx. 

Example. Introduce a rectangular coordinate system (x , ,  x2) i n  the Eucli- 
dean plane X and let G be the set of all rotations about the origin. The 
elements g, of G are labeled by the continuous parameter p, which is the angle 
of rotation in radians measured from the positive x,-axis. If x E X has co- 
ordinates (x, , x,) then y = g,x has coordinates 

Note that g, = grtZn, since both group elements lead to the same trans- 
formation of the plane. The elements g, clearly form a group since g,go = 

g,,,. The orbits are concentric circles about the origin. The rotation group 
in two-space is clearly isomorphic to the matrix group SO(2,  R ) ,  

' O ( p < 2 n  1 cos p -sin p i sin y cos o, 
called the real special orthogonal group in two-space. 

If Y is a subset of X and g c G, we denote by g( Y )  the set {gy:  J' E Y ] .  

Definition. 
all g E G. 

A subset Y of X is G-invariant or just  invariant if g( Y )  c Y for 
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In particular, the subset { x )  of Xis  invariant if and only if gx = x for all 
g E G, i.e., if and only if the G-orbit containing x consists of x alone. I n  the 
above example the only invariant point is the origin. A general invariant set 
is formed by taking arbitrary unions of concentric circles about the origin. 

We are now in a position to state a major theme of this book. Given a 
transformation group G we can look for all G-invariant subsets Y of X .  
The group G is an invariance or symmetry group of the objects Y .  As in 
the example given above, such subsets often have geometrical significance. 
They can always be expressed as unions of orbits. Similarly, given an arbitrary 
subset Y of X we can find a subgroup 

K = {g E G: g( Y )  L Y ) .  

It is easy to show that K is itself a transformation group and Y is a K-invariant 
subset of X.  Frequently we shall refer to K as the G-symmetry or symmetry 
group of the object Y.  This simple relationship between objects and their 
symmetry groups provides us with a means of applying group-theoretic 
concepts to geometrical problems. 

Example. The symmetries of the square. 

Let X be the Euclidean plane and G the group O(2) of all rotations and 
reflections in the plane which leave a fixedpointp invariant. [We will explicitly 
define the orthogonal group O(2) later. Its exact definition is not important 
for our example.] 

Consider the square ABCD with center p as pictured in Fig. 1 .1 .  We look 
for all rotations and reflections in O(2) which map the square onto itself. 
There are eight such symmetries of the square: the identity permutation 1, 
the 90" clockwise rotation r, clockwise rotations rz and r3 through 180" and 

/ 
D t I 

FIGURE 1 . 1  
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270", respectively, and four reflections h, v, m, and n about horizontal, 
vertical, major diagonal, and minor diagonal axes, respectively. A con- 
venient way to list these symmetries is by means of the cycle notation for the 
permutation of the vertices induced by each symmetry. Thus, we can write 
r ( A B C D ) ,  r2 = ( A C ) ( B D ) ,  r 3  ~ ( A D C B ) ,  h = (AD)(BC) ,  v = (AB) (CD) ,  
m = ( B D ) ,  and n = ( A C ) .  These eight symmetries form the group D,, the 
dihedral group of order eight. Indeed 1 E D ,  and the inverse of each g E D ,  
is in D,, e.g., h - '  = h, r - ]  = r 3 .  Furthermore, the product of two symmetries 
is again a symmetry. Thus nh = ( A C ) ( A D ) ( B C )  = (ADCB)  = r3, or the re- 
sult of reflecting the square about the horizontal axis followed by a reflection 
about the minor axis is equivalent to a clockwise rotation of 270". Recall 
that the group operations are performed from right to left. (The reader would 
do well to work out the complete multiplication table for D, to be sure he 
understands this important example.) Note that D, is isomorphic to a sub- 
group of S ,  and our realization of D, by permutations constitutes a 1-1 
homomorphism of D, into S , .  

The conjugacy classes of D ,  can contain possibly one, two, or four ele- 
ments since those are the factors of eight. (No  conjugacy class can contain 
eight elements since { I )  is always a class by itself.) A simple computation 
shows that there are five classes, { I ) ,  {r, r3], (rZ}, {h, v),  and {m, n}. Note that 1 
and r2 commute with all g E D ,  and thus lie in classes containing only one 
element. The conjugacy classes have a simple geometrical interpretation. 
They correspond to rotations through 0", 90°, and 180", respectively, and re- 
flections about an axis through either the midpoints of opposite sides or two 
opposite vertices. Note that a clockwise rotation of 270" leads to the same re- 
sult as a counterclockwise rotation through 90". A conjugacy relation 
such as rhr-' = v can be interpreted as follows: To perform a reflection about 
the vertical axis, rotate the square counterclockwise 90°, reflect in the hori- 
zontal axis, and then rotate back 90" in the clockwise direction. 

We now return to a general discussion of the transformation group G 
on X.  For any x E X the group 

G" = {g t G: gx = X} 

is called the isotropy subgroup of G at x. It contains those elements of G that 
leave x invariant. 

Theorem 1.6. Each left coset of Gx consists of all elements of G that map x 
to a specific pointy. Thus there is a 1-1 relationship between the points in the 
G-orbit containing x and the left cosets of G". If G is finite, the C-orbit 
containing x consists of n(G)/n(Gx) points, a factor of n(G). 

Proof. The last statement is immediate once we establish the 1-1 relation- 
ship between points in the G-orbit through x and left cosets of G". Let y E X 
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such that x N y ,  i.e., there is a g E G such that y = gx. Then ghx = gx = y 
for all h E GI, so all elements in the coset gG" map x onto y .  Conversely, 
if y = k x  for some k E C then gx = kx  or  x = g- lkx ,  so g- 'k  E G", which 
implies k E gG". Q.E.D. 

This theorem provides an important connection between the algebraic 
notion of coset and the geometrical notion of orbit. 

It is sometimes helpful to view a transformation group G as an abstract 
group G together with a 1-1 homomorphism p of G into the group S, of 
permutations of X .  Then, p(G) = G is isomorphic to G. Here we are distin- 
guishing between the abstract multiplicative structure G and the transforma- 
tion group G on X .  Clearly the same abstract group can have many different 
realizations as a transformation group. We will usually distinguish between 
two abstractly isomorphic transformation groups if they correspond to phy- 
sically distinct types of transformations. For example, the cyclic group of 
order two consists of the elements {e ,g}  with g2 = e. This group can be 
realized as a transformation group in the plane whereg corresponds to a 180" 
rotation about a point p ,  e.g., g = r2 in our last example. Another realization 
is obtained by letting g correspond to a reflection about a line in the plane, 
e.g., g = v in the last example. These groups are isomorphic, but for the 
purposes of applications to physics and geometry we usually distinguish 
between them. Nevertheless, we will often use the same symbol G to describe 
both an abstract group and any transformation group obtained from it. 

Any abstract group G can be realized as a transformation group acting 
on itself. Indeed the mapping L :  G - G, called the left regular representation 
of C and defined by L(a)g = ag, a, g E G, is easily shown to be a 1-1 
homomorphism of G into S,. That is, L(ab) = L(a)L(b) for a, b E G, each 
L(a) is a permutation of G, and L(a) = 1 if and only if a = e .  This proves 
Cayley's theorem, which is as follows. 

Theorem 1.7. Any group G is isomorphic to a subgroup of the full permuta- 
tion group S,. In particular, any finite group of order n is isomorphic to a 
subgroup of S,,. 

Note that the left regular representation is transitive. However, if we re- 
strict L to a proper subgroup H of G, thusadefining H as a transformation 
group on G, the space G = Xsplits up into orbits which are exactly the right 
cosets Hg of H. 

As a final remark we clarify the meaning of conjugacy in a transformation 
group. Let G be a transformation group acting on X ,  g, h E G and x ,  y E X .  

Theorem 1.8. (1) The permutation g sends x into y if and only if hgh-l sends 
hx into hy. 



1.5 New Groups from Old Ones 13 

(2) The point x is invariant under g if and only if hx is invariant under 
hgh-I. 

(3) If G” is the isotropy group of x and h sends x into y ,  then hG*h-“t 
GY, i.e., points in the same G-orbit have conjuate, hence isomorphic, isotropy 
groups. 

Proof. (1) gx = y if and only if (hgh-’)hx = y .  (2) gx = x if and only if 
(hgh-’)hx = hx. (3) Follows from (2). Q.E.D. 

1.5 New Groups from Old Ones 

Given the groups G and G’, we discuss two pifferent ways to construct 
new groups which contain subgroups isomorphic to G and G‘. 

Definition. The direct product G x G’ is the group consisting of all ordered 
pairs ( g , g ’ )  with g E G and g’ E G’. The product of two group elements 
is given by (g, 7 g,’)(gz, g,’) = (g ,g , , i1 ’gz’ ) .  

It is easy to show that G x G’ is a group with identity element (e ,  e’) 
where e, e‘ are the identity elements of C, G’, respectively. Indeed (g ,  g‘)-’  = 

(g-*,g’-I) and the associative law is trivial to verify. The subgroup G x 
{e ’ )  = {(g, el): g E GI of G x G’ is isomorphic to G with the ismorphism 
given by (g, e’) H g .  Similarly the subgroup { e )  x G’ is isomorphic to G’. 
Since (8, e’)(e, g ’ )  = (e, g’)(g, e’) = (g, g’) it follows that (1) the elements of 
G x {e’} commute with the elements of {e}  x G’ and (2) every element of 
G x G’ can be written uniquely as a product of an element in G x {e‘} and an 
element in {e]  x G‘. Frequently one identifies the isomorphic groups G x 
{e’j and G as well as {e}  x G’ and G‘, and writes (g,  e’) = g ,  ( e , g ’ )  = g ’ ,  
(g ,  g ‘ )  = gg’ = g’g for g E G, g’ E G’. This point of view leads to the fol- 
lowing definition. 

Definition. A group G is the direct product of its subgroups H and K 
(G = H x K )  if (1) hk = kh for all lz E H, k E K ,  and ( 2 )  every g E G 
can be expressed uniquely in the form g = hk, h E H ,  k E K. The subgroups 
H and K are said to be direct factors of G. 

It follows from (2) that H and K have only the identity element in com- 
mon. For, if g E H n K then g = ge = eg and by uniqueness we must have 
g = e. Furthermore, the reader can show that Hand  K are normal subgroups 
of G. 

The above definitions can easily be extended to define direct products 
GI  x G, x . . - x G, of n groups. Furthermore, if the G, have finite order it 
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is clear that the order of the direct product is the product of the orders of the 
direct factors. 

As an example we use the first definition to construct the direct product 
G x G' of the cyclic group of order two, G = {e,  a}, a2 = e,  and the cyclic 
group of order three, G' = {e', b, b2) ,  b3 = e'. The group G x G' has order 
six and contains the element j = (a, b) of order six. Thus, C x G' is the cyclic 
group of order six generated by j .  

A more general, but more complicated, method of building a new group 
from two old ones is the semidirect product. 

Definition. Let H and K be groups and let the map k ----f v, be a homo- 
morphism of K into the automorphism group A ( H )  of H .  Then the set of all 
ordered pairs ( h ,  k ) ,  h E H,  k E K,  forms a group, the semidirect product 
of H and K, with group multiplication 

(5.1) ( h ,  k)(h',  k ' )  = (hv,(h'), kk') .  

It is necessary to verify that this definition makes sense. Firstof all, the 
map v, is an automorphism of H for each k E K.  Furthermore, v, = 1, 
the identity automorphism, and vk&) = vk[vk,(h)] for all k ,  k' E K, /i E H. 
To show that the binary relation (5.1) defines a group, we check the standard 
group definition in Section 1 .  I .  The associative law follows from 

(5 '2)  ( ( h l  9 k l ) ( h 2 ,  k 2 ) ) ( h 3  9 k 3 )  = ( h l v k ~ ( h 2 ) ,  k 1 k , ) ( h 3  9 k 3 )  

= < h l v k i ( h 2 ) V k i k ~ ( h 3 ) ,  k l k 2 k 3 )  

and 

(5.3) (hi 7 ki)((h2, k2)(h3 5 k3)) = <hi 9 ki)<hzvk2(h3)9 k2k3) 

= ( h 1 v k ~ ( h 2 v k ~ ( h 3 ) ) 3  k 1 k 2 k 3 >  

<h 1 ' k  ~ k 2 ( ~ 3 ) ,  1 k 2  3 >* 

The identity element is ( e ,  e )  since 
<h, k ) ( e ,  e )  = (hv,(e), k )  = ( h ,  k )  

( e ,  e X h ,  k )  = (v , (h) ,  k )  = ( h ,  k ) .  
It is left as an exercise to verify that the element inverse to ( h ,  k )  is 

If v, G 1 for all k E K then the semidirect product reduces to the direct 
product. Just as with the direct product, we can identify the groups ( H ,  e )  
and H using the map (h,  e )  H h as well as the groups ( e ,  K )  and K .  Thus we 
can write any element g of the semidirect product G uniquely in the form 
g = (h ,  k )  = hk and group multiplication becomes 

(5.4) 

(vk-I(h-'), k - I ) .  

(5.5) (h  I k 1 Zk 2 )  = ( h  1 v, ,(A 2))(k 1 k 2 ) .  
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From this identification it follows that H n K = (e ) ,  K is a subgroup of G, 
and H is a normal subgroup of G .  Indeed, if k t K and h E H then 

(5.6) khk-‘ = (e, k ) (h ,  k - ’ )  = v,(h), 

so for g = hk E G, h’ E H ,  we have 

(5.7) gh’g-’ = (hk)h’(k-’h-’)  = h(kh’k-’)h-’ E H ,  

and H is normal. 
As an example we note that the dihedral group D4 is isomorphic to a 

semidirect product of the cyclic group H of order four and the cyclic group 
K of order two. If h, k are the generators of H ,  K respectively, then the 
automorphism v, of H is defined by vk(h) = h-’ = h3 ,  i.e., khk-’ = h - ’ .  
We shall see later that the Euclidean and Poincare groups can also be expres- 
sed as semidirect products of simpler groups. 

Problems 

1.1 Prove: A group G has no proper subgroups if and only if  the order of G is finite and 
prime. 
1.2 Let G be a finite group and S a nonernpty subset of G such that gh t S for all g. 
h E S. Prove that S is a subgroup. What if  G is an infinite group? 
1.3 Prove: If the group G has exactly one element h of order two then gh = hg for every 
g E G. 
1.4 Show that there are exactly two groups of order four, one of which is cyclic. Find all 
groups of order six. 
1.5 Construct a homomorphism of Dd onto the cyclic group of order two. 
1.6 Determine all subgroups of S4 and sort them into classes of conjugate subgroups. 
1.7 Show that the symmetry group of a regular hexagon consists of 12 elements and 
determine the conjugacy classes. 
1.8 The commutator subgroup G ,  is the subgroup of G generated by all elements of the 
form ghg-’h-1, g, h E G. Prove that G,  is a normal subgroup of G and G/G, is commuta- 
tive. 
1.9 Let g, h, k be elements of the group G. Prove that ghk, hkg, and kgh have the same 
order. 



Chapter 2 

The Crystallographic Groups 

2.1 The Orthogonal Group in Three-Space 

Let R ,  be three-dimensional real Euclidean space. We erect a Cartesian 
coordinate system with origin C in this space and associate with each point 
P in R, a unique triple of real numbers (xI , x , ,  x,), the projections of P on 
the three mutually perpendicular coordinate axes. It is useful to think of 
R ,  as a three-dimensional vector space with elements x = (x, , x,, x,) = 

c,t xiei ,  where e, , e,, and e, are unit vectors along the coordinate axes. As 
is well known, the bilinear form 

3 

l i  I 
(x, Y> = c X,Yi, x, Y E R, (1.1) 

defines an inner product on this space. The norm 1 1  x 1 )  = (x, x ) ~ ! ~  is the 
Euclidean length of the vector x and 

(1 4 cos a, = (x, Y)/IIXlI IIY I I  
is the cosine of the angle a, between the vectors x and y. 

We look for all linear transformations 0 :  R ,  - R ,  which preserve length, 
i.e., all linear transformations 0 such that (Ox, Ox) = (x, x) for all x E 

R , .  Because of the identity 

(1.3) 

(1.4) 

4(x, Y) = (x + Y, x + Y)  - (x - Y, x - Y> 

(0x9 OY) = <x, Y> 

it follows that 

16 
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and the transformation 0 also preserves angle. That is, the angle between the 
vectors x and y is equal to the angle between vectors Ox and Oy. 

To compute the possible length-preserving transformations 0 we pass to 
matrices. Recall that the matrix T of a linear transformation T :  R,  --t R, 
with respect to the basis e , ,  e, ,  e3 is defined by T = (Ti,), 1 < i,.j < 3, 
where 

3 

Tej = C Tjjei. 
i 1  

The identity operator Ex = x has the matrix E,  = (d,,), where dij is the 
Kronecker delta. The product TQ of two transformations defined by TQx = 

T(Qx) corresponds to the matrix product TQ where (TQ),, = Ck T i k Q k j .  
Furthermore, the inverse T-I of an invertible operator T corresponds to the 
inverse matrix T - *  of the nonsingular matrix T. 

Using the fact that Ox = X i ,  Oijxjei and writing the equation (Ox, Oy) 
= (x, y} in component form, we obtain the result 

( I  .6) 

or 0'0 = E,  in terms of matrix multiplication. Here, 0' is the transpose of 
the matrix 0, O:, = O j , .  Thus 0' = 0-' is a necessary and sufficient condi- 
tion that the operators 0 preserve inner product. Let O(3) = ( 3  x 3 matrices 
0: 0'0 = E , } .  Clearly the matrices in O(3) are all nonsingular. Now, 
CO,O,)t(O,O,> = O,'O,'O,O, = O,tO, = E, if O , ,  0, E 0 ( 3 ) ,  so O,O, E 
O(3). Furthermore, E,  E O(3) and (0; ' ) 'Oi '  = 0 , O ; '  = E , ,  so 0 7 ,  E 
O(3). Thus, O(3) is a group, the real orthogonal group in three-space. The 
operators 0 also form a group and the correspondence 0 H 0 defines an 
isomorphism between the two groups. Both groups are usually called O(3).  
Any abstract group-theoretic property which holds for one realization of 
O(3) automatically holds for the other. We shall sometimes use the operator 
form of the group and at  other times use the matrix form. 

3 c OijOik = s,, 
i 1  

Lemma 2.1. det 0 = & I  if 0 E O(3) 

Proof. Since 0'0 = E,  it follows that det(OtO) = 1. But, det(O'0) = 

(det Ot).(det 0) = (det O)2.  

Both signs of the determinant occur. Indeed, E,  and I ,  = -E3 are ele- 
ments of O(3) with det E ,  = I and det I ,  = - I .  The operator I with matrix 
I ,  is defined by Ix = -x,  all x t R, ,  and called the inversion operator. 
Note that 1, = E. Since det(O,O,) : (det O,).(det 0,) it follows that the set 

(1.7) SO(3) = {0 E O(3): det 0 = + I ]  
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forms a subgroup of O(3), called the special orthogonal group (proper ortho- 
gonal group) in three-space or just the rotation group. The map 0 - det 0 
defines a homomorphism of O(3) onto the cyclic group of order two with 
elements 1 = e and - 1. The kernel of this homomorphism is SO(3), which 
implies that SO(3) is a normal subgroup of O(3). Furthermore, by Theorem 
1.5 there are exactly two SO(3)-cosets in O(3): SO(3) and I,.SO(3). The 
elements of the first coset are all proper orthogonal (rotation) matrices and 
the elements of the second coset are all improper, i.e., they have negative 
determinants. Thus, every improper element 0' can be written uniquely in 
the form 0' = Z,O, a rotation followed by inversion. 

The groups O(3) and SO(3) have now been realized as transformation 
groups on the set R , .  We wiIl show that the elements of SO(3) are exactly 
the possible geometrical rotations about all axes in R ,  passing through the 
origin, while O(3) consists of all possible geometrical rotations and rotation- 
inversions in R ,  that fix the origin. 

Theorem 2.1. Let 0 E SO(3). Then there is a vector f, E R,,  llf311 = 1, 
such that Of, = f,. If 0 ;t E the axis designated by &f, is called the axis 
of rotation. 

Pvoof. The theorem asserts that the operator 0 has a unit eigenvector 
f, with eigenvalue 1 = 1.  This is equivalent to the assertion that 1 = 1 is 
a solution of the characteristic equation det(O - AE,) = 0. But det(O - E,) 
= det(Q - E3t) = det(0-1 - E,) = (det O-').[det(-E,)].det(O - E,) = 

-det(O - E,) .  Therefore, det(O - E, )  = 0 and 1 = 1 is an eigenvalue of 
0. Thus, a desired vector f, exists, though it is not unique. 

Now choose unit vectors f ,  and f2 so that (f, , fz ,  f,] is an orthonormal 
basis for R, ,  i.e., (fj, f,) = a j k .  We will compute the matrix 0" of 0 with 
respect to this basis. The relations (Ofj, Of,) = (fj, fk) = 6 j ,  lead to 

Of, = O l l f ,  + P l f 2 ,  

Of, = C12fl + P z f 2 ,  

Of, = f , ,  

-a, = p z  = cos 8, 

E l m 2  i-- P I P 2  = 0 
-a ,2  + p,z = 1 

-a22 + p 2 z  = 1 .  

(1 4 

These equations have the unique solution (det 0" = 1) 

(1.9) p ,  = --a, = sin 8 ,  

cos8 -sin8 0 

0 I 8 < 2n, 

so that the matrix of 0 in the f-basis is 

(1.10) 
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It follows from (1.10) and elementary analytic geometry that 0 can be inter- 
preted as a counterclockwise rotation through the angle 0 about the axis of 
rotation f , .  We adopt the notation 0 = c k ( @ ,  where k = f, is the axis of 
rotation and 0 is the rotation angle. Note that 
(1.11) C k ( 0  -t q) = ck(e)ck(V>? 

where we assume c k ( a  + 2n) = c k ( a ) .  Furthermore, both k and -k serve 
to define the same axis of rotation so 
(1.12) c k ( 6 )  = C - k ( 2 n  - 8). 

Since 0 and d are matrices of the same transformation 0 viewed in different 
basis systems, these matrices must be similar, i.e., d = QOQ-' ,  where Q 
is'the orthogonal matrix denoting the change of basis. Thus, 0 and 0" have 
the same determinant and trace. In particular, 

t r  o = i; o , ~  = tr B = 1 + 2 cos e. (1.13) 
I =  1 

The improper rotations also have a simple geometrical interpretation. 
An improper rotation 0' can be written uniquely in the form 
(1.14) 0' = 13C,(n + 8) = I , C , ( n ) C k ( 0 )  = o k c k ( 8 ) ,  

where O k  = 1 3 C k ( n )  is the reflection in the plane through the origin of R ,  
perpendicular to k.  Thus, any improper rotation (rotation-inversion) is 
equal to a rotation about some axis k followed by a reflection in the plane 
perpendicular to k.  We write &(8) = O k C k ( 8 ) .  

The conjugacy classes in O(3) and SO(3) have a simple physical signifi- 
cance. The relation 
(1.15) o c k ( e ) o - '  = C O k ( 0 ) r  0 E S0(3) 
shows that all rotations through the angle 8 about any axis lie in the same 
conjugacy class of SO(3). Thus the conjugacy classes can be labled by the 
rotation angle 0 , 0  I 8 I 7c. To prove (1.15) we chose an orthonormal basis 
(fj] for R ,  corresponding to c k ( 8 ) ,  just as in (1.8). In particular, f, = k.  
Then {Of,, Of,, Of,] is also an orthonormal basis and the matrix of 
o c k ( f ? ) o - '  in this new basis is just (1.10) again. Thus O c k ( 8 ) 0 - '  is a rota- 
tion of angle 8 about the axis Ok. 

It is left to the reader to verify the following: 
(1.16) o c k ( 8 ) 0 - 1  = c , O k ( 8 ) ,  O S k ( 8 ) 0 - '  s c O k ( 8 ) ?  0 E 0(3), 
where c = det 0, which show that the conjugacy classes of O(3) fall into two 
types. One type consists of all rotations through a fixed angle 8,0 I 8 < n, 
and the other consists of all rotation-inversions through a fixed angle 
et, o I ef I n. 
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2.2 The Euclidean Group 

We now seek all transformations T of R, onto R, that preserve the dis- 
tance between any pair of points, i.e., 

(2.1) IjTx - TyI/ = ( / x  - Y I I ,  X,  y E R,. 

Such transformations are called isometries. We do not assume that the trans- 
formations T are linear. It may be helpful to think of T as a permutation of 
the elements of R, which also preserves distance. Let E(3) be the set of all 
isometries. 

Theorem 2.2. E(3) is a group, the Euclidean group in three-space. 

Proof. The identity mapping E is clearly in E(3). If T E E(3) and TK = Ty 
then by (2.1), ) I  x - y 1 1  = 0 or x = y. Therefore, T is invertible. Correspond- 
ing to any two vectors w, z in R, there exist unique vectors x, y such that 
Tx = w and Ty = z. Thus 1 1 T - l ~  - T-'zlI = /Ix - yI) = I/Tx - Ty(I 
= IIw - z( I ,  where we have made use of (2.1) again, and T-'  E E(3). It is 
an elementary argument to show that the product T,T,x = T,(T,x) of 
T , ,  T, E E(3) is again in E(3). Q.E.D. 

As its name suggests, the Euclidean group is basic to the study of Eucli- 
dean geometry. In Euclidean geometry, two subsets S, S' of R, are said to 
be congruent if there is a T E E(3) such that S' = TS, i.e., if the points of 
S can be made coincident with the points of S' by a distance-preserving 
transformation. Since congruent triangles have corresponding angles equal, 
it is easy to show that each T E E(3) also preserves the angle between inter- 
secting straight lines. 

Among the elements of E(3) the easiest to construct are the translations 
T,, a E R,: 

(2.2) Tax = x + a, x E R,.  

Under T, each point of R, is displaced by a. The set T(3) of all translations of 
three-space forms a subgroup of E(3). This subgroup is abelian since 

(2.3) TgTb TbTa T ( s + b ) .  

Let T be an arbitrary element of E(3) and suppose T8 = a, where 8 = 

(0, 0,O) is the origin. Then T-,TO = 8, so T-,T = 0 is an element of E(3) 
which leaves the origin invariant. Now it is clear that all 0 E 0 ( 3 ) ,  as con- 
structed in the preceding section, are elements of E(3) which leave the origin 
invariant. In fact O(3) is a subgroup of E(3). However, it is not so obvious 
that the elements of O(3) are the only isornetries that fix 8. In particular it is 
not obvious (but true) that every distance-preserving transformation of 
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R, that fixes 8 is necessarily a linear transformation, hence an element of 
O(3). We assume this fact here and refer the reader to Yale [ I ]  for a proof. 
Thus, every T c E(3) can be written uniquely in the form 
(2.4) T = T,O = {a, 0}, 0 E O(3). 

Conversely, every product of the form (2.4) defines an element of E(3). Note 
that T, = {a, E} and 0 = (8, 0). The action of the elements of E(3) on R, 
I S  given by 
(2.5) {a, O]x = Ox I a, x E R , ,  

and the product rule is 

(2.6) {a,? O,l{a27 0 2 1  = {a, I O,a23 0 , 0 2 1 .  

Comparing this expression with (5.1) of Chapter I ,  we see that E(3) is a semi- 
direct product of T(3) and O(3). Indeed, the map 0 - yo. where v,(a) = 

Oa, is a homomorphism of O(3) into the automorphism group of T(3). One 
consequence of this result is that T(3) is a normal subgroup of E(3). The 
factor group E(3)/T(3) is isomorphic to O(3).  

Suppose T t E(3) leaves a point a invariant, i.e., T(a) = a. Then T;ITT, 
= 0 leaves 8 invariant, so 
(2.7) T = T,OT;', 0 E O(3). 

Conversely, any group element of the form T,OT;' leaves a invariant. The 
reader should have no trouble in verifying that the elements (2.7) are rotations 
or rotation-inversions about axes through a. All such elements clearly form 
a subgroup O,(3), the orthogonal group at a. From (2.7) we have 
(2.8) O,(3) = T,0(3)T,l. 

The subgroup of rotations and rotation-inversions about a is conjugate, 
hence isomorphic, to O(3). A slight extension of this argument shows that all 
rotations by a fixed angle 8,0 I 6  < IZ, through any axis in R, form a 
single conjugacy class in E(3). The same holds for all rotation-inversions by 
a fixed angle 8'. 

We now give a geometrical interpretation of the elements of E(3). First, 
consider the element (a, ck(6)), where 8 # 0 and <a, k) = 0, i.e., a is per- 
pendicular to the axis of rotation. This transformation has a fixed point b. 
Indeed, the formula 

T;'{a, O)T, = {a - b I Ob, 0) 

and the remarks preceding (2.7) show that (a, C,(O)} leaves b invariant if 

(2.9) b - ck(8)b = a. 

Looking at a plane through a and perpendicular to k we have the situation 
shown in Fig. 2.1. There are an infinite number of solutions b forming an axis 
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FIGURE 2.1 

parallel to k. Thus, {a, c k ( 8 ) )  corresponds to a rotation through the angle 8 
about this invariant axis. 

If a is an arbitrary vector, we can write a = a ,  + a2 uniquely, where a, 
is parallel to k and a, is perpendicular to k. Then 
(2.10) {a? c k ( @ ]  = Ta~{a2,  clc(@). 

The transformation (2.10) is called a screw displacement, a rotation through 
an angle 8 about the screw axis, followed by a translation along the axis by 
a distance 1 1  a, 1 1 .  (If we think of the rotation and translation as being per- 
formed simultaneously we get a right-handed screwing motion, which justifies 
the name.) 

A similar analysis shows that the isometry 
(2.1 1) {a, Sk(O)]  = {a, a k l  

is the product of the reflection in a plane perpendicular to k, the glide plane, 
and a translation in this plane. This transformation is called a glide reflection. 

Finally, the isometry 
(2.12) {a, s,(O)), 8 f 2nn, 
represents a rotation-inversion about some point. To see this we introduce 
a new rectangular coordinate system for R ,  centered at the origin and such 
that the vector k points along the 3-axis. The transformation (2.12) maps the 
point x = (x,  , x 2 ,  x,) into (x, cos 8 -'x2 sin 8 + a , ,  x, sin 8 + x, cos 8 
+ a,, a, - x,). The reader can verify that this transformation has a unique 
fixed point x, for 0 < 8 < 2n. Thus, (2.12) must either be a rotation or a 
rotation-inversion about x, and it is easy to show that i t  cannot be a rotation. 

We have given geometrical interpretations for all elements of E(3). The 
Euclidean group is made up of translations, rotations, rotation-inversions, 



2.3 Symmetry and the Discrete Subgroups of E(3)  23 

screw displacements, and glide reflections. (There is a slight overlap in this 
classification since, for example, there are degenerate screw displacements 
which are also rotations.) From another point of view, the above constitutes 
a list of conjugacy classes of E(3). The reader should have no difficulty in 
showing that all translations through a distance d form a single conjugacy 
class, all screw displacements with angle 0 and translation distance d form 
a single conjugacy class, and so on, 

The map {a, O}  + det 0 defines a homomorphism of E(3) onto the cyclic 
group of order two. The kernel of this homomorphism is E'(3) ,  the proper 
Euclidean group in three-space o r  the group of rigid motions. Clearly, E+(3)  
is a normal subgroup of E(3) and consists of all translations, rotations, and 
screw displacements. The elements of E'(3) are also called direct isometries 
or direct symmetries. 

2.3 Symmetry and the Discrete Subgroups of E(3) 

Let S be a subset of the space R, and define 
G = {T E E ( 3 ) :  TS : S} ,  

the group of all elements of E(3) that map S onto itself. We call G the complete 
symmetry group of S. Any subgroup of G is called a symmetry group of S. 
It is not required that any point of S be fixed under T, merely that T act as 
a permutation of the points of S. For example, the complete symmetry group 
of R, is E(3). The complete symmetry group of a sphere with center at 0 is 
O(3). A right-pyramid-shaped figure with base given by Fig. 2.2 has C,, the 

I 

P 

FIUURE 2.2 

cyclic group of order two, as complete symmetry group. The elements of C, 
are the identity and a rotation of 180" about the axis through P perpendicu- 
lar t o  the base. Of course, many subsets S are without symmetry, i.e., their 
complete symmetry groups consist of the identity element alone. 

To find all possible symmetry groups i t  is necessary to classify all sub- 
groups of E(3) .  This is an  extremely difficult problem! Fortunately, only two 
types of symmetry groups occur with much frequency in the physical sciences: 
discrete groups and Lie groups. These two types are easy to handle mathe- 
matically, which is one reason why they occur in applications. However, 
there are also good geometrical and physical reasons for limiting ourselves 
to such groups. 
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The groups E(3), 0(3), T(3),  and C, [the group of all rotations about 
a fixed axis, isomorphic to  S0(2) ]  are examples of Lie groups. They will be 
studied in detail in subsequent chapters. 

Definition. A discrete group G is a subgroup of the transformation group 
E(3) such that for any x E R, and any sphere B, = (y E R,: llyll I r ]  
there are only a finite number of points in the G-orbit of x that are contained 
in B,. 

If G is a discrete group then the points Gx = {y = gx: g E G] are dis- 
tributed in R, so that only a finite number of them are contained in each 
bounded subset of R,. Clearly, every finite subgroup of E(3) is discrete since 
every G-orbit of a finite group contains only a finite number of elements. 
The group of all translations IT,] where 

(3.1) a = a , e ,  + azez + a3e3 

and a , ,  a 2 ,  and a ,  are integers is an infinite discrete group. On the other hand 
the group of all translations {Ta} where a takes the form (3.1) with a , ,  a,, 
and a ,  rational is neither a Lie group or a discrete group. Another infinite 
nondiscrete group is generated by a rotation through the angle 2n/a about 
an axis, where a is not a rational number. (Prove it!) 

Let us search for the possible discrete symmetry groups of objects (or 
sets) of finite extent, i.e., objects which can be wholly contained inside some 
sufficiently large sphere B,. Clearly such symmetry groups cannot contain 
nontrivial translations, screw displacements, or glide reflections since one of 
these transformations indefinitely repeated would map the object outside of 
the bounding sphere. Thus, the only allowable symmetry operations are 
rotations and rotation-inversions. It follows that every symmetry of a finite 
object has at least one fixed point. However, i t  is not so obvious that the 
symmetries have a common fixed point. 

Theorem 2.3. Let S be a nonempty set of finite extent and let G be a discrete 
symmetry group of S .  Then there is at least one point y E R, which is fixed 
by all g E G. 

Proof. Since S is bounded it can be enclosed inside some sphere B,.  Let 
x E S a n d  consider the G-orbit containing x. All points in this G-orbit must 
be in S,  hence in B,. Since G is discrete it follows that the orbit is finite: 

G x - { x , = x , x ,  , . . . ,  X"). 

Let 

(3.2) 
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be the centroid of Gx. Since the action of an element of E(3) on R ,  is given by 
(2.5) it follows easily that 

( 3 . 3 )  

i.e., the centroid of the finite set {xi} is mapped onto the centroid of {gx,} 
for any g E G. On the other hand, the transformation g merely permutes the 
elements of the G-orbit through x. Thus, the terms on the right-hand sides 
of (3 .2)  and (3 .3)  are equal except for order, and the sums are the same. We 
conclude that gy = y, so the centroid y is a common fixed point for all sym- 
metries of S. 

Corollary 2.1. 
fixed point. 

Theorem 2.4. Let G be a discrete subgroup of E(3) whose elements have a 
common fixed point y.  Then G is a finite subgroup of the orthogonal group 
O(3)  of rotations and rotation-inversions about y.  

The elements of a finite subgroup of E(3) have a common 

Proof. Let x,, . . . . x, be four noncoplanar points lying within a sphere 
B, with center y. Since IIgxi - yII = IIgx, - gyII = /Ixi - y(I, the orbits 
(Gx,} all lie inside E,. Since C is discrete, there are only a finite number of 
points in these G-orbits. Now the transformation g t G is uniquely deter- 
mined by the four noncoplanar points {gx,]. For, if gxj = g'xi, 1 < i < 4, 
then the {xi] are invariant under g-lg', so g-'g'  = E, the identity operator. 
[An element of E(3) is uniquely determined by its action on the (xi).] Hence, 
g' = g and our argument shows that G is a finite group. Q.E.D. 

Thus, a discrete symmetry group of a body S of finite extent is always 
a finite group G of rotations and rotation-inversions about some fixed point 
y. If we consider O(3) as  the orthogonal group with fixed point 8, it is clear 
that G is conjugate to  the finite subgroup T;'GT, = K of O(3),  and K is a 
symmetry group of T i ' s .  Similarly, if T E E(3)  with TO = y then TKT-' 
is a finite group of rotations and rotation-inversions with fixed point y.  To 
simplify the classification of symmetry groups we will identify conjugate sub- 
groups of E(3). Conjugate symmetry groups are physically indistinguishable. 
Our listing of symmetry groups will really be a listing of equivalence classes 
of conjugate subgroups. 

In abstract group theory, one identifies two groups if they are isomorphic, 
i.e., if they have the same multiplication table. This is not the same as the 
classification into conjugate subgroups of E(3) .  Conjugate subgroups are 
isomorphic, but isomorphic subgroups of E(3) need not be conjugate. For 
example, the cyclic groups of order two generated by a rotation of 180" about 



26 2 THE CRYSTALLOGRAPHIC GROUPS 

an axis and a reflection i n  a plane, respectively, are isomorphic but not con- 
jugate. 

To recapitulate, the problem of classifying all discrete symmetry groups 
of objects of finite extent reduces to the problem of listing all finite subgroups 
of O(3). [It  is obvious that each finite subgroup of O(3) is the symmetry 
group of some object.] Subgroups of the transformation group O(3) are 
called point groups since they always have a fixed point. (Without loss of 
generality we can assume that this fixed point is 0.) These groups are of two 
types: point groups of the first kind, which contain only rotations, and point 
groups of the second kind, which also contain rotation-inversions. 

To a great extent the problem of classifying point groups can be reduced 
to the problem of classifying point groups of the first kind. Let G be a finite 
point group and consider the homomorphism g - det g ,  g E G which maps 
G into the cyclic group of order two, i.e., g maps to + 1 if it is a rotation and 
to - I  if it is a rotation-inversion. I f  the kernel of this homomorphism is 
G then G is a point group of the first kind. If the kernel is K, a proper sub- 
group of G, then by Theorems 1.4 and 1.5, K is a normal subgroup with half 
as many elements as G. Furthermore, the coset decomposition of G is {K, 
g,K = Kg,). The elements of K are rotations and the elements of g,K, in- 
cluding go itself, are rotation-inversions. There are two possibilities : either 
G contains the inversion I = -E or it does not. If I E G then I E goK, so 
IK = g,K and we can take go = I. Conversely, if K is a finite rotation group 
then the set [K, IK} forms a point group of the second kind. If I $ G then 
the description of G becomes a little more complicated. Let 

K' = {Ig: g t G, g $ K).  
It is easy to check that ( I )  the set K+ consists of proper rotations, (2) K+ n 
Kis empty, and (3) K+ and K contain the same number of elements. In partic- 
ular, (2) follows from the fact that I $4 G. Now let G+ = K u K'. We 
will show that G' is a point group of the first kind isomorphic to G. The 
isomorphism is the identity on K and maps g $4 K into Ig E K'. This map is 
a homomorphism because I commutes with all group elements. Indeed the 
elements of Gf can be written in the form I"g for g E G, where E = 0 if 
g E K a n d E = I i f g $  K.Then 

(h!,)(P*g*) = ~ ~ + e w ! 2 ,  

where Pifez = E if g,g, E K, and is equal to I otherwise; which proves that 
the map is a homomorphism. Note that K is a normal subgroup of G' of 
index two. We have proved the following result. 

Theorem 2.5. Let G be a finite subgroup of O(3) and let K = G n SO(3), 
the subgroup of rotations in G. There are exactly three possibilities: (1) 
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G = K,  (2) G = K u IK, (3) G # K ,  I fj! G. In the last case G is isomorphic 
to the group of rotations G' = K u K'.  

Theorem 2.5 tells us how to construct all point groups of the second kind 
once we are given all point groups of the first kind, The only nontrivial con- 
structions are in class (3), where we have to determine all point groups of the 
first kind G' that contain a normal subgroup K of index two. The point 
group G is then defined by means of the isomorphism discussed in the proof 
of the theorem. 

2.4 Point Groups of the First Kind 

Let G be a finite subgroup of SO(3) with order n(C) 2 2. Then G acts 
as a transformation group in Euclidean space whose elements have the origin 
8 as a common fixed point. Let B,  be a sphere in R, with center at the origin 
and radius r > 0. The elements of G clearly map the surface S,  of the sphere 
onto itself. A point x on S ,  is said to be a pole if gx = x for some g E G, 
not the identity element. That is, a pole is a point of intersection of S ,  and the 
axis of a nontrivial rotation in G. Clearly, each element of G except the identi- 
ty  is associated with two poles. The transformation group G maps poles into 
poles. Indeed, if x is a pole associated with g, then g2x is a pole associated 
with g,g,g;'. I t  follows that the set of poles on S ,  is partitioned into G-orbits. 
According to Theorem 1.6 the number of poles in the orbit containing x is 
p = n(G)/n(Gx), where G" is the isotropy subgroup of G corresponding to 
x, i.e., G" is the subgroup of all rotations with pole x. Suppose there are k 
orbits. Choosing a point x, in each orbit we see that the number of nontrivial 
rotations with pole x, is n, ~ 1 : - 1 + n/p, ,  where n = n(C), n, = n(G"'), 
andp, is the number of poles in the i th  orbit. (Recall that n, is the same for all 
points in the ith orbit.). We have subtracted 1 since the identity element in 
Gxz is a trivial rotation. The total number of rotations leaving some pole in 
the ith orbit fixed is thus p,(n, - I). Summing over the orbits, we find that 
the total number of rotations leaving some pole fixed is XI"=, pi(n, - I ) .  
Since each rotation is associated with two poles this sum equals 2(n - I ) ,  
i.e., each nontrivial rotation is counted twice. Thus we have the identity 

(4.1) 2(1 ~ l / n )  = c ( I  - I/nJ, 
i =  I 

where n 2 ni 2 2. This equation can be solved only if 2 5 k 5 3. If k = 2 
then (4.1) becomes 

(4.2) 2/n = I/n, - 1 -  l /n2.  

Furthermore, (4.2) can be solved if and only if n,  = n2 = n, n = 2,  3, . . . . 
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Thus, the finite rotation groups G with two orbits are associated with two 
poles, each pole fixed by all elements of G. There is only one axis of rotation. 

The cyclic groups C, of order tz (n = 2,3,  . . .) generated by a rotation 
through the angle 2n/n about a fixed axis clearly satisfy the above require- 
ments. We shall show that these are the only point groups of the first kind 
whose poles can be partitioned into two orbits. 

Lemma 2.2. Let G be a group of order n 2 2 consisting of rotations about 
a fixed axis. Then G C,. 

Proof. The n elements e, g , ,  . . . , 8,-, of G correspond to rotations through 
the angles 0, 8,, . . . ,On-  , about the fixed axis, where 0 corresponds to the 
identity element. We can assume 0 < Oi < 2n, 1 < i I n - 1, if the rotation 
angles are expressed in radians, and renumber the elements of G so that 
8, is the smallest positive rotation angle. Using the Euclidean algorithm we 
see that for each Bi, 2 I i I n - 1, there is an integer mi such that 

Oi = mi8, + qi ,  0 I pi < 8,. 
But gig;"> E G, so q ,  is the rotation angle of some element of G. Since 8, 
is the smallest positive rotation angle, the only possibility is pi  = 0. Thus 
G is a cyclic group generated by g,  . Since G has order n it follows that 8, = 

2n/n. Q.E.D. 

We now return to the solution of (4.1) for k = 3, 

(4.3) 
I t  can be assumed that 1 1 ,  5 n, < n,. Clearly, there is no solution for 3 < n, 
since in that case 

1 + 2/n > 1 2 l / n ,  + I /n ,  + 1 / n 3 .  

Therefore n, = 2. If n, = 2 we get the unique solution 

1 + 2/n = I /n ,  + l / n ,  + l / n 3 ,  n 2 ni 2 2. 

(a) n ,  = n ,  = 2, n 3  = 4 2 ,  n even, n 2 4. 
If n, 2 4 there is no solution since 

1 + 2/n > 1 2 -1; + 4 -1- I / n , ,  
Thus, the only remaining possibility is n2 = 3 :  

1/6 -1- 2/n = l / n 3 ,  

n3 2 4. 

n 2 n3 2 3, 6 > n 3 .  

The possible solutions are 
(b) n ,  = 2, n,  : n 3  = 3,  n = 12, 

(c) n ,  = 2, n, = 3, n,  = 4, n = 24, 
(d) n,  = 2, n, = 3, n3 = 5, n = 60. 
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This exhausts the solutions of (4.1). We will show that each of the solutions 
(a)-(d) uniquely defines a point group of the first kind. 

In  solution (a) set n = 2m, m 2 2 an integer. There is a rotation axis 
corresponding to a rotation subgroup of order m. I t  follows from Lemma 
2.2 that this subgroup is C, and is generated by the rotation through the 
angle 2n/m about the fixed axis L. We say L is an rn-fold axis. The poles of 
L lie in the same orbit. We have now determined m elements of the point 
group, To get the remaining elements, note that there are in twofold axes 
of rotation, I , ,  . . . , I ,  whose poies are divided into two orbits of m poles 
each. Since the two poles of L form a single orbit, each of the rotations by 
n radians about a twofold axis Ii must interchange the poles. Thus the two- 
fold axes are perpendicular to L. A rotation by 2n/m about L maps the I ,  
into themselves. By considering rotations about twofold axes we can easily 
show that the angle between two adjacent li in the plane perpendicular to L 
is a fixed constant. Thus, the angle between any two adjacent li must be n/m. 

The abstract structure of the transformation group corresponding to (a) 
is now uniquely determined. Let C be the rotation of 2n/m about L and let 
r be a rotation by n about one of the twofold axes. Since the cyclic group 
C, generated by C has order n7, i t  follows that the elements of G can be 
divided into two cosets C, and rC,. The m elements in the second coset are 
of order two since they interchange the poles ofL. Thus, t-' = 1: and ( T C ) ~  - 
e, or 

(4.4) r C  = C- ' r .  

(4.5) g = v C k ,  & = O , I .  k - O , l , . . . ,  t t7-  I .  

The multiplication of two group elements is then uniquely determined by 
(4.4). For example, 

Any element g of G can be written uniquely in the form 

(4.6) (&kl)(&k2) z cA?-h', ( & k , ) ( C k ? )  ~ r C k , i k Z ,  

The abstract group defined by these rules is denoted D,, the dihedral group 
of order 2m. 

We will list the conjugacy classes of D,, since they are of importance for 
representation theory. The details in the straightforward proofs will be left 
to the reader. Because of the presence of rotations which interchange the 
poles of L, the rotations Ck and Ck = Cm k ,  k - I , .  . . , n? - - I ,  are con- 
jugate. (The axis L is called two-sided because both poles of L lie in the same 
orbit.) Since C, is a normal subgroup of D,, the conjugacy classes { C k ,  C"-') 
contain no elements not in C,. There are 1 + ( m / 2 )  such classes if m is even 
and ( m  + 1)/2 classes if m is odd. The m rotations r,, . . . , 2, about the two- 
fold axes form a single conjugacy class if m is odd and two classes if m is 
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even. Thus D, has a total of (3 + m)/2 classes for odd m and 3 + (m/2) 
classes for even m. 

For each m we shall exhibit a solid with D, as its largest point symmetry 
group of the first kind. An m-prism is a right cylinder with base a regular 
m-sided polygon and height not equal to one side of the polygon. In the case 
m = 2 we define a regular two-sided polygon as a plane figure looking as 
shown in Fig. 2.3. The reader can check that D, is a symmetry group of the 

FIGURE 2.3 

m-prism. In particular the axis L of the m-prism is the rn-fold axis and the 
midpoint of L is invariant under all elements of D,. Similarly, it is easy to 
show that C, is the maximal direct symmetry group of an m-pyramid. An 
rn-pyramid is a right pyramid with base a regular rn-sided polygon such that 
the distance from the vertex of the pyramid to a vertex of the base is not equal 
to one side of the polygon. 

Next we consider solution (b) of (4.1). There are four threefold axes 
L , ,  . . . , L, three twofold axes /,, I,, I,. Let {x, ,  . . . , x,) be the poles in 
one of the orbits which contains four elements. The elements of G permute 
these poles transitively and effectively (since a nontrivial rotation can fix at 
most two poles). Any pole x ,  , say, is fixed by a cyclic subgroup C ,  of order 
three. It follows that for 2 i < j I 4  there exists g E C ,  such that gx, = 

x , ,  gx, = x, . Therefore, for distinct i ,  j ,  k there is a g E G such that 
gx, = x,, gx, = x,, i.e., the line segment [x,, x,] is mapped onto [x,, x,] 
by the rotation g. Thus, the poles x, , . . . , x, are spaced equidistant from one 
another on the sphere S, and the tetrahedron with these poles as vertices 
admits G as a symmetry group. Clearly, G is a subgroup of the tetrahedral 
group T of all direct symmetries of the tetrahedron. However, n(T)  = 12, 
so G = T, Indeed, every symmetry of the tetrahedron can be represented 
uniquely as a permutation of the four vertices x,, , . . , x4 .  Out of the 24 
possible permutations in S,, the reader can easily verify that only a subgroup 
of order 12, the even permutations, correspond to direct symmetries of the 
tetrahedron. The four threefold axes pass through the four vertices of the 
tetrahedron, while the three twofold axes join the midpoints of nonintersect- 
ing edges. There are four conjugacy classes: the identity, four rotations by 
120", four rotations by 240°, and three rotations by 180'. 

Solution (c) of (4.1) corresponds to three fourfold axes L ,  , L , ,  and L, , 
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four threefold axes, and six twofold axes. All axes are two-sided. Consider 
the orbit with six poles (the poles of the L, axes). G acts transitively and 
effectively on the poles of this orbit. Exactly two of the poles, say x, and x,, 
are fixed under the subgroup C, of rotations about the axis L ,  containing 
x ,  and x 2 .  The four remaining poles are permuted by the elements of C , .  
Since C, contains an element of order four it follows that for 3 i < j  5 6 
there is a g E C ,  such that gx, - x,, k : 1,2, and gx, = x, . Thus g maps 
the line segments [x,  , x,] and [x,, x,] onto [x , ,  x,] and [x,, x,], respectively. 
The distance between any two poles not on the same axis is a fixed constant, 
so the three L-axes are mutually orthogonal. Thus, we can construct a cube 
e such that the six poles form the midpoints of the six faces of e. The group 
G is obviously a subgroup of the octahedral group 0, the direct symmetry 
group of e. The reader can verify that n ( 0 )  = 24, so G = 0. As we have 
mentioned, the three fourfold axes pass through the midpoints of the faces of 
e. The four threefold axes pass through the vertices of C3 and the six twofold 
axes pass through the midpoints of the edges of e. The octahedral group 
contains five conjugacy classes. Since all axes are two-sided, the three rota- 
tions of 90" and the three rotations of 270" about the L, form a single class, 
as do the four rotations of 120 and four rotations of 240" about the three- 
fold axes. The remaining classes contain the identity, the three rotations of 
180" about the L,,  and the six rotations of 180" about the twofold axes, re- 
spectively. 

The octahedral group 0 IS also the direct symmetry group of the octahe- 
dron, a figure formed by connecting the midpoints of adjacent faces of e with 
straight lines. The octahedron is a regular polyhedron with 8 triangular faces, 
12 edges, and 6 vertices. 

Solution (d) of (4.1) corresponds to six fivefold axes L ,  , . . . , L , ,  ten three- 
fold axes, and fifteen twofold axes. All axes are two-sided. The 12 poles of the 
L, axes lie in a single orbit. The transformation group G permutes these poles 
transitively and effectively. Let us choose an axis L ,  with poles x , ,  x2 .  The 
subgroup of rotations that fix each of x ,  , x, IS  isomorphic to C,. In particular 
the rotation g through the angle 72" about L ,  is an element of order five. 
The action of g on the orbit can thus be represented by the permutation 
(4.7) 
if the poles are suitably labeled. This I S  the only possibility since g must have 
order five and leave none of the poles x 3 ,  . . . , x ,  fixed. Therefore, under the 
action of C, the single G-orbit splits into four C,-orbits: two fixed poles and 
two orbits containing five poles each. 

Think of x ,  and x, as the north and south poles of the sphere B,. The 
remaining poles x3, . . . , x ,  cannot all lie on the equator since then a rota- 
tion through 72" about one of the axes L,,  2 < i < 6, would map some of the 

(x3x4  . . . x,)(xsx, . ' .  X I Z )  
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xi into points which are neither on the equator or at the north or south poles. 
This is impossible because the G-orbit contains only 12 elements. Therefore, 
without loss of generality we can assume that x, is in the northern hemi- 
sphere. There must then be five poles in the northern hemisphere since rota- 
tions by 72" about L ,  map xg into x,, . . . , x,, successively. The five remain- 
ing poles are in the southern hemisphere since they lie on the other ends of 
axes through the poles x,, . . . , x,. Our original choice of the axis L ,  was 
arbitrary, so we have established that each pole has five nearest-neighbor 
poles, five distant poles, and its antipode. The distance between nearest- 
neighbor poles is a fixed constant. 

Now draw straight lines connecting each pole to  its five nearest neighbors. 
The figure thus formed, assuming it exists, is a regular polyhedron with 12 
vertices (the poles), 30 edges, and 20 faces. (Prove it!) The faces are equi- 
lateral triangles. 

Such a regular polyhedron does exist. It is called the icosahedron and the 
dubious reader can construct it by gluing 20 congruent equilateral triangles 
together along the edges. The direct symmetry group of the icosahedron is 
the icosahedral group Y. Clearly G is a subgroup of Y. It is easy to enumerate 
the possible direct symmetries of the icosahedron. The only possible axes are: 
6 fivefold axes through pairs of opposite vertices, 10 threefold axes through 
the midpoints of opposite faces, and 15 twofold axes through the midpoints 
of opposite edges. Thus Y contains a total of 60 elements. Since n(G) = 60 
it follows that G = Y.  

There are five conjugacy classes in Y :  the class of the identity element, 
the class containing 15 rotations of 180", the class containing 10 rotations of 
120" and 10 rotations of 240°, the class containing 6 rotations of 72" and 6 
rotations of 288", and the class containing 6 rotations of 144" and 6 rotations 
of 216". 

The icosahedral group is also the direct symmetry group of the dodecahed- 
ron. This regular polyhedron can be obtained by joining with straight lines 
the midpoints of adjacent faces of the icosahedron. The dodecahedron has 
20 vertices and 30 edges. Its 12 faces are regular pentagons. 

We have shown that a complete list of point groups of the first kind 
is given by the cyclic groups C, , the dihedral groups D,, m 2 2, the tetrahed- 
ral group T, the octahedral group 0, and the icosahedral group Y. No two 
groups in this list are isomorphic. 

2.5 Point Groups of the Second Kind 

A list of point groups of the second kind can be obtained from Theorem 
2.5 and results of the last section. First we list all groups generated by the 
inversion I and a point group of the first kind K. Clearly n(G) = 2n(K). As 
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an abstract group G is isomorphic to the direct product K x H = K u IK ,  
where H i s  the group with two elements {E, I ) .  Thus, the multiplication table 
for G can be obtained in an obvious way from the multiplication table for 
K. The number of conjugacy classes for G is just twice the number for K.  
The list is as follows: 

( I )  C, u IC,. This is an abelian group of order 2n consisting of all 
rotations through multiples of the angle 2z/n about a fixed axis and all such 
rotations followed by an inversion. The group has 2n conjugacy classes, 
each class containing one element. For n odd there is an isomorphism C,, 
C, u IC,. However, these two groups are not conjugate subgroups of E(3). 
Also, D ,  

(2)  D,  u I D , ,  n 2 2. This group of order 4n has 3 + n conjugacy 
classes if n is odd and 6 + n if n is even. For odd n 2 3 there is an isomor- 
phism 0, u ID, r DZnr but the two subgroups are not conjugate. 

(3) T u IT = T,,. The group T,, is of order 24 and contains 8 conjugacy 
classes. 

(4) 0 u I 0  = 0,. The group 0, is the complete symmetry group of 
the cube. It has order 48 and contains 12 conjugacy classes. 

( 5 )  Y u I Y  = Y,,. This is the complete symmetry group of the icosa- 
hedron. It contains 120 elements divided into 10 conjugacy classes. 

Next we construct the groups mentioned in part (3) of Theorem 2.6. 
We look for all point groups G' of the first kind such that G' contains a 
subgroup K of index two. With G' = K u K' i t  follows that G = K u IK' is 
a point group of the second kind isomorphic (but not conjugate) to G'. 
Examining our list of point groups of the first kind we find the possibilities 
given in Table 2. I .  Perhaps the easiest way to obtain these results is to search 

C, u IC,, but again the two subgroups are not conjugate. 

TABLE 2.1 

Number of 
G+ K Order of C conjugacy classes 

n) /2 ,  n odd 
3 + ( 4 2 ) .  n even 2n {(3 + (7) D" C , , , n 2 2  

for all homomorphisms of G' onto the cyclic group of order two. An element 
of odd order in G' is necessarily in the kernel I( of each homomorphism. 
Only the elements of even order have to be examined with special care. 

Since G z G', the multiplication table and the number of conjugacy 
classes for G are the same as for G+. However, G and G+ act differently as 
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transformation groups because one group contains rotation-inversions and 
the other does not. 

The group of type (9) is usually denoted as Td in Schoenflies notation 
(Hamermesh [I]). T, contains T as a normal subgroup and is the complete 
symmetry group of the tetrahedron. The groups of type (7) are denoted 
C,,, n = 2,3 , .  . . . The C,, group is the complete symmetry group of an 
n-pyramid. It contains the subgroup C, of rotations about the vertical n-fold 
axis of the pyramid as well as reflections in n vertical planes passing through 
this axis. 

The groups of types (l) ,  (2), (6), and (8) are classified in a different manner 
by Schoenflies. The type (1) group for odd n and the type (6) group for even 
IZ are lumped together to form the cyclic group S,, of order 2n. A generator 
of S,, is given by the rotation-inversion S(n/n), i.e., a rotation of n/n about 
an axis followed by reflection in a plane perpendicular to the axis. The even 
powers of S(n/n) form the subgroup C,. The type (1) group for even n and the 
type (6) group for odd n are combined to form the abelian group Cnhr which 
consists of the 2n rotations and rotation-inversions about a fixed axis by all 
multiples of 2n/n. 

The type (2) group for even n and the type (8) group for odd n form Dnh, 
the complete symmetry group of the n-prism. This group of order 4n contains 
C,, as a subgroup of order 217. The type (2) group for odd n and the type (8) 
group for even n form D,, of order 4n. The group D ,  is the complete sym- 
metry group of a twisted n-prism, obtained by joining together two n-prisms 
at  their bases in such a way that the prisms are rotated relative to one another 
by the angle n/n. Here, D,, contains S,, as a subgroup. 

We have not listed solids whose complete symmetry groups are T,, SZn,  
and Cnh. Such solids are not difficult to construct, however, and we refer the 
interested reader to Yale [l]. 

2.6 Lattice Groups 

A lattice group G is a nontrivial discrete subgroup of T(3), the transla- 
tion group in three-space. By nontrivial we mean that G is not just the identity 
element. Since the elements T, of T(3) are completely determined by the 
3-vectors a = ale ,  + a2e2 + a3e3, we can think of G as a group of 3-vectors 
a whose law of group multiplication is vector addition : 

T,,TPI = Ta, t P 2 .  

If the vector group G contains three linearly independent vectors it is said 
to be three-dimensional. If G contains only two linearly independent vectors, 
i.e., if all the vectors lie in a plane through 8, then G is two-dimensional. If 
all the vectors lie on a line through 0, then G is one-dimensional. I f  a , ,  . . . , a, 
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are linearly independent vectors in a k-dimensional lattice group then every 
a t G can be written uniquely in the form 

(6.1) a = a , a ,  + . . . + aka,,  

where the ai are real numbers. We shall be primarily concerned with three- 
dimensional lattice groups and we shall always consider G as a group of vec- 
tors under addition. In this way we obtain a geometrical model of each lattice 
group. 

Two linearly independent vectors a, and a2 in a lattice group determine 
a parallelogram with vertices 8, a , ,  a,, and a, + a, (all in G) (Fig. 2.4). 

FIGURE 2.4 

Similarly, three linearly independent vectors a , ,  a,, and a3 determine a paral- 
lelepiped with vertices 8, a , ,  a,, a 3 ,  a, -t a , ,  a ,  -1- a 3 ,  a, + a,, and a ,  + 
a, + a, in G (Fig. 2.5). 

The following theorem exhibits the structure of three-dimensional lattice 
groups and justifies the term “lattice.” I f  a , ,  a,, and a3 are linearly independ- 
ent then the set { a , a ,  + a,a, -1- &,a3], where the ai run over all possible 
integers, is clearly a subgroup of G. We show it  is possible to choose the ai 
so this set is all of G. 

Theorem 2.6. Let G be a three-dimensional lattice group. Then there exist 
linearly independent vectors b , ,  b 2 ,  b, in G such that every a F G can be 
written uniquely in the form 
(6.2) a = n , b ,  1 n,b, -1 n,b, 

where the ni are integers. 

Proof. Let a , ,  a,, a3 be linearly independent vectors in G and let P be the 
cell in R, determined by these vectors. (We think of P as consisting of the 
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FIGURE 2.5 

interior of the parallelepiped as well as its boundary faces, edges, and vertices.) 
There are only a finite number of elements of the discrete group G in P. Let 
b, be the shortest nonzero vector in G n P that is parallel to a , .  That is, on 
the edge of P with endpoints 8 and a, we choose the element b, # 8 of G 
closest to 8. Now let b, be an element of G in the parallelogram generated by 
a, ,  a, such that the parallelogram generated by b, , b, has the smallest possible 
nonzero area. Finally, choose b, t G n P such that the parallelepiped Q 
generated by b,  , b, ,  b, has the smallest possible nonzero volume. We show 
that the bi have property (6.2). Clearly, these vectors are linearly independent. 
Given any a E G there exist unique real numbers ai such that 

a = a ,b ,  -t a,b, + a,b, .  

Let n, be the largest integer in  a,. Then 

a -  
3 C nib, = 

i =  I 
/lib, = b ,= 1 

with 0 < j?, < 1. The vector b defined by (7.3) is clearly an element of C n Q. 
We will show that b = 8. 

Suppose 0 < j?, < 1. Then the volume V ( Q ’ )  of the parallelepiped Q’ 
generated by b , ,  b,, b is strictly less than the volume V ( Q ) .  In fact V(Q’)  = 

p, V(Q) ,  but if b E P this is impossible since i t  contradicts our choice of b,. 
If b 6 P we can find integers m , ,  m, such that b‘ = b -1-  m , a ,  + mzaz E P 
and the parallelepiped Q” generated by b , ,  b,, b’ has volume V(Q”) = 
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p 3 V ( Q )  < V ( Q ) .  This is impossible! Thus p ,  = 0 and b lies in the plane 
spanned by a ,  and a,. If 0 < p ,  < 1 then the area of the parallelogram gener- 
ated by b ,  , b is p ,  times the area of the parallelogram generated by b, , b,, 
which contradicts the choice of b, if b t P .  If b $ P then there is an integer 
m,  such that b’ = b + m , a ,  t P and the area of the parallelogram generated 
by b , ,  b’ is p ,  times the area of the parallelogram generated by b , ,  b, .  rhis is 
impossible! Thus /I, = 0 and b = P , b , .  If 0 < /I, < 1 then b is closer to 
8 than is b, . This is impossible, so b = 8. Q.E.D. 

Now we return to the idea of the lattice group as a transformation group 
on R,. Suppose the elements b,  , b,, b, in G satisfy property (6.2). We call 
such a triple basic vectors. Let x E R , .  Applying to x those transformations 
in G corresponding to b , ,  b, ,  b , ,  b ,  + b, ,  b ,  + b, ,  b, + b , ,  and b, + b, + 
b, , we get a parallelepiped in R ,  called a primitive cell or basic parallelepiped. 
By applying all elements of G to x, i.e., by constructing the G-orbit containing 
x, we form a geometrical lattice of points in R,. Indeed, it follows from 
Theorem 2.6 that this lattice is just what we would get by stacking together 
copies of the primitive cell so that they f i l l  all of R,. The lattice points are the 
vertices of the primitive cells. If the b, were linearly independent but did not 
satisfy (6.2) we could still carry out the above construction and fill R ,  with 
cells constructed on x. However, the vertices of these cells would not exhaust 
the points in the G-orbit containing x. 

We can construct a lattice containing any point x. Two points lie on the 
same lattice if and only if they are in the same G-orbit. The totality of all 
lattices, i.e., all G-orbits, is called the crystal lattice or space lattice. Ordinarily 
it is most convenient to discuss lattices based on x = 8. 

By suitably eliminating certain faces, edges, and vertices from a primitive 
cell we can construct a fundamental domain for G, i.e., a subset D of R,  such 
that any point x E R, lies in the same G-orbit as some y t D and no two 
points in D lie in the same G-orbit. Thus, D consists of exactly one point 
from each G-orbit of R,. 

The proof of Theorem 2.6 shows that even though the crystal lattice of 
G is uniquely determined by G, the primitive cell is not. In  fact, there are an 
infinite number of possible basic vectors b,. 

Corollary 2.2. Corresponding to any two linearly independent vectors 
a , ,  a, E G there exists a primitive cell Q with an edge directed along a ,  and 
a face in the plane spanned by a ,  and a , .  (We assume x = 8.) 

The primitive cells of G can be characterized as the cells with smallest 
volume. Let b , ,  b, ,  b, be basic vectors with primitive cell Q of volume 
V ( Q )  and let a , ,  a , ,  a 3  be three linearly independent vectors in G with 
cell P. 
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Theorem 2.7. V(Q) < V(P). 
Proof. 
ai and b, can be represented as 

In  terms of the standard orthonormal basis vectors e l ,  e 2 ,  e3  the 

3 3 

j l  j =  I 
ai = C u j i e j ,  b, = C bj,ej, i, k = 1 2, 3, 

where the 3 x 3 matrices 

A = (az j> ,  B = (bkj) 

are nonsingular. Similarly, 

and the nonsingular matrix 

c = ( C i k )  

has integer matrix elements, since the b, are basic vectors. It follows from 
(6.4) and (6.5) that A == BC in terms of matrix multiplication. Furthermore, 

(6.6) V ( P )  = l a , - (a ,  x a , ) ]  = ldet AI. 

Thus, 

(6.7) 
and I det CI 2 1 since C has integer matrix elements. 

V ( P )  = / d e t B C /  = / d e t C j . / d e t B j =  ldetCl.V(Q), 
Q.E.D. 

In particular, V ( P )  is an integral multiple of V(Q). 

Corollary 2.3. A primitive cell of G is a cell with minimum nonzero volume. 
The volumes of any two primitive cells are equal. 

Corollary 2.4. 
(6.5) then the ai are basic vectors if and only if det C = * I .  

If the vectors ai in G are related to  the basic vectors bi by 

2.7 Crystallographic Point Groups 

Let H be a three-dimensional lattice group and consider the lattice L 
formed by the action of H on a given point x t R,. For convenience we 
assume x = 8. Since L is a (unbounded) point set in R , ,  it has a complete 
symmetry group G. We will soon see that G is discrete. Clearly, His a transla- 
tion subgroup of G since the elements of H map L onto itself. 

Suppose t is an element of G n T(3) ,  i.e., t is a translation in G. Then 
t0 = b is a lattice point of L. If b, , b,, b, are basic vectors for H there exist 
unique integers n, such that 

b = n,bl + n,b, + n,b,. 
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Since t is a translation i t  maps any y E R3 onto y + n,b, + n,b, + n,b,. 
Thus, t E H a n d  H = G n T(3). 

Now if g E G then gtl = b is a lattice point of L. If t E H is the lattice 
translation that maps 8 into b then t-Ig8 = 8, i.e., the transformation f = 

t-lg E G leaves the point 8 fixed. Thus, every element g of G can be written 
uniquely in the form g = tf, where t E H and f leaves 8 fixed. Denoting by 
F the subgroup of G fixing 8, we see that G = H F  and G is the semidirect 
product of H a n d  F. In particular the product of two elements t , f ,  and t,f, 
in G is given by 

(7.1) (tlfl )(t,f2) = t I (f,t,f i "flf2) 7 

since f,t,f;l E G n T(3) = H. Furthermore, the elements of G preserve 
distance and there are only a finite number of lattice points inside any sphere 
centered at  8, so F must be a finite point group. As a consequence, G is neces- 
sarily discrete. Any two three-dimensional lattice groups H I ,  H, are clearly 
isomorphic. Thus to compute all complete symmetry groups of lattices up 
to isomorphism (hence to classify all lattices by symmetry type) it is enough 
to compute all possible point groups F. An arbitrary symmetry group of L,  
not necessarily the complete group of symmetries, is an arbitrary subgroup 
G' of G. 

Definition. A subgroup of E(3) which fixes a point x and maps a three- 
dimensional lattice L containing x into itself is called a crystallographic 
point group. The largest crystallographic point group F at x is called the 
holohedry of L at x. 

We have shown that a crystallographic point group is necessarily finite. 
Furthermore, if x and y are points contained in the same lattice L then the 
holohedries fixing x and y, respectively, are conjugate subgroups of E(3) .  
The crystallographic point groups are just the subgroups of the holohedries. 

Not all point groups are crystallographic point groups. The requirement 
that a point group leave a lattice invariant is a strong restriction on the ele- 
ments of the group. 

Theorem 2.8. (The crystallographic restriction). Let K be a crystallographic 
point group. If g E K is a nontrivial rotation then g is of order two, three, 
four, or  six. If g = Ik is a rotation-inversion in K then the rotation k is of 
order one, two, three, four, or six. 

Proof. 
Writing 

(7.2) 

Let b , ,  b2, b, be basic vectors for the lattice L on which K acts. 

3 

j =  I 
gb, = C cjib, 
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we see that 
c = ( C j j )  

is the matrix of the transformation g in the basis {bJ. Recall that the trace 
of a matrix is invariant under similarity transformations, i.e., the trace of 
g is independent of basis. Since the bi are basic vectors of L it follows that the 
c i j  are integers, so tr C is an integer. However, from (1 .lo), we see that for 
an orthonormal basis with one basis vector along the axis of rotation, the 
trace is & ( I  + 2 cos v,), where v, is the rotation angle corresponding to g. 
The minus sign applies to  rotation-inversions. Thus, 

(7.3) t r C =  & ( I  + 2cosq) 

and the only way this can be an integer is for 9 = 4 2 ,  3x12, nx/3 ,  with 
n = 0, 1, . . . , 5.  (Note that necessarily I tr CI < 3.) Q.E.D. 

This theorem shows that no point group which contains elements with 
rotational parts of order five or greater than six can be a crystallographic 
point group. It follows from our classification of point groups in Sections 
2.4 and 2.5 that all but 32 point groups can be eliminated as candidates for 
crystallographic groups. The possible point groups of the first kind are the 
cyclic groups C ,  , C , ,  C3  , C , ,  C,, the dihedral groups D,, D, ,  D,, D,, 
the tetrahedral group T, and the octahedral group 0. The possible point 
groups of the second kind are S,, S,, s6, c,h, C, , ,  c,h, C,,, C 6 h ,  C2,,, 

that each member of this list is in fact a symmetry group of some lattice, and 
we will relate these groups to the study of crystal structure in physics. 

We first classify the holohedries (or maximal crystallographic point 
groups) of lattices. 

Definition. Two lattices L, L' are in the same crystal system if their holo- 
hedries F, F' are conjugate subgroups of E(3). 

C3ur c Q u ,  C b u ,  D 2 h ,  D 3 h ,  T h ,  T d ,  D 4 h ,  D b h ,  D 2 d ?  D 3 d >  and Oh. We show 

We know that all lattices of a lattice group H lie in the same crystal sys- 
tem, so it also makes sense to speak of a classification of lattice groups into 
crystal systems. 

The possible holohedries can be obtained from our list of the 32 possible 
crystallographic point groups. However, the following theorems show that 
there are at most seven holohedries. Let L be a lattice which for convenience 
we assume based at x = 8 and let F be its holohedry at x. 

Theorem 2.9. The inversion I is an element of F. 

Proof. If b, , b,, b, are basic vectors for L, the lattice points of L are exactly 
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the points 

b = n,b, + n,b, + n,b,,  n , ,  n,, n3 integers. 
It follows from this representation that -b E L whenever b E L. Thus 
I E F. Q.E.D. 

We conclude that holohedries are necessarily point groups of the second 
kind containing I. 

Theorem 2.10. 
contains C,,, . 

If F contains the cyclic subgroup C,, n = 3 , 4 , 6 ,  then F 

Proof. We have to show that if F contains an n-fold rotation axis 1 then it  
also contains a reflection plane P in which I lies. (The reflection and C, gener- 
ate Gnu.) Let C E F be a rotation about I with rotation angle 2n/n and let 
Q be the plane through x = 8 perpendicular to 1. If y is a lattice point of L 
not on I then Cy ~ y is a nonzero lattice point lying in Q. Therefore, Q n L 
contains nonzero vectors. Let b,  be a nonzero vector of minimum length in 
Q n L .  According to Theorem 2.6 and its corollary we can embed b, in a 
system of basic vectors b,  , b,, b, for L such that b, lies in Q. In fact we can 
set b, = Cb, (Fig 2.6), for if there is an a t Q n L in the interior of the 
parallelogram generated by b, and Cb, then at least one of the lattice vectors 
Cb, - a, Cb, + b, ~ a,  b, ~ a, a is shorter than b , .  This is impossible, 
so b, = Cb, .  All we know about b, initially is that it is not in Q.  We can 
write it uniquely in the form 
(7.4) ~ , - u + v  

where the vector u points along 1 and v lies in Q. (Here, u and v are jus t  the 
projections of b, on I and Q:  they are not necessarily lattice vectors.) Since 

FIGURE 2.6 



42 2 THE CRYSTALLOGRAPHIC GROUPS 

Cb, - b, t L n Q and Cu = u, there exist integers n ,  , n,  such that 

(7.5) Cb, - b, = CV - v = n,b, + n,Cb,. 

Multiplying both sides of this expression by C-I and then subtracting from 
(7.5) we get 

CV + C-'V - 2~ = n,Cb, - n,C- 'b ,  + ( n ,  - n,)b,. 

A little trigonometry yields (Fig. 2.7) 
c v  -1 c-'v = 2 cos(2n/n)v, 

Cb, + C ' b ,  = 2 ~0~(2n/n)b ,  . 

c-' v 

FIGURE 2.1 

Thus, 

(7.6) 2[~0~(2n/n) - I]v = ( n ,  - I  n2)b2 -1- [ n ,  - ~2 - 2n ~0~(2n/n) ]b , .  
Let a be the reflection in the plane P containing I and perpendicular to b,  . 
Clearly, ab, = -b, , cu = u. If we can show that ab, and ab, are lattice points 
it will follow that a E F. 

For n = 3 we have ab2 = b, + b, E L :  for n = 4, ab, = b, E L ;  and 
for n = 6, ab, = b, - b,  E L. In  each case, (7.4) and (7.6) yield 

ab 3 -  -- u + uv = u + v 4- ( n ,  - n,)b, = b, 4- ( n ,  - n2)bl E L. Q.E.D. 

From our list of 32 possible crystallographic point groups only 7 satisfy 
the conditions imposed by Theorems 2.9 and 2.10. They are S,, C,,, D,,, 
D,,, D,,, D,,, and 0,. Thus there are at  most 7 holohedries. 

2.8 The Bravais Lattices 

We shall verify that the seven groups S , ,  C2,, D,,, D,,, D,,, D,,, and 
0, are holohedries by explicitly constructing all lattices L for which they are 
maximal crystallographic point groups. To avoid overly complicated calcula- 
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tions it is necessary to choose basic vectors for L in a convenient manner. 
For this, Theorem 2.6 and its corollary will prove useful. 

Two lattices (or lattice groups) L o ,  L ,  belonging to the same holohedry 
F a r e  of the same type if one of them can be obtained from the other by a 
continuous lattice deformation L,, 0 2 t 1, in such a way that during the 
deformation process the holohedry F, contains F. As we shall see, two lattices 
belonging to the same holohedry need not have isomorphic complete sym- 
metry groups. However, two lattices belonging to the same type necessarily 
have isomorphic complete symmetry groups. The seven crystal systems will 
subdivide into 14 lattice types, the 14 Bravais lattices. Every lattice belongs 
to exactly one lattice type and this type determines the complete symmetry 
group of the lattice, up to isomorphism. 

Our candidates for holohedries satisfy the subgroup relations given by 
Fig. 2.8. In particular, S ,  = {E, I} is contained in all these groups. As we have 
seen in Theorem 2.9 every lattice admits S ,  as a crystallographic point group. 

s, C cz, C D I , ~  C D.+h C 0, 
n n  

D3d D,, 
FIGURE 2.8 

Except for S ,  these groups contain an n-fold rotation axis f ( n  = 2,4,  or 
6) and a reflection uh in the plane P through 8 perpendicular to this axis. 
Let C be a rotation through the angle 2n/n about 1. We will determine the 
restrictions on a lattice L in order that it admit C and uh as symmetries. It 
is always possible to choose basic vectors b,  , b,, b, for L such that b,  and b, 
lie in P. Indeed, if a, and a, are any two lattice points not lying in the same 
plane containing I then a, + u,a, and a, + aha, are linearly independent 
lattice vectors in P. By Corollary 2.2 we can choose b,  and b, in P. We write 
the third basic vector uniquely in the form 

(8.1) b, = u -1- v 

where u lies along 1 and v lies in P.  Notice that the volume of the cell generated 
by b , ,  b , ,  b, is the same as the volume of the cell generated by b, , b,, b3’ ,  
where 

(8 4 b,’ = b, + m,b,  + m,b, 

and m ,  , m ,  are integers. Thus b, , b, ,  b,’ are also basic vectors. We will use this 
freedom to vary b, in the computations to follow. 

Since Cu = u it follows that 

(8.3) Cb, - b, = Cv - v = n,b,  -1- n,b, E L n P. 

Relation (8.3) will enable us to compute v, hence to  enumerate the possibilities 
for b, . This enumeration depends on the value of n. If n = 2 then Cv = -v. 
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Solving for v in (8.3) and substituting into (8.l), we get 

(8.4) b, = u + &n,b, + tn ,b , .  

Using the freedom of (8.2 )in selecting b3 , we can add arbitrary integer mul- 
tiples of b, and b, to (8.4). Thus, we can choose b, such that n ,  , n ,  = 0, l .  
There are four possibilities: 

(1) b, = u, (2) b, = u -{- & b , ,  

(3) b, = u + Jb,, (4) b, = u i Jb ,  -I Jb , .  
(8.5) 

Only in case (1) is b, perpendicular to the plane P.  Since b, and b, have not 
been uniquely specified, these four cases are not all distinct. Under an inter- 
change of b, and b,, (2) and (3) coincide. Furthermore, if b, and b, are re- 
placed by the new basic vectors b,  and b,  + b, then (3) (4) coincide. However, 
the same lattice cannot have a primitive cell of the form ( I )  and a primitive 
cell of the form (2) ,  (3), or (4). 

The cases n = 4, 6 follow from the proof of Theorem 2.10. It was shown 
that we can choose b, as the shortest nonzero vector in P n L and b, = Cb, . 
Then the expression for v is given by (7.6). If n = 4 then 

b3 = u + f ( n ,  - n,)b, - &(n, i n1)bz. 

Now n,  & n ,  are simultaneously odd or even integers. Thus, addition of 
integer multiples of b, and b, reduces b, to two normal forms: 
(8.6) (1) b, = U, (2) b, = u i- t b ,  &b,. 

If n = 6, (7.6) yields 

b, = u + nzb, - (n, $- n,)b,. 

Addition of (n ,  + n,)b, - n,b, reduces this to 
(8.7) b, = U. 

Thus, b, can always be chosen perpendicular to b,  and b, = Cb, .  

and determine the lattice types which correspond to them. 
Armed with this information, we examine the holohedries one at a time 

The cubic holohedry 0,. Let 1 be one of the fourfold axes of the group 
0, and consider a lattice L with primitive cell corresponding to the choice 
( I )  of (8.6). Thus, the basic vectors are chosen so that ( I )  they are mutually 
perpendicular, (2) b, lies on Z, and (3) b, and b, have the same (minimal) 
length. Now 0, has four rotation axes through 8 evenly spaced in the. plane 
P spanned by b, and b,, so at least one of these axes I, lies between b, and b, 
(Fig. 2.9). The axis I, is at least twofold. Let R be the rotation through n 
about 1 , .  Then Rb, and Rb, must lie in L n P. However, L n P is a square 
grid, so I, must be at an angle of n/4 with both b, and b,. Now I, cannot 
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FIGURE 2.9 

be a fourfold axis since a rotation of 4 2  about I ,  maps b, and b, into points 
not in L. Thus, I ,  is a twofold axis and the two fourfold axes in P (which 
form an angle of n/4 with I , )  must lie along b, and b,, respectively. A rotation 
of 4 2  about the axis through b, necessarily maps b, onto b, or -b, . There- 
fore, 1 1  b3 1 1  = 1 1  b, 1 1  and the three basic vectors have the same length. (Fig. 
2.  lo). The primitive cell is a cube r,. I t  is now clear from the definition of 0, 
that a lattice of type r, admits 0, as its holohedry. All such lattices can be 
designated by a single parameter, the length of one side of the primitive cell. 

A second possibility is that the primitive cell of the lattice L about the 
fourfold axis I takes the form (2) in expression (8.6). Thus, ( I )  b,  1 b,, ( 2 )  
the basic vectors b, , b, are perpendicular to I and have minimal length in 
the set of such lattice vectors, ( 3 )  / /  b, / /  = ) I  b, 11, and (4) b, = u 4 tb ,  + Jb,, 
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where u lies along 1. It follows that the lattice vector b, = 2b3 - b, - b, 
lies on I. Thus, b, I b, I b, I b, . Just as above, we see that the twofold 
or fourfold axis I, perpendicular to I makes an angle 4 4  with b, and b,. 

Suppose I ,  is a fourfold axis. From (4), b, lies in the plane through I 
and I , ,  so a rotation through the angle n/2 about 1, must map b, into either 
b, or b,. We conclude that all of the basic vectors have the same length and 
]I b, I [  = b, [I. The positions of the basic vectors b , ,  b,, b, and the orien- 
tation of the axes of 0, have now been completely determined. In particular, 
the vectors b, and b, lie on twofold axes. We need only verify that the lattice 
L with these basic vectors actually admits 0, as a symmetry group. However, 
the symmetry properties of this primitive cell are not easy to visualize. It 
would be helpful if we could construct a cell all of whose vertices were on 
fourfold axes. This can be achieved by using the lattice vectors b, + b,, 
b, - b,, and b, to generate a cube ref. (Note that b, + b, lies on I ,  and 
b, - b, lies on another fourfold axis.) The lattice points b,, b, - b,, b, + b, , 
and b, + b, - b, are the midpoints of the four vertical faces of r,f, b, 
is the midpoint of the bottom face, and b, + b, is the midpoint of the top 
face. All of the remaining lattice points in rcf lie at the vertices. It is now easy 
to check that a lattice built from cells of type rCf admits 0, as a symmetry 
group. Lattices with type r,f symmetry are called face-centered cubic. The 
cell T c f  is not primitive since its volume is four times that of a primitive cell. 
However, in practice the face-centered cubic cell is often preferable to a 
primitive cell since it exhibits 0, symmetry in a very explicit form. All lattices 
of type T,f can be described by a single parameter, the length of one side of 
the face-centered cube. 

The only remaining possibility is that I ,  is a twofold axis. In this case 
fourfold axes lie along b, and b, and the lattice point b, = 2b, - b, - b, 
lies on 1. It is easy to show that the lattice points on I consist of all integer 
multiples of a single lattice point a. Here, a = m,b, + m,b, + m,b3 is char- 
acterized by the fact that +a are the lattice points on lclosest to 8. The proof 
uses the Euclidean algorithm and is almost a copy of the proof of Lemma 2.2. 
Since the coefficients of b, have no common integer divisor other than & l  
it follows that b, = +a. Therefore, there is no lattice point on I between 
8 and b,. As a consequence, a rotation through 742 radians about the four- 
fold axis b, must map b, into either b, or -b,. Hence, [ [  b, I[ = [ [  b, 11 = \ ]  b, [ I  
and the positions of the basic vectors b, , b,, b, are uniquely determined. Just 
as in the previous case, the symmetry properties of the primitive cell are not 
easy to visualize. To remedy this we consider the cube r,“ generated by 
b , ,  b,, b,. The lattice point b, lies at the center of r,” and the remaining 
lattice points in r,” lie at the vertices. It is now easy to check that a lattice con- 
structed from type -rev cells actually admits 0, as a symmetry group. Such 
lattices are called body-centered cubic. The volume of a r,” cell is twice that 
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of a primitive cell. All lattices of type rC" can be described uniquely in terms 
of the length of one side of a body-centered cell. 

We have shown that the crystal system with cubic holohedry 0, divides 
into three lattice types: primitive rc, face-centered T,f, and body-centered 
r,". 

The hexagonal holohedry D6,,. Let I be the sixfold axis of D,, and con- 
sider a lattice L admitting D,, as a symmetry group. Since D,, is not a 
proper subgroup of any possible holohedry, i t  must be the holohedry of L.  
According to (8.7) we can find vectors b,  , b,,  b, for L such that (1) the angle 
between b, and b, is 7-43, (2) b ,  I b, 1 b,, and (3) b, and b, have the same 
(minimal) length and lie in the plane P through 8 and perpendicular to 1. 
Conversely, i t  is straightforward to show that a lattice L with basic vectors 
satisfying (1)-(3) actually admits D,, as a symmetry group. The primitive 
cell just constructed is denoted rh. Lattices of type r, are uniquely deter- 
mined by two parameters: ( 1  b, ( (  and 1 1  b, ((. 

The tetragonal holohedry D,/$. Let I be the fourfold axis of D,, and L 
a lattice with primitive cell corresponding to choice ( I )  of (8.6). Then ( I )  
b, I b, I b, I b,  and (2) b,  and b, have the same (minimal) length both 
lying in the plane P through 8 perpendicular to 1. Conversely, it is easy to 
show that any lattice with primitive cell satisfying ( I )  and (2) admits D,, 
as a symmetry group. I n  order that D,, qualify as the holohedry of L it is 
necessary to require / /  b,  1 1  # I /  b, 11. Otherwise L would have 0, as holohedry. 
The primitive cell just constructed is denoted r4. Lattices of type rq are 
determined by the two parameters 1 1  b, 1 1  and 1 1  b, [I. 

Now suppose the primitive cell of L about the fourfold axis I takes the 
form (2) of expression (8.6). Then ( I )  b,  and b, are vectors of minimal length 
in the plane P perpendicular to / and passing through 8, (2) b, 1 b,,  (3) 
l /b ,  1 1  = ]lb,ll,  and (4) b, = u - 1  i b ,  + i b 2 ,  where u lies on I .  Clearly, the 
lattice vector b, = 2u 2b, - b, - b, also lies on I ,  and there is no lattice 
vector on I between b, and 8. The vectors b, , b,, b, are mutually orthogonal. 
The group D,, has four twofold axes lying in P and it is obvious that one 
axis lies along b , ,  one axis lies along b,, and a third axis makes an angle of 
744 with b, and b, .  Let rql' be the rectangular parallelepiped (box) generated 
by b , ,  b,, b,. The lattice point b, lies at the center of rqt3 but all other lattice 
points are located at the vertices. Clearly, a lattice constructed from ryL 
cells admits D,,, as a symmetry group. However, D,, is the holohedry only 
if 1 1  b, I /  f 1 )  b ,  I], since otherwise the holohedry would be 0,. Note that l?<,' 
has twice the volume of a primitive cell. A lattice of type ryi' is called body- 
centered. All lattices of type rpL' can be described by the two parameters 
l l h l l  and llb4ll. 
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We have shown that the crystal system with tetragonal holohedry contains 
two lattice types : primitive r4 and body-centered r/. 

The rhombohedra1 holohedry D , d .  Let 1 be the threefold axis of D,, and let 
P be the plane through 8 perpendicular to 1. Suppose C is a rotation through 
the angle 2n/3 about 1. Then we can choose basic vectors b , ,  b, ,  b, (Fig. 
2.11) forL such that b, has minimal nonzero length in L n P and b, = Cb, . 

e 
FIGURE 2.1 I 

b, 

Write b, = u + v, where u lies along 1 and v lies ir: P. Let S t D,, be the 
rotation through the angle n/3 about 1 followed by a reflection in P .  Clecirly, 
Su = -u, Sb, = b, + b,,  and Sb, = -b , ,  In particular, 

(8.8) Sb, + b, = Sv t v = n,b ,  f n2b2 E L n P, 

where n,, n, are integers. Multiplying both sides of (8.8) by S-I, we obtain 

(8.9) v + S-'v = (n, - n,)b, t n,b,. 

Addition of (8.8) and (8.9) yields 
SV + S-'V + 2v = (n, + nz)b, + (2n2 - n,)bz. 

A computation exactly like that following (7.5) shows that the left-hand side 
is 3v. Thus, 
(8.10) b, = u + $(nl -I- nJb, 1 3 ( 2 n ,  - nl)b , .  

As usual, we can subtract arbitrary integer multiples of b,  and b, from b, 
and still maintain a primitive cell. There are only three distinct possibilities: 
(8.11) 
(1) b, = U, (2) b, = u + +(b, - b2), (3) b, = u - $(bl - bz). 

Case (1) is ruled out. For, if  b, = u i t  is easy to see that the primitive cell 
generated by b, , b, + b,, b, is just rh,  so L has holohedry D6,,. Furthermore, 
cases (2)  and (3) are really the same since the lattice does not furnish US with 
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an orientation with which to tell b, and b, apart. We choose (2) as our normal 
form. Note that the lattice point 3u = 3b, - b ,  + b, lies on 1 and there are 
no lattice points on I between 3u and 6. I t  is left to the reader to verify that the 
three twofold axes of D,, must lie along b , ,  b ,  + b, ,  and b , ,  respectively, 
and the three vertical reflection planes bisect the angles between adjacent 
twofold axes. The primitive cell generated by b ,  , b, ,  b, is denoted r rh .  I t  is 
now straightforward to check tha t  a lattice of type rrh does indeed have D,, 
as its holohedry. All lattices of type rrh are uniquely described by the two 
parameters \\b, 1 )  and \ \ull .  

The orthorhornbic holohedry D,,. Let 1 be a twofold axis of D,,. Using 
Corollary 2.2, we choose a primitive cell for L such that b ,  , b, lie i n  the plane 
P through 6, perpendicular to I. Assume the lattice corresponds to choice ( I )  
of (8.5) and recall that D,, has two perpendicular twofold axes I , ,  I ,  i n  the 
plane P and two vertical reflection planes each containing I with one of the 
li. It is an elementary computation to show that there are only two possibil- 
ities: either ( I )  the li lie along b ,  and b , ,  or (2) lib, 1 1  = IIb,II and the I ,  are 
the two perpendicular bisectors of the angles between the vectors b ,  , b, in 
P. In the first case the bi are mutually orthogonal and generate a primitive 
right parallelepiped r,. In order that D,, be the holohedry of a lattice con- 
structed from type r, cells it is necessary and sufficient that the lengths of no 
two sides of the primitive cell be equal. The type-r, lattices are determined 
by three parameters. 

Since I /  b,  1 1  = I /  b, 1 1  in case (2), i t  is clear that the lattice vectors b, -t b, 
and b, generate a right parallelepiped l-2. The lattice point b ,  is the midpoint 
of the base and b, + b, is the midpoint of the top of T o b .  The only remaining 
lattice points in this cell are the vertices. For this reason I': is called base- 
centered. The volume of Tob is twice the volume of a primitive cell. Clearly, 
a type-rob lattice admits D,, as a symmetry group, but D,, is the holohedry 
of the lattice only if the angle between b, and b, is not n/2 or 4 3 .  The type- 
Tob lattices are determined by three parameters: 1 1  b, 11 ,  j j  b, 1 1 ,  and the angle 
between b ,  and b,.  

As remarked in the discussion following expressions ( 8 . 5 ) ,  the choices 
(2)-(4) for b, are not distinct. For normalization purposes we choose b,  -. 

u + i b ,  + i b , .  Again there are two possibilities: either ( I )  the mutually 
orthogonal twofold axes I , ,  I, i n  P lie along b, and b, ,  or (2) the li arc bisectors 
of the angles between b , ,  b,, and 1 1  b ,  1 1  =: 1 1  b, 11. In  case ( I )  we see that b ,  . b,.  
and 2u = 2b, - b ,  - b, are mutually orthogonal lattice vectors which 
generate a right parallelepiped rot'. The only lattice point in ro(' other than 
the vertices is b, , the midpoint of r<,''. The  cell rO'' is called body-centered. 
I t  is now easy to check that a lattice constructed from type-roL' cells admits 
D,, as a symmetry group. However, D,, is a holohedry of such a lattice only 
if ) j  b, 1 )  # 1 )  b, 11, since otherwise D,, would be a symmetry of the lattice. The 
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volume of r,” is twice the volume of a primitive cell. The type-r,” lattices can 
be described by three parameters, the dimensions of the body-centered cell. 

Corresponding to possibility (2) above we see that b, + b,, b, - b,,  
and 2u = 2b, - b, - b, are mutually orthogonal and generate a right paral- 
lelepiped ref. This cell clearly contains lattice points only at its vertices and 
at the midpoints of each of its six faces. For obvious reasons T,f is called 
face-centered. Type r,f lattices clearly admit D,, as a symmetry group. 
However, D,, is the holohedry of such lattices only if the base of T,f is not 
square. The volume of the face-centered cell is four times the volume of a 
primitive cell. The possible type T,f  lattices are determined by three param- 
eters, the dimensions of r,f. 

The crystal system with holohedry D,,  thus contains four lattice types: 
primitive r,, base-centered rob, body-centered r,”, and face-centered r,f . 

The monoclinic holohedry C,,. Let I be the twofold axis of C,,. We can 
choose basic vectors for the lattice L such that b, , b, are vectors of minimal 
length in the plane P perpendicular to L and, by (8.5), we can assume that 
either b, = u or b, = u + ib, .  If b, = u then b, is perpendicular to b,, b, 
and the basic vectors generate a primitive cell r,. It is obvious that type 
r, lattices admit C,, as a symmetry group. However, C,, is a holohedry 
only if the r, cell does not coincide with r4,  rrh, r,, or r,. The type-r, 
lattices are determined by four parameters: ) I  b, ( 1 . 1 1  b, II,II b, 11, and the angle 
between b, and b,. 

If b, = u + ib ,  then b, = 2b, - b, lies on 1. The lattice vectors b, , b,, b, 
generate the base-centered cell Tmb. This cell contains only the lattice point 
b, as the center of one face and b, + b,  as the center of the opposite face, 
in addition to the vertices. A type Tmb lattice admits CZh as a symmetry group, 
but C,, is the holohedry of such a lattice only if b, is not perpendicular to 
b, or b ,  + b,. The type rmb lattices can be determined by four parameters: 
1 1  b, 11, I [  b, [I, I /  b, 11, and the angle between b, and b,. (If we had chosen b, 
in the form b, = u + i b ,  + $b, we would have been led naturally to a body- 
centered cell. The choice of Tmb rather than a body-centered cell to designate 
this lattice type is a matter of custom rather than logical necessity.) 

We have shown that the monoclinic crystal system contains two lattice 
types: primitive r, and base-centered Tmb. 

The triclinic holohedry S,. Since every lattice admits S, as a symmetry 
group, S ,  is the holohedry for all lattices which do not fall into one of the 
thirteen lattice types classified above. We can uniquely define basic vectors 
for such a lattice by requiring b,  , b,, b, , not all lying in the same plane, to 
have minimal nonzero distance from 8. (A precise definition of the bi to 
obtain uniqueness is a matter of taste.) The basic vectors generate a primitive 
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lattice r,. The lattices of type r, can be designated by six parameters: the 
lengths of the three basic vectors and the three angles between pairs of basic 
vectors. 

In conclusion, we have verified our list of 7 holohedries or crystal systems 
and have shown that there exist 14 lattice types (Bravais lattices). 

The crystallographic point groups are just the possible subgroups of the 
7 holohedries. I t  was shown in Section 2.7 that there are at most 32 such 
groups. Furthermore, it is easy to check that each of the 32 groups is a sub- 
group of at least one holohedry. Therefore, there are exactly 32 crystallo- 
graphic point groups. Crystallographers say that there are 32 crystal classes. 

TABLE 2.2 THE BRAVAIS LATTICES 

Bravais lattice 

I .  Triclinic SZ 
T r  primitive 

2. Monoclinic C Z h  

rm primitive 
Tmb base-centered 

3 .  Orthorhombic D z h  

r,, primitive 
rob base-cen tered 

To” body-centered 

r,f face-centered 

4. Tetragonal 0 4 d 2  

r4 primitive 
TOu body-centered 

5 .  Rhombohedra1 D 3 d  

r r h  primitive 

6. Hexagonal 0 6 1 ,  

r h  primitive 

7. Cubic Oh 

re primitive 

body-centered 

r,f face-centered 

Crystal classes Basic vectors b l  , br , b3 

Arbitrary 

bz I b3 I bi 
b i  1- bz .L (2b3 - bz) I_ b i  
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A crystal class or  point group K is said to belong to a crystal system with 
holohedry F if F is the smallest holohedry containing K.  The distribution 
of crystal classes among the crystal systems is indicated in Table 2.2. 

2.9 Crystal Structure 

In this section the use of the term “crystal,” introduced earlier, will be 
given a physical justification. 

First we justify our restriction to discrete (even finite) point groups to 
describe the symmetries of a body S of finite extent. If we believe the atomic 
theory we can assume S is made up  of n atoms. (For the purposes of this 
discussion think of an  atom as a tiny billiard ball.) Every Euclidean sym- 
metry of S must then induce a permutation of these n atoms. If the atoms d o  
not all lie in a single plane then the symmetry g of S is uniquely determined 
by the permutation it induces. Since there are at  most n !  permutations of the 
n atoms, thc complete symmetry group G of S must be finite with order 
dividing n! .  

If the atoms of S lie in  a plane P but not along a single line then a sym- 
metry g is determined by the permutation i t  induces, up to a possible reflec- 
tion in P. The order of the complete symmetry group C of S is a divisor of 
2n!. The order of G is twice the order of the plane symmetry group obtained 
by considering S as a subset of R, .  

If the atoms of S lie on a single axis I then the symmetry group will no 
longer be discrete. Indeed, if S consists of a single atom the complete sym- 
metry group is the orthogonal group O(3). If  S contains more than one atom 
strung along I then S admits the nondiscrete symmetry group C 1, consisting 
of all rotations about 1 and reflections in all planes passing through 1. If in 
addition S admits a reflection a in a plane P perpendicular to I then D . ,  - 
C,,” x (E, a )  is the complete symmetry group of S.  If S does not admit a 
reflection a then C.,,, is the complete symmetry group. This concludes our 
catalog of possible point groups. 

Next we discuss the relationship between physical crystals and the lattice 
groups and crystallographic point groups introduced in the precedingsections. 
We first assume that the crystal occupies all space. ( In  this way we can avoid 
the consideration of the crystal boundary.) Roughly speaking, we can think 
of a crystal as formed by stacking together identical copies of a unit cell C 
so as to fi l l  all space. The uni t  cell contains some given distribution of atoms, 
all atoms vibrating about equilibrium points in the crystal. 

Two points x and y i n  a crystal are said to be equivalent if all of the (time- 
averaged) physical properties of the crystal are identical a t  x and y. In other 
words x and y are  equivalent points if there is no operational way of distin- 
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guishing between them. The crystal as viewed by an observer at x appears 
identical to that as viewed by an observer at y. Only time-averaged properties 
are considered so as to avoid asymmetries due to the fluctuations of the atoms 
alone. (We can think of the atoms as frozen at their points of equilibrium.) 
I t  is clear that the point x is equivalent to  at least all points of the form x + 
n , b ,  + n,b, + n3b3,  where n , ,  n , ,  n 3  are arbitrary integers and b , ,  b, ,  b, 
are the vectors generating C. 

We define the complete symmetry group of a crystal as the subgroup of 
E(3) consisting of those Euclidean motions that map each point x in the 
crystal onto a point y equivalent to x. Clearly, in our model the lattice group 

(9.1) H (T,:a -: n , b ,  I n,b, I n,b,} 

is a subgroup of the complete symmetry group. Now we forget about our 
hypothetical model and simply define an ideal crystal as a solid (filling all 
space) which satisfies the lattice postulate: There exist noncoplanar vectors 
b , ,  b,, b,  such that any point x is equivalent to all points 

(9.2) 
The lattice postulate amounts to the requirement that the lattice group H 
given by (9.1) is a symmetry group of the crystal. In addition we require that 
H is the maximal lattice symmetry group of the crystal, i.e., if T is a transla- 
tional symmetry then T E H .  

Let C be the complete symmetry group of a crystal. Clearly, H is a sub- 
group of C; in  fact we shall see that it is a normal subgroup. G is called a 
crystal group or space group. A list of the possible isomorphism classes of 
space groups serves as a list of possible symmetry types of ideal crystals. 
Such a list is important because i t  serves as a classification scheme (some- 
thing like the periodic table of the elements) into which all crystals can be 
f i t .  Furthermore, to a considerable extent the symmetry of a crystal serves 
to determine the physical propeties of the crystal. 

Before proceeding to an analysis of the possible space groups G it is useful 
to clarify the meaning of some of the statements made above. First of all we 
shall be dealing exclusively with ideal crystals, i.e., crystals which satisfy the 
lattice postulate. The extent to which real crystals satisfy the lattice postulate 
is a matter for the physicist or crystallographer to determine. Although there 
is a great deal of evidence to support such a postulate, in the final analysis 
the validity of this postulate depends on experimental verification (and on 
the physicists definition ofa  crystal). We do not wish to claim that the possible 
crystal structures are determined u prior; by group theory. 

The H-orbit of every point x in a crystal is a Bravais lattice L,  (9.2). 
However, it is not true that the crystal can be identified with L. In particular, 
the elements of the holohedry F of L may not be elements of the space group 



54 2 THE CRYSTALLOGRAPHIC GROUPS 

G. To understand this, think of a model of a crystal formed by placing an 
identical pattern of atoms about each vertex in a lattice L. The translational 
symmetry is completely determined by the lattice. However, the total sym- 
metry group G is also dependent on the pattern of atoms about each lattice 
point. [Some of the crystal symmetries may be of the form g = {a, 0), where 
0 E O(3) is not the identity and a 6 H.  Such symmetries are screw displace- 
ments or  glide reflections.] 

We examine the space group G of an  ideal crystal in more detail. Every 
g E G can be written uniquely in the form 

(9.3) g = {a, 0) = T,O, 
where 0 E 0(3), the orthogonal group about 8. If 0 = E then {a, El = 

T, E H,  i.e., a can be written in the form (9.1). Since T(3) is a normal sub- 
group of E(3), 

(9.4) gT,g-l E T(3) n G = H ,  

so Hi s  normal in G. Let K be the set of all 0 E U(3) that occur in expression 
(9.3) as g runs over the elements of G. The relation 

(9.5) g,g, = {a, 3 O,lta,, 0 2 1  = {a, + Ola,, 0 , O A  
for g , ,  g, E G proves that K is a group. (However, K may not be a subgroup 
of G since a,  and a, are not necessarily in the lattice group H.)  Furthermore, 
the identity 

valid for b in H and g E G given by (9.3), shows that 0 E K maps any 
lattice vector b in H into another lattice vector. This proves that K is one of 
the 32 crystallographic point groups. Thus, to  each ideal crystal we can 
uniquely assign a crystallographic point group K. 

The group K is isomorphic to the factor group G/H. Indeed, each (left 
or right) H-coset of G consists of all elements of the form {a, 0)  for some fixed 
0 E K. Furthermore, if g,  = {a , ,  0) and g, = {a,, 0) are in G then 

(9.7) g ,g i l  = {a, - a z , E )  E H ,  

(9.6) gT,g-' = {Ob, E) = TOb E H 

so g,  and g, are contained in the same coset. As a unique representative in 
each coset we can choose the element 
(9.8) {a', 01, a' = a,b ,  + a$, 4- a3b3,  

where the ai are real numbers such that 0 < ai < 1. If a,  = a, = a, = 0 
then 0 E G n K ;  otherwise 0 6 G. Note that the representative of the coset 
H is E = {O, E}. 

Remark. Since K z G / H  is a finite group and H is discrete it follows that 
G is discrete. Therefore, every space group is discrete. 
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In a real crystal the lengths of the basic vectors bi are of the order of the 
distance between neighboring atoms of the crystal since unit cells contain 
comparatively few atoms. These lengths are so small that they cannot be 
detected by macroscopic observations. To the macroscopic observer .the 
translational symmetry group of the crystal appears to be T(3). That is, 
the physical properties of the crystal appear to be invariant under any trans- 
lation. (Recall that we are neglecting boundary effects by assuming that the 
crystal occupies all space.) Similarly the vectors a' in  (9.8) appear to the macro- 
scopic observer to be 0, so the elements of K = G/H appear to form the point 
symmetry group of the crystal. The complete symmetry group of the crystal 
appears to be the  semidirect product of K and T(3). Thus, as far as macro- 
scopic observations are concerned, every crystal falls into exactly one of 32 
possible crystal classes determined by the crystallographic point group K .  

It is only when we carry out microscopic observations which can detect 
the existence of a primitive cell that the space group of the crystal becomes 
important. In  particular, microscopic observations may show that K is not 
a symmetry group of the crystal. 

Two crystals belonging to the same (macroscopic) crystal class may not 
have isomorphic space groups. In fact, it can be shown that the 32 crystal 
classes break up into 219 isomorphism classes of space groups. In the next 
section we shall indicate how these results are obtained. 

The reader may be wondering why we classified point groups in conjugacy 
classes and then switched to the (cruder) cataloging of space groups in iso- 
morphism classes. The reason is a practical one. Consider those space groups 
which are just lattice groups, i.e., K = (E}. There are already a continuum 
number of conjugacy classes of lattice groups, so a listing of conjugacy classes 
of space groups is out of the question. On the other hand, all three-dimen- 
sional lattice groups form a single isomorphism class. 

2.10 Space Groups 

Definition. A crystallographic space group (space group) G is a discrete sub- 
group of E(3) such that H = G n T(3) is a three-dimensional lattice group. 

According to Eq. (9.3)-(9.6) the space group G is a symmetry group of 
some ideal crystal. That is, the definition of space group given above is equiva- 
lent to the more intuitive definition of a symmetry group of an ideal crystal. 

I t  is a tedious exercise to determine all isomorphism classes of space 
groups. Here we discuss only the basic ideas involved in such a classification. 

Every space group G belongs to one of 14 lattice types and one of 32 
crystal classes determined by the lattice group H and the crystallographic 
point group K r" G/H.  Recall from Table 2.2 that the lattice type severely 



56 2 THE CRYSTALLOGRAPHIC GROUPS 

restricts the possible crystal classes. In particular, a crystal class K is assigned 
to the lattice type with smallest holohedry F containing K. We shall examine 
the significance of this assignment shortly. 

Given a lattice type H and crystal class K which leaves H invariant, we 
look for all space groups G with lattice subgroup H such that G / H  g K. 
Clearly one such group is the semidirect product of K and H :  

(10.1) G = {hk: h E H ,  k E K )  

(10.2) (hlkl)(hZkZ) = hl(klh,k,')(k,k,) E G. 
In this case the point group K is actually a subgroup of G .  Space groups of 
the form (10.1) are called symmorphic groups. There are 73 isomorphism 
classes of symmorphic groups. 

Indeed, referring to Table 2.2, we see that the triclinic crystal system has 
one lattice type and two crystal classes, which yields a total of two symmor- 
phic groups. The monoclinic system has three classes and two types, which 
yields six symmorphic groups, etc. Proceeding in this way, we get a total of 
61 symmorphic groups. To find the remaining 12 groups, we must examine 
our procedure more carefully. 

First we consider the reasoning behind the assignment of a crystal class 
K to the type with the smallest holohedry containing K. Suppose F and F' 
are holohedries such that F 3 F' 2 K. The reader can verify that (with one 
exception) a lattice type belonging to the holohedry F can always be changed 
to a lattice type belonging to F' by an arbitrarily small deformation of the 
basic lattice vectors. Thus, the semidirect product of F' and K must be isomor- 
phic to the semidirect product of F and K, and we get no new isomorphism 
classes of symmorphic space groups by associating K with lattice types belong- 
ing to F. The single exception occurs in the case F = D,,, F' = D,,, where 
the lattice type rh cannot be changed to type rrh by an arbitrarily small 
deformation. In this case the five crystal classes belonging to the rhombohe- 
dral system can be combined with the hexagonal lattice group to yield five 
new isomorphism classes of symmorphic groups. 

In certain cases the group K may act as a symmetry group of a lattice 
H in two physically distinct ways. This can occur if the smallest holohedry 
F containing K also contains another subgroup K' which is isomorphic but 
not conjugate to  K. Then the semidirect product of K and H may not be 
isomorphic to the semidirect product of K' and H. For example the crystal 
class C,, in the orthorhombic system can act on the base-centered cell rob 
in two distinct ways depending on whether the twofold axis of C,,  is parallel 
or perpendicular to the lattice vector b,.  Thus, there are two symmorphic 
space groups G of type Tob and crystal class C2". In  the tetragonal system 
D,, is the only crystal class without a fourfold axis. It is not difficult to show 
that D,, can operate on each of the lattice types r4 and rqV in two distinct 
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ways, yielding two more symmorphic groups. Finally each of the crystal 
classes CjU, D,, D,,, and D3, acts on the primitive hexagonal lattice rh 
in two distinct ways. This yields four more groups, for a total of 61 + 5 + 
1 + 2 + 4 = 73 symmorphic groups. 

The nonsymmorphic space groups G have the property that they contain 
elements of the form (9.8) with a' # 8. In  particular the crystal class K of 
G is not a subgroup of G. Let 0, , . . . , 0, be an  enumeration of the elements 
of K.  To find all space groups G with crystal class K and  lattice group H i t  
is enough to find all sets of vectors a, ' ,  . . . , a,,' such that the product of any 
two group elements 

(10.3) {a,', 0 1 1 ,  ' .  . > {an', 0") 

can be written as the product of an  element of H a n d  some one of these group 
elements. [The a,' are subject to the restriction (9.8). If all the ai' are zero 
vectors then G is symmorphic. The nonsymmorphic space groups contain 
nontrivial screw displacements and glide reflections.] Once all such groups 
are determined it is necessary to sort them into isomorphism classes. It turns 
out that there are 146 isomorphism classes of nonsymmorphic space groups. 
This gives us a total of 219 space groups. (In particular there are only a finite 
number of space groups. For a proof see Burckhardt [ I ] . )  

To illustrate the methods used in this classification we will compute all 
space groups belonging to the crystal class C, . Such groups must necessarily 
belong to the tetragonal crystal system, so the possible lattice types are primi- 
tive (r,) or body-centered (rqt'). 

First we compute the groups of type r4. Recall that the basic vectors b , ,  
b, ,  b, of rp are mutually orthogonal, ( ( b ,  ( 1  = ( ( b , ( ( ,  and  the fourfold axis 
/ of C, lies along b, .  Let C be a rotation through the angle +n/2 about 1. 
According to the remarks following (10.3) we must find all possible triples 
of vectors a , ,  a,, a3  with 

( 10.4) 

such that the product of any two of 

3 

ai = C ajibj, 0 5 aji < I ,  i = 1, 2, 3 
1 . 1  

(10.5) {8, El, { a , ,  Cl, {a,, Cz), {a3,  C31 

is equal to the product of an  element of the lattice group H and some one 
of the elements (10.5). (In fact, { a , ,  C] and H generate the entire space group 
G.) Once the possible space groups have been determined they must be split 
into isomorphism classes. 

The equation to be solved for the ai reads 

(10.6) {a,, (?]{aj, Cj}  -: (hij, E]{a,, Ci+j}, 

where hij E H ,  k = i + j ( m o d  4), and a, = 8. Carrying out the indicated 
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multiplications in (10.6), we find 

(10.7) a, + Ca, - ak E H ,  0 i, j I 3 .  

Set a, = u, + vi, where u, lies along 1 and vi is perpendicular to 1. Since 
Cu, = u,, Eq. (10.7) split into 
(10.8a) ui + uj - U, E H 

(10.8b) vi + CV, - v, E H. 
In particular expression (10.8a) is an integer multiple of b, and (10.8b) is an 
integral linear combination of b ,  and b,. Since {a , ,  C)4 E H we have 4u, = 

nb, E H .  Therefore, there are four possibilities, 

(10.9) U ,  = i n b , ,  PI = 0, 1 ,  2, 3, 

and the rest of the u, can be determined uniquely from u, and (10.8a). Expres- 
sions (10.8b) are not so easy to solve. However, by making use of the fact 
that C2vj = -vj we can check that these expressions are equivalent to 

(10.10) V, - V ,  - CV, E H ,  V ,  - CV, t H. 

Expressions (10.8b) have an infinite number of solutions, since v, can be cho- 
sen arbitrarily, in which case v, and v, are determined by (10.4) and (10.10). 

Let G be the space group corresponding to a particular choice of v , .  
Note that for any  T, E T(3) the group G’ = T,GT;’ is conjugate, hence 
isomorphic to G. Since T,hT,’ = h for h E H ,  G and G’ have the same lattice 
groups. Moreover, 
(10.11) 

Writing a,’ = u,’ + v , ’ ,  we find 
(1 0.1 2) 
An appropriate choice of a yields v , ’  = 0 [set a = -+(v, + Cv,]. Thus, C 
is conjugate to a space group with v ,  = 8. Furthermore, (10.10) implies 
v, = v, = 8. We conclude that there are at most four isomorphism classes 
of space groups of type Ts and crystal class C,. For each of these groups 
C4j, j = 1 ,  . . . , 4, we list the element { a , ,  C) which, together with H ,  gener- 
ates the group : 
( 10.13) 

T,{a,, C}Tpl 1 {a, - Ca - 1  a, C )  = {a,’, C). 

u,’ = u, ,  v , ‘  = v ,  - Ca + a. 

C4I: (0, C}, C,,: { ib , ,  C), C,,: ( ib , ,  C}, C,,: {ab,,  C). 

The group C,,  is symmorphic, while the other groups contain nontrivial 
screw displacements. Instead of the generator we chose for Ca4 we could 
have chosen { tb , ,  C-’}. This is called a left-handed screw displacement, just 
as the generator {db3, C) of C4, is called a right-handed screw displacement. 
It is clear that C4, and C44 differ only the  winding-sense along their respective 
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screw axes. In particular Cd2 and C,4 are isomorphic groups. The isomor- 
phism acts like the identity on Hand  takes { i b , ,  C-I} into { ib , ,  C) .  Isomor- 
phic pairs of space groups differing only in their winding-sense are called 
enantiomorphic. There are 1 1  pairs of enantiomorphic space groups. These 
pairs are distinguished by crystallographers because enantiomorphic crystals 
turn out to have physically very different properties. Thus, crystallo- 
graphers recognize 230 space groups even through there are only 219 
isomorphism classes (Burckhardt [I]) .  

We now pass to the determination of class C, space groups of type TsL’. 
Recall that the basic vectors b, , b, ,  b, for a lattice of type rqi2 are chosen such 
that b, and b, are perpendicular to the fourfold axis lof C, ,  b, 1 b,, 1 1  b, 1 1  = 

1 1  b,ll, and 2b, - b, - b, lies along 1. We consider the elements (10.4) and 
(10.5) now adapted to the lattice type rq”. Then {a , ,  Cj4 = [(E + C + Cz + 
C3)a , ,  Ej E H. Furthermore, Cb, = b,, Cb, = - b , ,  Cb, = b, - b , .  Thus, 
if a ,  = a , b ,  + a,b, + a,b, we find 

(E - 1  C + Cz + C3)al = 201,(2b, - b,  -- b,) E H .  

The only possibilities are 01, = 0 or a, = 3. We can map G onto a conjugate 
space group G’ = T,GT;’ such that the image {a,’, C] of { a , ,  C) is given by 
(10.14) a , ’  = a ,  - Ca I a - a , ’b ,  I a,’b, t ct,b,. 

By choosing a E R ,  appropriately we can require that a,’ and 01,’ take any 
desired values. [Note that (a - Ca) 1 1 . 1  I n  the case a, = 0 we choose 
a,’ = a,’ = 0 and obtain the symmorphic group 
(10.15) c , ~ :  {e, c). 
In  the case a3 = f i t  is most convenient to choose a,’ = a,‘ = -4 so a , ‘  - 
ib , ,  where b, = 2b, - b, - b,.  It is trivial to verify that { ib , ,  C] and H 
generate the space group 
(10.16) C46: lab4, CJ. 

We have shown that there are six space groups of crystal class C, (five isomor- 
phism classes). The techniques used to derive these results are typical of those 
used to obtain the complete list of space groups. 

Problems 

2.1 Using only the definition (2 . l ) ,  show that an isometry T maps a line segment with 
endpoints X I ,  x2 onto a line segment with endpoints Tx, , T x z .  Then show that T maps 
planes onto planes. 

2.2 Prove: A n  isometry which fixes four noncoplanar points i s  the identity ti-ansforma- 
tion. 

2.3 Compute all point groups in two-dimensional space. (Answer: C,, D,, I I  = 

I ,  2,. . . .) 
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2.4 
2.5 

much simpler than the corresponding problems in three-space. 
2.6 Prove that there are ten crystallographic point groups in the plane. 
2.7 Verify that there are four  holohedries Cz, Dz, Dd, and D6 and six two-dimensional 
lattice types. 
2.8 Verify the existence of exactly 13 isomorphisnl classes of synitnorphic two- 
dimensional space groups and 4 nonsymmorphic groups. 
2.9 Let O'(3) = U(3) x (E,R],  where RZ = E and E is the identity operator. A 
magnetic symmetry group (color group) is a finite subgroup G of O'(3) such that 0 E O(3) 
satisfies the crystallographic restriction for each g = 0 Y E or g = 0 v R in G. Using the 
proof of Theorem 2.5,  show that the magnetic symmetry groups G fall into three classes: 
( I )  the 32crystallographic point groups, i.e., G c O(3); (2) the 32 groups K / {E, R), where 
K is a crystallographic point group, i.e., R E G ;  ( 3 )  groups G such that R 6 G but 
G + O(3). Show how to determine (in principle) all 58 groups in class (3). What is the 
physical significance of these groups? (See Hamerniesh [ I ] . )  
2.10 Explain the rationale behind the Schoenflies notation for point groups, especially 
the meaning of the subscripts d, h, and n.  

2.11 Prove Corollaries 2.3 and 2.4. 

Show that there are exactly two space groups belonging to crystal class C6h. 

Show that there are exactly four space groups belonging to crystal class D3h. 

The next three problems concern two-dirnensional lattices and space groups. They are 



Chapter 3 

Group Representation Theory 

3.1 A Group Representation 

Let V be a vector space, real o r  complex, and denote by GL( V )  the group 
of all nonsingular linear transformations of V onto itself. 

Definition. A representation (rep) of a group G with representation space V 
is a homomorphism T: g - f  T(g) of G into GL(V) .  The dimension of the 
representation is the dimension of V .  

As a consequence of this definition we have the following: 

(1.1) 
T(gI)T(g2) = T(g,g,), T(g) ' T(R-'), = E, g,  5 gz, g t G. 

where E is the identity operator on V .  Unless otherwise specified. only finite- 
dimensional reps of finite groups will be studied in the present chapter. This 
finiteness restriction will be lifted later. I t  will also be assumed unless other- 
wise mentioned that V is defined over the complex field 6 .  

Definition. An n-dimensional matrix rep of G is a homomorphism T :  
g - - +  T(g)  of G into GL(n, Cr) [or GL(n, R)]. 

The n x n matrices T(g) ,  g c G, satisfy multiplication properties analo- 
gous to ( I .  1). Any group rep T of G with rep space V defines many matrix 
reps. For, if ( v , ,  . . . , VJ is a basis of V, the matrices T ( g )  = (T(g)kj) defined 

61 
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by 

(1.2) 
n 

T(g>vk = C T(gIjkVjr 1 < k I n. 
j =  1 

form an n-dimensional matrix rep of G. Every choice of a basis for V yields 
a new matrix rep of G defined by T. However, any two such matrix reps 
T, T' are equivalent in the sense that there exists a matrix S E GL(n, 6 )  such 
that 
(1.3) T'(g) = ST(g)S-' 

for all g E G. In fact if T, T' correspond to the bases {vi}, {vi') respectively, 
then for S we can take the matrix (S j i )  defined by 

i 1.4) 
n 

vi = C Sjivj', i = 1, . . . , n. 
j -  1 

Definition. 
(T 

Two complex n-dimensional matrix reps T and T' are equivalent 
T' )  if there exists an S E GL(n, 6 )  such that (1.3) holds. 

Equivalent matrix reps can be viewed as arising from the same operator 
rep. 

Conversely, given an n-dimensional matrix rep T(g) we can define many 
n-dimensional operator reps of G. If Y is an n-dimensional vector space with 
basis {v,) we can define the group rep T by expression (1.2), i.e., we define the 
operator T(g) by the right-hand side of ( I  .2). Every choice of a vector space 
Y and a basis {vi} for V yields a new operator rep defined by T. However, 
if V, I/' are two such n-dimensional vector spaces with bases {vJ, {vi'} respec- 
tively, then the reps T and T' are related by 
(1.5) T(g) = ST(g)S-', 

where S is an invertible operator from I/ onto V' defined by 
Svi = vi', 1 < i 2 n. 

Two n-dimensional group reps T, T' of G on the spaces V,  V'  
T') if there exists an invertible linear transformation S 

Definition. 
are equivalent (T 
of Y onto V' such that expression (1.5) holds. 

The reader can easily check that equivalent operator reps correspond to 
equivalent matrix reps, i.e., there is a 1-1 correspondence between classes of 
equivalent operator reps and classes of equivalent matrix reps. (Note: The 
above definitions can be modified in an obvious manner to yield definitions 
of equivalence classes of real operator and matrix reps and to establish their 
1-1 correspondence .) 

In order to determine all possible reps of a group G it is enough to find one 
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rep T in each equivalence class. The remaining reps T’ in each class are given 
by ( 1 . 9 ,  where S runs over all invertible operators from V to V’ and V ’  runs 
over all n-dimensional vector spaces. It  is a matter of choice whether we study 
operator reps or matrix reps. For theoretical purposes the operator reps are 
usually more convenient, while matrix reps are more useful for computations. 

Most applications of groups to the physical sciences occur via representa- 
tion theory. Group reps appear naturally in the study of physical problems 
with inherent symmetry and analysis of the reps aids the solution of these 
problems. We present some examples of group reps. 

Example 1. The matrix groups GL(n, E), SL(n, C), U(n), etc. are n-dimen- 
sional matrix reps of themselves. 

Example 2. Any group of operators on a vector space is a rep of itself. 
In particular, the point groups considered as linear operators on the vector 
space R ,  define three-dimensional reps of themselves. 

Example 3. 
tional vector space R, consisting of all elements of the form 

Let G be a group of order n .  We formally define an n-dimen- 

Two vectors c x(g).g and c y ( g ) . g  are equal if and only if x(g) := y ( g )  
for all g t G. The sum of two vectors and the scalar multiple of a vector are 
defined by 

(1.7) 

The zero vector of R, is 0 = c 0.g. Furthermore, the vectors 1 ‘g, g E G, 
form a natural basis for RG. (From now on we write I sg = g i- R,.) We 
define the product of two elements x = c x(g).g, y = c y(h)-h in a natural 
manner: 
(1.8) 

c x(g1.g I c . J w . g  ~ c [ x k ,  -I 4’(f?)I.g 

@ c -4gI.g c ax(g) . l :  

X Y  = cc x ( g ) * g )  c y(h1.h ~ c x-(g)Y(h).g/f 
6 h i G  

where 
xy(g) = c x(h)y(h-’g). 

h t G  

It is easy to verify the following relations: 

(1.9) 
( X  4- J))Z xz 4 JZ, X(V 1 Z )  = XY - 1  XZ, X,Y, z E R,, 

( x y ) ~  - x(yz),  a(xy) = (ax)y = x(ay), ex = xe ~ x, a E (5, 
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where e is the identity element of G. Thus, R,  is an algebra, called the group 
algebra or group ring of G. The mapping L of C into GL(RG) given by 

(1.10) L(g)x = gx, x t R,, 

defines an n-dimensional rep of G, the (left) regular rep. In fact, 

L ( g , g , ) x  g,g,x = L('T,)g,x = L ( g , ) L ( g , ) x  

and the L(g) are linear operators. 
This example provides us with a rep of any finite group, and is of great 

importance for theoretical purposes. Another natural rep of G on R,  is the 
(right) regular rep defined by 
( 1 . 1 1 )  R(g)x = x g - ' ,  x E R G ,  g E G. 

[Check that g-' is needed on the right-hand side of (1.1 1) to make R a rep.] 

Example 4. Consider the Helmholtz equation 

(1.12) 

where x = (xl, x2, x,) t R,, k 2 0, and 

Au(Xj + k2u(X) = 0, 

The set of all solutions u ( x )  of (1.12) (defined for all x E R 3 )  forms an 
infinite-dimensional vector space V,. In particular, any finite linear combina- 
tion of solutions of (1.12) is a solution. We show that the operators T(g), 
g t E(3), given by 

(1.13) [T(g)ul(x) = u(g-'x), 

where 
gx = {a, 0 ) x  = Ox t a, 0 E 0(3), a t T(3), 

define an (infinite-dimensional) rep of E(3) on V,. The homomorphism 
property follows from 

[T(g,g,)ul(xj = u(g,'g; ' X I  = [T(g,)ul(g; ' X I  = [T(g,)T(g,)ul(x). 

Note that T(g)u is a function whose value at  x is the value of u at g-'x.  The 
reader should check that use of gx on the right-hand side of (1.1 3) would not 
lead to a homomorphism. 

In order to prove our assertion we must show that V,  is invariant under 
the operators T(g). Write x' = g ' x .  Since 

g- '  = {-O-'a,O-'] ,  0 E O(3) 

a simple computation gives 
d 3 d  

i - 1  dXi dx, = c O l i 7  
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Therefore, 

(1.14) d2 d 2  - A t  A = 5 OliOl, ~ - - - 
l , i , j = l  dx,’ dxj’ - i = l  d(xi’)z 

since 0 is an orthogonal matrix. If u E V, then 
A[T(g)u](x) = A[u(x’)] = A’u(x’) = -k2u(x’ )  = --k2[T(g)u](x), 

so T(g)u E V,. The existence of this group rep has important consequences 
in the study of the solutions of the Helmholtz equation. These consequences 
will be explored in Chapter 8.  

ExampIe 5. The square integrable solutions Y(x) of the Schrodinger equa- 
tion 

(1.15) 

describing a particle of mass m and energy E subject to  the potential field 
V(x), form a vector space W E .  Suppose V(x) is invariant under the action 
of some subgroup G of O(3): 

-_ AY(x) -t V(x)Y(x) = EY(x) 
2m 

V(gX) = V(X), g E G. 
[For example, if V(x) has rotational symmetry, G may be O(3). Another 
possibility is a point group.] Then the operators 

m ) ~ l ( x >  = Y(g-’x), g E G, 
satisfy the homomorphism property and map solutions of (1.15) into other 
solutions. Furthermore, for Y E W E  

(1.16) j IY(g-1x)12 d3x = IY(x)Iz d3x < 00, d3x = dx, dx,dx,, 
RS R3 

since the Jacobian of the coordinate transformation is + 1 .  Therefore, 
T(g)Y E W E  and the operators T(g) define a length-preserving rep of G on 
W E ,  where the inner product {-, -) is given by 

It is easy to verify that 

(T(gW1, T(g)Yz) = w 1 7  y2>, g E G. 
Thus, the operators T(g) are unitary with respect to (-, -) and they define a 
unitary rep of C on W E .  In most quantum mechanical problems the eigen- 
spaces W, are zero-dimensional except for a countable number of values 
En (the bound-state energy levels) where they have finite nonzero dimension. 
We shall show later that a knowledge of the symmetry group of Schrodinger’s 
equation furnishes us with important information about the eigenspaces 
WEn even in cases where (1.15) cannot be explicitly solved. 
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Let T be a rep of the finite group G on a finite-dimensional inner product 
space V. The rep T is said to be unitary if for all g E G 

(1.17) (T(g)v, T(g)w) = (v, w), v, w E V, 

i.e., if the operators T(g) are unitary. Recall that an orthonormal (ON) basis 
for the n-dimensional space V is a basis {v l ,  . . . , v,,} such that (vi, vj) = 

d,,, where (-, -) is the inner product on V. The matrices T(g) of the operators 
T(g) with respect to an ON basis (vi} are unitary matrices 

- 
'(g),i = ' (g- ' ) i j  = [T(g)-'lij. 

Hence, they form a unitary matrix rep of G. Unitary operator and matrix 
reps have useful properties which make them desirable in both theoretical 
and computational problems. The following theorem shows that for finite 
groups at least, we can always restrict ourselves to unitary reps. 

Theorem 3.1. Let T be a rep of G on the inner product space V. Then T 
is equivalent to a unitary rep on V. 

Proof. First we define a new inner product (-, -) on Vwith respect to which 
T is unitary. For u, v E V let 

(1.18) 

[Note that (u, v) is an average of the numbers (T(g)u, T(g)v) taken over the 
group.] I t  is easy to check that (-, -) is an inner product on V. Furthermore, 

where the next to last equality follows from the fact that if g runs through the 
elements of G exactly once, then so does gh. Now T is unitary with respect 
to the new inner product, but not the old one. Let {uJ be an ON basis of V 
with respect to (-, -) and let {vi}  be an ON basis with respect to (-, -). Define 
the nonsingular linear operator S: V -  V by Sui = vi. Then for w = 

C aiui and x = C bjuj we find 

(SW, SX) = c a,j,(Su,, SU,) = c aij i  = (w, x), 
i, i i 

so 
(ST(g)S- ' W, ST(g)S-'x) = (T(g)S.- ' W, T(g)S-'x) 

= (S-'w, s-'x) = (w, x). 

Thus, the rep T(g) = ST(g)S-' is unitary on V. Q.E.D. 
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We can always assume that a rep T on V is unitary. Indeed, we can always 
define an inner product on V with respect to which T is unitary. Moreover, 
if V is already equipped with a given inner product (-, -) then we can find a 
unitary rep (with respect to (-, -)) which is equivalent to T. 

Theorem 3.1 and its proof are also valid for reps on a real vector space 
V. In this case we can find an inner product on V with respect to which thz 
operators T(g) are orthogonal. 

3.2 Reducible Representations 

In this section T will be a finite-dimensional rep of a finite group G acting 
on the (real or complex) vector space V .  

Definition. A subspace W of V is invariant under T if T(g)w E W for every 
g E  G , w  E W. 

If W is invariant under T we can define a rep T’ = T 1 W of G on W by 
(2.1) T’(g)w = T(g)w, w E W. 

This rep is called the restriction of T to W. If T is unitary so is T’. 

Definition. The rep T is reducible if there is a proper subspace W of V which 
is invariant under T. Otherwise, T is irreducible (irred). 

A rep is irred if the only invariant subspaces of V are {el and V itself. 
One-dimensional and zero-dimensional reps are necessarily irred. However, 
the trivial zero-dimensional rep will be ignored in all the material to follow. 

We now give a matrix interpretation of reducibility. Suppose T is reducible 
and W is a proper invariant subspace of V. If dim W = k and dim V = n 
we can find a basis v , ,  . . . , v, for V such that v I ,  . . . , vk, 1 I k 5 n, form 
a basis for W. Then the matrices of the operators T(g) with respect to this 
basis take the form 

k n - k  

n - k  (=? T”(d *** 1 
The k x k matrices T’(g) and the (n  - k )  x (n  - k )  matrices T”(g) separately 
define matrix reps of G. In particular T’(g) is the matrix of the rep T‘(g), 
(2.1), with respect to the basis v , ,  . . . , vk of W. Here 2 is the zero matrix. 

Every reducible rep can be decomposed into irred reps in an almost unique 
manner. Thus the problem of constructing all reps of G simplifies to the prob- 
lem of constructing all irred reps. The irred reps emerge as fundamental 
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building blocks for the theory of reps of finite groups. To prove these state- 
ments in the simplest fashion we assume, as we can, that T is unitary. 

If W is a proper subspace of the inner product space V and 

( 2 . 4  W L  = { v  E V :  (v, w} = 0, all w E W }  

is the subspace of all vectors perpendicular to W, i t  is an easy exercise in 
linear algebra to prove that V = W @ W L  ( V  is the direct sum of Wand 
W l ) .  That is, every v E Vcan be written uniquely in the form 

v = w 4- w', w E w, w' E w1. 

Theorem 3.2. If T is a reducible unitary rep of G on V and W is a proper 
invariant subspace of V, then W L  is also a proper invariant subspace of V. 
In this case we write T = T' @ T '  and say that T is the direct sum of T 
and T", where T', T" are the (unitary) restrictions of T to W,  W I ,  respect- 
ively. 

Proof. We must show T(g)u E W'- for every g E G, u E W I .  Now for 
every w E W,  

(T(g)u, w> = (4 T(g-')w) = 0 
since T(g-')w E W. The first equality follows from (1.17) and unitarity. 
Thus, T(g)u E WL. Q.E.D. 

Suppose T is reducible and V ,  is a proper invariant subspace of V of 
smallest dimension. Then, necessarily, the restriction T, of T to V ,  is irred 
and we have the direct sum decomposition V = V ,  @ V,-L, where V,' is 
invariant under T. If V , l  is not irred we can find a proper irred subspace V ,  
of smallest dimension such that V ,  ' = V ,  @ V,l by repeating the above 
argument. We continue in this fashion until eventually we obtain the direct 
sum decomposition 
(2.3) V = V , @ V 2 @ . . . @ V I  or T = T , @ T , @ . . . @ T ,  

where the Vi are mutually orthogonal proper invariant subspaces of V 
which transform irreducibly under the restrictions T, of T to Vi. The decom- 
position process comes to  an end after a finite number of steps because V 
is finite-dimensional. Some of the Ti may be equivalent. If a, of the reps 
Ti are equivalent to T I ,  a, to T,, . . . , ak to T, and T I ,  . . . , T, are pairwise 
nonequivalent, we write 

k 

j = 1  
T = C @ u,T,. 

With this notation we are identifying equivalent reps. It is a straightforward 
exercise to show that, given aj copies of Ti, 1 < j < k, one can construct 
a rep of G equivalent to T. 
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Theorem 3.3. 
decomposed into a direct sum of irred unitary reps. 

Every finite-dimensional unitary rep of a finite group can be 

The above decomposition is not unique since the irred subspaces V , ,  . . . , 
Vl are not uniquely determined. However, i t  will be shown in the next section 
that the integers aj in (2.4) are uniquely determined. Thus, up to equivalence 
we can determine uniquely how many times a particular irred rep of G occurs 
in the decomposition of T. The integer aj is called the multiplicity of Tj in T. 

It follows from Theorem 3.1 that the statement of Theorem 3.3 still 
holds when the word “unitary” is deleted. To get a matrix interpretation of 
Theorem 3.3 choose a basis for V by combining bases {v?), j = 1, . . . , I ,  
for V , ,  V,,  . . . , and Vz. In terms of this basis the matrix T(g) of T(g) is given 
by 

where nj = dim V j  and Tj(g) is the matrix of Tj(g) with respect to the basis 
{vY] ,  1 < i n j .  

3.3 Irreducible Representations 

The fundamental problem in the representation theory of a finite group 
is the construction of a complete set of nonequivalent irred reps. A secondary 
problem is the determination of a practical method for decomposing a 
reducible rep into irred reps. The following two theorems (Shur’s lemmas) 
are crucial. 

Theorem 3.4. Let T, T‘ be irred reps of the group G on the finite-dimensional 
vector spaces V,  V’, respectively and let A be a nonzero linear transformation 
mapping V into V ’  such that 

(3.1) T ’ W  = AVg) 

for all g E G. Then A is a nonsingular linear transformation of V onto V’ ,  
so T and T’ are equivalent. 

Proof. Let N A  be the null space and R A  the range of A: 

N A  = {v E V :  Av = O] R A  = {v’ E I.”: v’ = Av for some v t V} .  

The subspace NA of V is invariant under T since AT(g)v = T’(g)Av = 8 
for all g E G, v E V. Since T is irred, N ,  is either V or {O). The first pos- 
sibility implies A = Z, the zero operator, which is impossible. Therefore, 
N A  = {el. The subspace RA of V’ is invariant under T’ because T’(g)Av = 
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AT(g)v E RA for all v E V. But T’ is irred so RA is either V’ or {O}. If RA = 

{O} then A = Z, which is impossible. Therefore RA = V‘ which implies that 
T and T’ are equivalent. Q.E.D. 

Corollary 3.1. Let T, T’ be nonequivalent finite-dimensional irred reps of 
G. If A is a linear transformation from V to V’ which satisfies (3.1) for all 
g E G then A = Z. 

The results in the remainder of this section apply only to complex reps. 

Theorem 3.5. Let T be a rep of the group G on the finite-dimensional com- 
plex vector space V. Then T is irred if and only if the only transforma- 
tions A: V -  V such that 

(3.2) T(g)A = A m )  

for all g E G are A = AE, where A E 0 and E is the identity operator on V. 

Proof. It is well known that a linear operator on a finite-dimensional 
complex vector space always has at least one eigenvalue. (This statement is 
false for a real vector space.) Let A be an eigenvalue of an operator A which 
satisfies (3.2) and define the eigenspace C, by 

C, = {V E V :  AV = Av}. 
Clearly C, is a subspace of V and dim C, > 0. Furthermore, C, is invariant 
under T because 

AT(g)v = T(g)Av = AT(g)v 

for v E C,, g E G, so T(g)v E C,. If T is irred then C, = V and Av = Av 
for all v E V. 

Conversely, suppose T is reducible. Then there exists a proper invariant 
subspace V ,  of V and by Theorem 3.2, a proper invariant subspace V ,  such 
that I/ = V ,  @ V,. Any v E Vcan be written uniquely as v = v, + v2 with 
vj E V j .  We define the projection operator P on V by Pv = v ,  E V , .  
Then PT(g)v = T(g)Pv = T(g)v, (verify this), and P is clearly not a multiple 
of E. Q.E.D. 

Choosing a basis for V and a basis for V’ we can immediately translate 
Shur’s lemmas into statements about irred matrix reps. 

Corollary 3.2. 
reps of the group G, and let A be an m x n matrix such that 

Let T and T‘ be n x n and m x m complex irred matrix 

(3.3) T’(g)A = A m )  

for all g E G. If T and T‘ are nonequivalent then A = Z ,  the zero matrix. 
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(In particular, this is true if n # m.) If T = T' then A = 1E,, where 1 E 0 
and En is the n x n identity matrix. 

Note that the proofs of Shur's lemmas use only the concept of irreduc- 
ibility and the fact that the rep spaces are finite-dimensional. The liomo- 
morphism property of reps and the fact that G is finite are not needed. 

Theorem 3.5 is extremely useful because it yields a practical method for 
determining if a group rep is irred. The original definition of irreducibility, 
while useful for theoretical purposes, is too complicated to verify directly 
in most practical problems. Theorem 3.5 can easily be translated to a theorem 
about matrix reps, whose obvious statement and proof are left to the reader. 

Let G be a finite group and select one irred rep T(p) of G in each equiva- 
lence class of irred reps. Then every irred rep is equivalent to some T(P) and 
the reps T(#l), T(fi2) are nonequivalent if p ,  f p2. The parameter p indexes 
the equivalence classes of irred reps. (We will soon show that there are only 
a finite number of these classes.) Introduction of a basis in each rep space 
V ( P )  leads to a matrix rep T'"). The T(") form a complete set of irred 
n, x n, matrix reps of G, one from each equivalence class. Here n, = 

dim W).  If we wish, we can choose the 
The following trick leads to an extremely useful set of relations in rep 

theory, the orthogonality relations. Given two irred matrix reps T ( P ) ,  T") 
of G, choose an arbitrary n, x n, matrix B and form the n, x n, matrix 

to be unitary. 

(3.4) 

where N = n(G). Here, A is just the average of the matrices T( f l ) (g)BT(v) (g- ' )  
over the group G. We will show that A satisfies 

(3.5) T"'(h)A = AT'"'(h) 

for all h E G. This result and Corollary 3.2 imply that if p # v then A = Z ,  
whereas if p = v then A = AE., for some 1 E 0. The verification of (3.5) 
follows from 

We have used the fact that as g runs over each of the elements of G exactly 
once, so does g' = hg. Applying Corollary 3.2, we obtain the result A = 

1 ( p ,  B)S,,E,, where 6," is the Kronecker delta, and the constant L E Q 
depends on p and B. To derive all possible consequences of this identity it 
is enough to let B run through the n, x n, matrices B",") = (Byi")), where 

1 if j = I ,  k = m ,  l < j < n , ,  l < k < n , ,  

0 otherwise. 
(3.6) Bjk") = 
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Making these substitutions, we obtain 

(3.7) T j f ) ( g ) T k ? ( g - l )  = NId,,d,,, 1 i, 15 n,, 1 5 m, s 5 n,. 

Here, I may depend on p ,  I ,  and nz, but not on i or s. To evaluate A,  set 
v = p ,  s = i, and sum on i to obtain 

g E G  

since N = n(G). Therefore, A = 6,,n;’. We can simplify (3.7) slightly if we 
assume (as we can) that all of the matrix reps T ( ’ ) ( g )  are unitary. Then 

p ) ( g - l )  = T“’( 

c T Y ( g ) E ( g )  = (N/n,)d,, 4,6,”. 

ms sm g )  

and (3.7) reduces to 

g t G  
(3.8) 

Equations (3.7) and (3.8) are called the orthogonality relations for the matrix 
elements of irred reps of G. We have derived these remarkable relations with- 
out any detailed knowledge of the structure of G. 

To better understand the orthogonality relations it is convenient to con- 
sider the elements x of the group ring R,  as complex-valued functions x ( g )  
on the group G. The relation between this approach and the definition of R, 
as given in Example 3, Section 3.1, is provided by the correspondence 

x = C x ( g ) - g + - ’  x ( g ) .  
BEG 

(3.9) 

The elements of the N-tuple ( x ( g , ) ,  . . . , x(gN)) ,  where g, ranges over G ,  
can be regarded as the components of x E R, in the natural basis provided 
by the elements of G. Furthermore the 1-1 mapping (3.9) leads to the relations 

where the expression defining x y ( g )  is called the convolution product of 
x(g)  and y ( g ) .  Thus, we can consider R,  as the ring of all complex-valued func- 
tions x ( g )  on G where addition, scalar multiplication, and convolution 
product are defined by (3.10). Indeed, the ring of functions just constructed 
is algebraically isomorphic to R,  with the isomorphism given by (3.9). Under 
this isomorphism the element h = 1 - h  E R,  is mapped into the function 

I if g = h  
’7(g) = { 0 otherwise. 

Now consider the right regular rep on R,. Writing 
(3.11) R(h)x = C [ R ( h ) x ] ( g ) - g  = xh-’ = C x ( g h ) * g  

g t G  g 
x E RG, 
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we obtain 

(3.12) [R(h)xl(g)= x(gh), h E G, 

as the action of R(h) on our new model of R , .  From Theorem 3.1, there 
exists an  inner product on the N-dimensional vector space R ,  with respect 
t o  which the right regular rep R is unitary. In particular, the following inner 
product works: 

(3.13) 

The reader can easily verify that this is an inner product and that the R(h) 
operators are unitary with respect to it. Now note that for fixed p, i, j with 
1 i ,  j 5 n, the matrix element Tj;)(g)  defines a function on G ,  hence an 
element of R,. Furthermore, comparing (3.13) with (3.8), we see that the 
functions 

(3.14) 

where p ranges over all equivalence classes of irred reps of G, form an ON 
set in R,. Since R,  is N-dimensional the ON set can contain at most N ele- 
ments. Thus there are only a finite number, say a, of nonequivalent irred 
reps of G. Each irred matrix rep p yields nP2 vectors of the form (3.14). The 
full ON set {q$)}  spans a subspace of R, of dimension 

(3.15) n I 2  + nz2 + . . -  + na2 I N. 

The inequality (3.15) is a strong restriction on the possible number and 
dimensions of irred reps of G. This result can be strengthened even more by 
showing that the ON set {qjp)) is actually a basis for R,. Since the dimension 
N of R, is equal t o  the number of basis vectors, we obtain the equality 

(3.16) n I 2  + n2* + . . .  + n Z 2  = N. 

T o  prove this result, let V be the subspace of R, spanned by the ON set 
{qjp)]. From (3.14) and the homomorphism property of the matrices P ( g )  
there follows 

(3.17) 

Thus, V is invariant under R. According to Theorem 3.2, is also invariant 
under R and R,  = V @  V-l. Here, V 1  is defined with respect t o  the inner 
product (3.13). If V1 # {O] then it contains a subspace W transforming under 
some irred rep TCv) of G. Thus, there exists an  ON basis x , ,  . . . , xnv for W 
such that 

( x , ~ )  = N - ’  C x(g)Y(g), X, .V R,. 
g < G  

q$)(g) = nk * T / ; ) ( g ) ,  1 5 i, j 5 n,, 

n ,  

k =  1 
[R(h)~jj”](g) = q$’(gh) = C T%’(h)qi$)(g) E V.  

”, 
/ = I  

(3.18) [R(g)xi](h)  = xi(hg) = C Tl,;’(g)x,(h), 1 I i _< n, 
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Setting l z  = e in (3.18) and letting g run over G, we find 

xi(g> 1 C xj(e>rly’(g) = C xj(e)ql?(d/n~ ‘’5 

I I 

so xi E V. Thus, W G V n VL.  This is possible only if W = {O}. Therefore, 
VI- = {el and V = R,. 

Theorem 3.6. The functions 

(qlf W}, p = 1 ,  . . . , a, 1 I i, j I np, 

form an ON basis for R,. Every function x E R, can be written uniquely 
in the form 

Relation (3.17) also yields the interesting fact that for fixed p and i, 
1 i i < n,,, the n p  vectors (qlp) : 1 I j < n,] form an ON basis for a subspace 
VIL) of R, which transforms under the irred rep T(,,) of G. Thus, 

R, = C @ Vi(”), 1 I p I a, 1 I i I n,, 
u. i 

and the rep T(*) occurs with multiplicity n,, in the right regular rep R. 

(3.19) 

3.4 Group Characters 

The orthogonality relations and decomposition theorems of the preceding 
section suffer from the defect that they are basis-dependent. To determine 
in what sense our results are unique we free them from a dependence on the 
choice of basis vectors for V.  

Let T be a rep of the finite group G on the n-dimensional vector space V .  
With respect to some fixed basis in V the operators T(g) define a matrix rep 
in terms of 17 x n matrices T(g). We define the character of T as the function 

(4.1 ) x ( d  = tr T(g), R E G .  

Since the trace satisfies 
tr(AB) = tr(BA) 

for any two n x n matrices, we find 

(4.2) tr(ST(g):)S-I) = tr(T(g)S-lS) = tr(T(g)) 
for all nonsingular n x n matrices S. Thus, equivalent matrix reps have the 
same character and x ( g )  is independent of basis. Furthermore, we will soon 
show that two reps with equal characters are equivalent. Thus, there is a 1-1 
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relationship between equivalence classes of reps of G and group characters 
on G. If x is the character of an irred rep it is called simple; if the rep is reduc- 
ible, x is a compound character. 

The orthogonality relations for matrix elements immediately lead to 
orthogonality relations for characters. Let x ( p )  be the character of the irred 
rep T ( , ) ,  ,u = 1 ,  . . . , a. Setting i = 1 and m = s in (3.7) and summing i 
from 1 to n r r  and m from 1 to n,, we obtain 

C ,$p)(g)x(”)(g- ‘) = N6, ,  . 
x E G  

(4.3) 

If we assume, as we can, that the matrix rep T(g) is unitary then 

(4.4) X(g-1) = tr T(g-1) = tr T(g)’ = tr T(g) = x(g), 
a result which is now seen to be valid independent of basis. Substituting this 
result into (4.3), we obtain the orthogonality relations 

(4.5) (x(&),  x ( “ 9  = d,,, 1 I p, v s a, 

where the inner product is defined by (3.17). Thus, simple characters of G 
form an ON set in R,. 

Now let T(g) be an arbitrary rep with character x(g). It follows from (2.4) 
and (2.5) that with respect to one basis at least, we can write 

where a@ is the multiplicity of T(P) in T. However, the orthogonality relations 
(4.5) imply 

(4.7) ( x ,  jy) -L a,, ,  1 5 PI a. 

Since the left-hand side of (4.7) is basis-independent, so is the right-hand side. 

Theorem 3.7. The multiplicity a,, of the irred rep T(p) in T is given by 
(4.7). Since reps with the same multiplicities are equivalent, reps with equal 
characters are equivalent. 

Thus, the multiplicities a, are unique even though the exact decomposi- 
tion of the rep space into irred subspaces may be nonunique. 

Corollary 3.3. Let x(g) be a group character of G. Then (x, x) is a nonnega- 
tive integer and x(g) corresponds to an irred rep if and only if ( x ,  x> - I .  

Pvoof. We can write ,y as a unique sum of simple characters: 
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Since the ~ ( r )  form an ON set there follows 
01 

( x ,  x> = c up2 
p= 1 

(4.8) 

The right-hand side equals one if and only if one of the a, is one and the 
rest are zero. Q.E.D. 

We list a few additional properties of characters. If T is an n-dimensional 

x(e )  = t r  E,  = n. 

rep with character x then 
(4.9) 
Thus x(e) is always equal to the dimension of the rep. Furthermore, 
(4.10) 
so x is constant on each conjugacy class of G. Suppose G has k conjugacy 
classes containing m , ,  . . . , mk elements, respectively, with rn, + . . . + rnk 
= N .  Then the orthogonality relations (4.5) read 

X(hgh-’) = tr[T(h)T(g)T(h)-’1 = t r  T(g) = X(g), g, lz E G, 

(4.1 1) 

where xi‘”) is the value of x(”)(g) with g in the ith conjugacy class. Relations 
of the form (4.1 1) are not as esthetically pleasing as (4.5) but they are useful 
for practical computations. 

Let us examine the relationship between group characters and the sub- 
space F of R, consisting of all functions y(g) such that 

y(hgh-’) = y(d, g, h E G, 
i.e., all functions which are constant on conjugacy classes. Each y E F 
is uniquely determined by k complex numbers, the value assumed by y on 
the k conjugacy classes of G. Thus F is k-dimensional. Clearly, the a simple 
characters of G form an ON set in F with respect to the inner product (-, -). 
In fact, M. = k and these characters form an ON basis for F. 

Theorem 3.8. 
number of conjugacy classes in G. 

Proof. 

The number a of nonequivalent irred reps of G is equal to the 

Let y E F. Since F G R, we can expand y in the form 

y(g) = C aYjT!f’(g) 
l41.1 

where the T / f ) ( g )  are the matrix elements of a complete set of nonequivalent 
unitary irred reps of G. Since (summing over repeated indices) 
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y(g) is a linear combination of simple characters. Therefore, the simple 
characters form an ON basis for F. Q.E.D. 

In terms of the a x a matrix A with elements 

A,, = ( m J N ) '  2xl,), 1 I i, ,u 5 a, 

the first orthogonality relation (4.11) reads A 2  = E,. Thus, 2 = A - '  and 
2 A  = E, ,  or 

(4.12) 2 j"'x:"' = ( N / m , ) d , ,  , 1 < i, j a. 

This is known as the second orthogonality relation for characters. 
As an example of character methods we verify expression (3.19) for the 

decomposition of the right regular rep R into irred reps. We begin by comput- 
ing the character x of R in the natural basis for R,  provided by the group 
elements. Now, 

P -  I 

R(h)g = gh-  I ,  11, g F G, 
so R(h) acts on the natural basis by permuting the basis vectors. If h # e 
then no basis vector is left fixed under R(h) .  Thus, the matrix of R(17) in the 
natural basis has matrix elements which are zeros and ones, and if / I  # e 
the diagonal matrix elements are all zero: 

N if 11 = e 

0 if h # e. 
Writing 

we obtain 

Therefore, the multiplicity of T(,) in R equals the dimension of T(,). (The 
results for the decomposition of the left regular rep L are the same, so R and 
L are equivalent reps.) 

Later we shall present a detailed derivation of the simple characters for 
the crystallographic point groups and the symmetric groups. Here we consider 
only the simple case where G is an abelian group of order N .  Then G contains 
N conjugacy classes with one element each. Thus a = N and the relation 

n l *  + n Z 2  -1- . . . + nNz = N 

implies n ,  = . s = n,., = I .  The N nonequivalent irred reps of G are one- 
dimensional. In this special case the simple characters x ( " ) ( g )  coincide with 
the irreducible 1 x 1 matrix reps. Thus, the characters satisfy the homo- 
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morphism property 

(4.13) x‘”~“”(g2> = xYg,g2) .  

Since g N  = e for every g E G there follows 
[ f , ’ ( g ) ] N  = X ( ” ’ ( g N )  = X ( o ) ( e )  = I ,  

so X(”)(g) is an Nth root of unity. In order to explicitly list the simple charac- 
ters for any abelian group it would be necessary to study the structure theory 
of such groups. However, if G is cyclic it is easy to give complete results. 
Let go be an element of order N which generates G. Then 

(4.14) [X(%0)lN = 1 

for each of the N simple characters of G. Furthermore, the numbers ,f”)(go) 
uniquely determine ~ ( f l ) ,  so these N numbers must be distinct. The equation 
wN = 1 has exactly N solutions, 

o, = exp(2nipu/N), p = 0, 1 , .  . . , N ~ I .  

Thus, the simple characters can be uniquely defined by 
(4.15) 

The reader should understand that the above discussion applies only to 
complex reps of a group G. Character arguments can be applied to real reps 
only with special care. To understand the difficulties involved here, consider 
a real irred matrix rep T of G. We can also consider T as a complex matrix 
rep T c  of G. However, T c  may not be irred. For example, in an appropriate 
basis the generator C(n/2) of the cyclic group C , ,  considered as a transforma- 
-tion group in the plane, corresponds to the matrix 

x(C)(go”) = exp(2ninp/N), p ,  n = 0, I ,  . . . , N - I .  

r -3 
The two dimensional real rep generated by this matrix is irred since the 
matrix has complex eigenvalues f i  and cannot be diagonalized by a real 
similarity transformation. However, considered as a complex matrix rep it 
is reducible. 

3.5 New Representations from Old Ones 

Let G be a group of order N .  We discuss some methods for using known 
reps of G to construct new reps. The right and left regular reps and the 
identity rep are already familiar. (The identity representation of G is the irred 
one-dimensional rep defined by mapping each g E G into 1 .) Furthermore, 
if G is defined as a matrix group, this matrix realization automatically yields 
a rep. To construct more reps we will probably have to rely on one of the 
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methods presented below. Ultimately, we want to explicitly construct all 
irred reps of G (or at least their characters) and to explicitly decompose an 
arbitrary rep of G into irred reps. 

First we review two techniques which have been studied earlier. If T I ,  T, 
are reps of G on the vector spaces V ,  , V, ,  respectively, the direct sum TI 0 T, 
is a rep acting on V ,  @ V ,  (vector space direct sum) and defined by 

(5.11 [Tl 0 T,(g)lv,  0 v2 = T, (g )v ,  0 T,(g)v,, v, E V,. 

It is easy to show that the character x of this rep is x(g)  = x,(g) + xz(g) ,  
where x,, x,  are the characters of TI ,  T,, respectively. This procedure can 
easily be extended to define the direct sum of any finite number of reps. We 
know already that every rep T is equivalent to a rep 

f: @a,T(@)  

where the T(@) are a complete set of nonequivalent irred reps of  G and the 
multiplicities a,  are uniquely determined. 

If T has rep space Y and W is a proper invariant subspace of V then the 
rep T‘ = T I W on W defined by 

(5 .2)  T’(g)w = T(gjw, g t G ,  w E W 

is called the restriction of T to W. We have seen that every reducible rep of 
G can be written as a direct sum of certain of its irred restrictions. 

Let V and V’ be vector spaces of dimensions n, n’, respectively and let 
{v,}, {v,’} be bases for these spaces. We define V @? V’, the tensor product 
of V and V’, as the nn’-dimensional space with basis {v? @ v,’), 1 i n, 
1 < j <  n’. Thus, any w E V @ V ’  can be written uniquely in the form 

@=I 

(5.3) 

If v = C a,v, and v’ = C p,v,‘ we define the vector v 0 v’ E V @  V’ by 

w = c a,,v, @ v,’. 
!, 

(5.4) 

If w E V @ V’ can be written in the form w = v @ v’ then w is said to be 
indecomposable. The example w = v,  @ v,’ + v, 0 v , ’  shows that if n, 
n’ 2 2 not every w is indecomposable. As a consequence of definition (5.4) 
it is easy to verify the following properties: 
(5.5aj 
(5.5b) 
(5.5c) 

Although our definition of tensor product appears to depend on the choice 
of bases {vJ and {vj’) it is actually independent of this choice. For, let {I+), 

a(v 0 v’) = (avj @ v’ = v 0 (av’), a E 6,  

u, v E v, 
u’, v‘ E V‘. 

(u + v) 0 v’ = u @ v’ -+ v 0 v‘, 

v @ (u’ + v’) = v 0 u‘ + v @ v‘, 
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{uj’} be new bases related to the old bases by 

where the matrices A and A’ are nonsingular. From relations (5.5a)-(5.5c) 
the basis vectors vI @ vk’ can all be expressed as linear combinations of the 
nn’ vectors ui @ uj‘. Since V @  V ’  is nn‘-dimensional it  follows that the set 
{u, @ uj’) is also a basis for V @  V ’ .  This shows that the definition of 
V @  V’ is independent of basis. The definition of an indecomposable vector 
is also independent of basis. 

Suppose T, T‘ are reps of G on the spaces V,  V’,  respectively. The 
tensor product T @ T’ is the rep of G on V @ V’ defined by 

(5.6) [T @ T’(g)lv 0 V’ = T(g)v @I T’(g)v’, 
and linearity of the operator T @ T’(g). It is straightforward to verify the rep 
property of these operators. Let {vi), {vj‘} be bases of V,  V’ ,  and let T(g) ,  
T’(g) be the corresponding matrix reps of T,T‘.  Then the matrix rep of 
T @ T’ with respect to {vi @ vj‘} is defined by 

g t G, 

or 

[T 0 T’k)llk,jj TIik)TLj(g). 
(Note the double-suffix notation.) The character x @ ~ ‘ ( g )  is 

(5.8) 

Thus, the character of the tensor product is the product of the characters of 
the factors. As an immediate consequence of this result we see that the reps 
T @ T’ and T’ @ T are equivalent. 

The above definitions have obvious generalizations to define n-fold 
tensor products V ( ’ )  . . . @ I“’’ and tensor product reps T(’) (@ . . . (8 
T[“) of the reps T(jl on V(j) .  The dimension of the tensor product space is the 
product of the dimensions of the factor spaces V ( j ) .  

Let (T(#)}, 1 i p I a, be a complete set of nonequivalent irred reps of 
G. We can form tensor product reps T(@) (8 T(Y), 1 p, Y < a, with charac- 
ters X ( P )  0 ~ ( ” ( g )  = ,y(@)(g)f”)(g). These reps can then be decomposed into 
irred reps 

(5.9) 
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(5.1 1) 

T‘”(g )  z 
T(G% 

Z 

These two bases are related by expressions of the form 
(5.12) 

The expansion coefficients ( p i ,  v j  I t s l )  are called Clebsch-Gordan (CG) 
Coefficients. These coefficients form an n,n, x n,n, matrix. This matrix 
is clearly invertible with inverse matrix elements defined by 
(5.13) v:fll @ vJ’) : C ( ts l  I pi, uj)wf,’, I i < n,, 1 < j < n,. . 

As an immediate consequence we have the relations 
Ckl 

C (pi, v j ]  l s l ) ( ( f s / l  pi‘, vj’) = 6,,,6,,, 

C (ts l  I pi, vj )(pi, vj I t’s’l’) 

< S l  

(5.14) 
85E‘Brs&. 

I 

Furthermore, if we assume, as we can, that the T ( € ) ( g )  are unitary matrices 
and the above bases are ON with respect to an inner product <-,-‘, on 
V(f l )  0 Y(.) then the matrix formed by the CG coefficients is unitary, i.e., 

(5.15) (tsl I pi, vj) = ( p i ,  v j  I ts4. 
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Although the “natural basis” is the easiest to compute it is the w-basis which 
is the most useful in  applications, since this basis explicitly exhibits the 
decomposition of T(P) @ T(”) into irred reps. By (5.12), to obtain this new 
basis from {v!,) @ vy)] it is sufficient to know the CC coefficients. For this 
reason much effort has been expended in the compilation of CG coefficients. 
We will return to this problem later. 

If TI and T, are reps of the groups G I  and G,, respectively, we can define 
a rep T of the direct product group G I  x G, on V ,  9 V ,  by 

(5.16) T(glg,)vl C 3 v z  = T,(g,)v, @T2(gz)v, gi c G,, vi E vi .  
If TI is n,-dimensional and T, is n,-dimensional then T is n,n,-dimensional. 
Furthermore, an elementary computation similar to (5.8) shows that the 
character x of T is 

(5.17) xk,g , )  = x,(g,)x,(gd 
where xi is the character of Ti.  If TI and T, are irred then 

1 !x ,  X ) G , X G *  = !XI > X I > G , < X Z ,  xzh* 
so x is irred. Let x‘f“, 1 < p 5 a , ,  be the simple characters of G ,  corres- 
ponding to reps of dimension n:’. Let x:“’, 1 5 v < a,, and ni2’ be similar 
quantities for G,. Then the characters x‘”~”)(g,g,) = x~’(gl)xl”)(g,)  belong to 
a,@, nonequivalent irred reps of GI  x G,, since 

(x‘”” ’  > X ( r ’ . v ’ ) )  
, G , . G .  6,,&.. 

Now G I  has a, conjugacy classes and G, has a, conjugacy classes, so G I  x G, 
must have exactly a,a, conjugacy classes. Thus, every irred rep of G ,  x G, 
is equivalent to exactly one of the irred reps T(P,Y). We have shown that a 
knowledge of the irred characters and reps of the factors G I ,  G, immediately 
yields the irred characters and reps of C, x G,.  

If T is a rep of G on V we can obtain a rep T, of any subgroup H of G 
by restricting T to H ,  

(5.18) T,(h) 1 T(h), h t H. 

We sometimes write T, = TI H. The character x H  = x /  H of this rep is 
given by xH(h) = x(h). 

On the other hand, there is a method due to Frobenius for constructing 
a rep of G from a rep of the subgroup H .  Let T be a rep of H on the space V. 
Denote by ‘uc the vector space of all functions f(g) with domain G and range 
contained in V where addition and scalar multiplication of functions are the 
vector operations. Here, for a fixed g E G, f(g) is a vector in V. Let V G  be the 
subspace of WG defined by 
(5.19) V G  = {f E WG: f(hg) = T(h)f(g) for all h E H ,  g r Gj  
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We define a rep TG of G on V G  by 

(5.20) [TG(g)fl(g’) = f(g’g), g, g’ E G, f E V G .  

It is clear that V G  is invariant under C and the operators TG(g) satisfy the 
homomorphism property. Here, TC is called an induced representation. Let 

Hg,, . . . , Hg,, n(G) = m-n(H)  

be the distinct right cosets of H, where g,  = e.  Any f E V G  is uniquely 
determined by the m vectorsf(g,), . . . , f(g,) since for g = hgi in the right coset 
Hgi we have 

f(g) = f(hg,) = T(h)f(gi). 

Let {vj),  1 < j  

(5.21) e j k ( g i )  = a ikv j ,  1 < i, k < m, 1 j I d .  
The functions { e j k }  form a basis for V G ,  so the induced rep is md-dimensional. 
Let T(h) be the matrix of T(h) relative to  the {vj) basis. We will use T(h) to 
compute the matrix rep of G defined by TG relative to the {e:} basis: 

“Wg)ejkll(g,> = e,k(g,g) = ejYhg,> = T(h)e,”(g,) 

d, be a basis for V and define elements ejk(g) of V G  by 

d d 

r - l  i= I 
= c T,,(h)e,‘(g!J = c T,,(h)e,’(gJ 

where g, and g, are the representatives of the right cosets containing g,g 
and g k g - l ,  respectively. From (5.21) we have Iz = g,gg,I for s = I, i.e., 
r : k.  We conclude that 

where 

(5.23) 

If we order the basis {ejk} in the sequence 
e l l , .  . . , ed’, e l 2 , .  . . , ed2, .  . . , e l m , .  . . , edm 

then the matrix of TG(g) with respect to this basis is 

k w l )  ‘ . . ng,gg,l> 

i‘(gmggll) ‘ T(grnggi1) 

(5.24) T G ( g )  

That is, the md x md matrix P ( g )  is partitioned into a n  m x m array of 
d x d matrix blocks. The block in the j th  row and kth column of the array 
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is F(g,ggiI) .  The character is clearly 

(5.25) 

where ~ ( h )  is the character of T and 

m d  c c Fii(gkggG1) = 2 j ( g k g g i 1 )  
k =  1 i =  1 k =  1 

xG(g> 

(5.26) 

We can write (5.25) in a more convenient form by noting that 

Therefore, 
(5.27) 

To recapitulate, given the character x corresponding to a rep T of H ,  we can 
define the character xG of the induced rep TG by expression (5.27). One of the 
most useful induced reps is that obtained from the one-dimensional identity 
rep of H. Then ~ ( h )  = 1 for all Iz E Hand  

2(hgkg(kgk)- l )  = 2 ( g , g g i 1 ) ,  h E H. 

xG(g)  = [n(H)I-' c 2 ( t g t - ' > .  
f € G  

(5.28) 

where n, is the number of elements in G conjugate to g and m, is the number 
of elements in H n G conjugate to g .  (Prove it!) 

An important result on induced reps is the Frobenius reciprocity theorem. 
Let H be a subgroup of G and let T, Q be irred reps of H and G with charac- 
ters x, W ,  respectively. 

Theorem 3.9. 
multiplicity of the irred rep T in Q H = QH. 

The multiplicity of the irred rep Q in TG is equal to the 

Proof. 

(5.29) <x', w>G = ( x ,  wH)H 

since the left-hand side is the multiplicity of Q in TG and the right-hand side 
is the multiplicity of T in Q H .  Using (5.26) and (5.27) we have 

I t  is enough to show that 

<x"> U/>G = [n(G)l-' c x G k ) v ( g )  
,EG 
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The Frobenius reciprocity theorem is important because i t  enables 
one to decompose any induced rep into a direct sum of irred reps. 

3.6 Character Tables 

We now apply the results of the preceding sections to compute the simple 
characters and reps of the crystallographic point groups. For many applica- 
tions only the simple characters are needed, not the rep matrices themselves. 
Furthermore, a simple character yields much information about its cor- 
responding group rep and it is often possible to construct the group rep rather 
easily once the character is known. Although we study primarily the crystal- 
lographic point groups, the techniques used in the construction are applicable 
to any finite group. 

Let G be a finite group of order N and T(”, . . . , T‘=’ a complete set of 
nonequivalent irred reps with dimensions n , ,  . . . , n,. The group G has a con- 
jugacy classes and 
(6.1) n12 -1. n2L 1 .  . . . -+ nm2 N .  

Furthermore, the characters x(#’ obey the orthogonality relations 

(6.2) (x‘”), x‘”)) = N - ‘  mixjfi)xIy) = a,,, 1 I p,  v I a, 
< I  

and 

2 x:”)z : a i j N / m i ,  1 i, j a, (6.3) 

where xi‘”) is the value of f ” ) ( g )  for g an element of the ith conjugacy class 
Xi and mi is the number of elements in Xi. We assume X I  - {e} and m,  -- I .  
Thus, xy’ = x(”)(e) = np. A character table for G is a table of the form 

”= I 

X I  m,X, ’ . .  m,X, 

xSpJ . . . X?’ 
listing all simple characters of G. We already know x(l)(g) = 1 for all g t C, 
the character of the one-dimensional rep in which Tfg) = E. To obtain the 
rest of the table we use the orthogonality relations and various devices for 
constructing reps which were discussed in the previous section. We always 
assume the characters are ordered so that 1 = n, n,  < . . . I n,. 
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It is worth noting that isomorphic groups have the same reps. The rep 
theory of a group is determined by its abstract group structure alone. Thus, 
the isomorphic groups D, and C,, have the same character tables even though 
these groups are not conjugate subgroups of E(3). Similarly, the following 
pairs of isomorphic groups have the same character tables: 

(6.5) S2, z CZn, C,,, D,, Td z 0, D,,, 2 D4"- 

A number of the crystallographic point groups can be expressed as direct 
products of groups of lower order: 

C, C3 X C, ,  c , h  Z C, X C,, D,,, Z D, X C ,  

(6.6) Dzn+ ~ , d  Dzn+l X c,, Th ZZ T X c2, oh ZZ 0 X c, 
D ,  z C ,  x C , ,  D, z D ,  x C,. 

According to the discussion following expression (5.16) the simple characters 
of each of the direct product groups can be obtained by forming all possible 
products of simple characters belonging to the factors. Thus, to derive 
character tables for each of the 32 crystallographic point groups it is enough 
to study the groups C,, C , ,  C , ,  D 3 ,  D, ,  T, 0. 

The character tables of the cyclic groups C, follow from Eq. (4.15). Let 
g be a generator of C,, gz = e. Then the conjugacy classes of C, are 

(6.7) E = {el, e, = {gl 
and the character table reads 

Let g be a generator of C , ,  g 3  = e. The conjugacy classes are 

(6.9) 8 = {el, ( 9 3  = {g ) ,  ( 3 3 ,  = {g21 

and we obtain 

(6.10) E = exp(2ni/3). 

Finally, let g be a generator of C,, g4 = e. The conjugacy classes are 
(6.11) & = { e } ,  e4 = {g} ,  e42 = {gz}, e43 = {g3} 
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c, 
X ” ’  

X ‘3 ’  

*‘4’  

(6.12) p’ 
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E e4 e4* e43 

I I I 1 

I j -. 1 - . j  

I -I I - I  
1 - i  - 1  i 

(6.14) 

X ( 3 ’  1 2 - I  0 

The two-dimensional rep T(,) is equivalent to the 2 x 2 matrix rep one 
obtains by considering D, as a transformation group in the plane, i.e., as 
the symmetry group of an equilateral triangle. Indeed, with respect to the 
basis pictured in Fig. 3. I ,  we can associate the matrices 

Thus, the character x satisfies X ( e )  = x I  = 2, X(g) = X Z  = - 1 ,  X(h) X3 

= 0, so x = f 3 ’ .  
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~ 

f "  

x ' 2 '  

p 
x'4' 

x ( s )  

(6.17) 
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~ 

1 1 1 1 1 

1 1 1 - 1  - - I  

1 1 --I 1 -I 

1 1 - I  - 1  1 

2 x y )  x y )  

FIGURE 3.1 

The group D, of order eight is generated by elements g , h  such that 
g4 = h2 = e and (gh)2 = e .  This group has five conjugacy classes: 

8 = {el, e4' = W1, e4 = Is, g3h (6.16) 

Thus, there are five irred reps of dimensions 1 1 ,  = 1 I n, I . . . I n, such 
that 

n , 2  + nz2  + n32 + na2 + n S 2  = 8. 

The only possibility is n, = n2 = n3 = n4 = I ,  n, = 2. The one-dimensional 
reps can be determined by inspection. Thus, 

e2 = (h ,  g2h), e,' = {gh, g3hj. 

D, I & e4, 2e4 2(3, 2e2' 

(6.18) 
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T 

X ( I )  

x'3 '  

x'4' 

(6.20) x'2' 

The tetrahedral group T contains 12 elements. Realizing the elements of 
T as permutations of the four vertices of a tetrahedron, we obtain the four 
conjugacy classes 

(6.19) 

X ,  = (11, X2 = {(12)(34), (13)(24), (14)(23)1 

X, = (( 123), (142), (1 34), (243)j, X, = {( 132), (124), (143), (234)j. 

n2 5 . . . There are four irred reps of dimensions n ,  = I n4 such that 

n I 2  + n Z 2  + n32 + n42 = 12. 

The only possible solution is n, = nz = n3  = 1, n4 = 3. Note that the sub- 
group 

D = { 1, (1 2)(34), ( 1  3)(24), (14)(23)1 

(the identity element and the three rotations of 180") is normal in T. There- 
fore, the factor group T / D  is cyclic of order three and has three one-dimen- 
sional nonequivalent irred reps given by (6.10). These reps T(j)', i = 1, 2, 3, 
are defined by mapping a generator g of C ,  into I ,  E ,  or c2, respectively, where 
E = exp(2ni/3). The combined homomorphisms 

X ,  3X, 4X3 4X4 

I 1 1 1  

I I E E 2  

I I & 2 &  

3 z\4) xy xy) 
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a transformation group on R ,  is not commutative. Therefore, this natural 
rep must be T(4'. 

The octahedral group 0, the direct symmetry group of the cube, contains 
24 elements in five conjugacy classes. They are 

G = ( e ) ,  e4, = {three rotations of 180" about fourfold axes] 
e,  = (six rotations of 180" about twofold axes} 
e4 = (three rotations of 90" and three rotations 

e3 = (four rotations of 120' and four rotations 

(6.21) 
of 270" about fourfold axes) 

of 240" about threefold axes). 
There are five irred reps of dimensions 1 n ,  < n ,  5 . . . < n,  such that 

+ . . . t n S 2  = 24. 
The only possibility is n ,  = n, = 1 ,  17, - 2 ,  n4 = n ,  = 3. I t  is clear from the 
drawing of a cube in Fig. 3.2 that points ABCD are the vertices of a tetra- 

r 

A 

G D 

FIGURE 3.2 

hedron. Every direct symmetry of the tetrahedron is also a direct symmetry of 
the cube. Thus 0 must contain the tetrahedral group Tas a subgroup of index 
24/12 = 2. By Theorem 1.3, T is a normal subgroup of 0 and O/T is cyclic 
of order two. Now OjT has two one-dimensional reps given by (6.8). Just as 
in the preceding example, we can use these reps to obtain two one-dimension- 
a1 irred reps of 0 such that T is mapped into the identity operator: 

0 I G 3e,' 6e2 6e4 8e, 
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0 

~ ( 4 )  

Next we construct the two-dimensional irred rep TC3).  Consider the simple 
character x'z' of T,  table (6.20). The corresponding induced character ,yo is 
associated with a two-dimensional rep of 0 and is easily shown to be given by 

0 I E 3e42 6e2 6e, 8e, 

G 3e4= 6C, 6e4 8e, 

3 - 1 x:"' xi41 0 

0 

X ' 5 '  

E 3e4= 6e2 6e4 8e, 

3 - - I  1 - I  0 



92 

0 

x ( I )  

x ‘ 2 ’  

x‘3’ 

x(4) 

x ( 5 )  
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8 3ed2 6e2 6C, 8e, 

1 1 1 1 1 
1 1 - I  -1 1 
2 2 0 0 - 1  

3 -1 - I  1 0 
3 - 1  1 -1 0 

(6.22) 

The above results enable us to  compute the simple characters and reps for 
each of the crystallographic point groups. Similar techniques yield the irred 
reps of any finite group, although in practice the required computations may 
be extremely difficult. 

3.7 The Method of Projection Operators 

Let G be a finite group and T a reducible unitary rep of G on the vector 
space V. Suppose T“), . . . , T‘“) are a complete set of nonequivalent irred 
unitary reps of G .  Then V can be decomposed into a direct sum of invariant 
subspaces 

where the restriction of T to V:”) is equivalent to the irred rep T‘fi). Here a,  
is the multiplicity of T(@) in T. In this section we study a method which allows 
us to explicitly perform the decomposition (7.1). Furthermore, we examine 
the subspaces V ( # )  and determine to what extent they are unique. 

Let A be a linear operator on the finite-dimensional inner product space 
V .  Recall that A*, the adjoint of A ,  is the linear operator on V uniquely de- 
fined by 

(7.2) (Au, V> = (u, A*v) 

for all u, v E V, where <-, -) is the inner product. With respect to an ON 
basis for V the matrix for A* is the conjugate transpose of the matrix for A. 
The operator A is self-adjoint if A -= A*. If A2 = A then A is a projection 
operator. The range R, and the null space N ,  of a linear transformation are 
the V subspaces 

(7.3) 
R,  = {w E V :  w = Av for some v E V ] ,  N ,  - (v  E V :  Av = O}. 

Let P be a projection operator on V and let W : RP. Any v t V can be 
written uniquely in the form 

v = PV 4- (E - P)v = w + W‘ 
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where w E W, w' E W' = Ro-,,. In particular, P w  = P 2 v  = P v  = w 
for w E Wand Pw '  = P ( E  - P)v = 0 for w' E W'. If u E W n W', then 
Pu = u since u E Wand Pu = 0 since u E W'. Thus, W n W' = {0) and 

(7.4) v =  W @  W'. 
We have shown that the projection P induces a direct sum decomposition of 
V. Conversely, if Wand W '  are subspaces of V such that (7.4) is valid, then 
the assignment P v  = w defined by the decomposition 

v = w + w ' ,  v t v, w E w, W ' E  W' 

determines a projection operator on V. Indeed, P w  = w so P 2 v  = P w  = 

w = PY and Pz = P. Different choices of the supplementary space W' 
lead to different projection operators P. If W' = WL, then the corresponding 
projection operator is self-adjoint. 

Theorem 3.10. There is a 1-1 relationship between subspaces W of V and 
self-adjoint projection operators P on V, given by W = R,, W'- = Np. 

Proof. The decomposition V = W @ W' defines a projection P with 
W = R,, W L  = N , .  If v l ,  v2 t V with 

vi = wi 4- wi', wi E W, wi' E WL, i = 1,2, 
then 

(PV,, v,) = (w1, w, $- w,') = (w, + w,', w,) = ( V I ,  Pv,) 
so P" = P. 

W = R,. Since E = P + (E - P) we can write 
Conversely, suppose P is a self-adjoint projection operator on V and set 

17.5) v = PV + (E - P)v = w + w', v E V. 

By definition P v  E W, while for any vector P u ,  u E V, in W we obtain 

(7.6) 
SO (E - P)v t W'. Thus N p  = R(E-p) = W'. 

(Pu, (E - P)v) = (u, P ( E  - P)v) = (u, (P - P)v) = 0 

Q.E.D. 

Theorem 3.11. Let T be a finite-dimensional rep of G on the inner product 
space V. If V can be decomposed in the form V = W, @ W,, where W ,  
and W,.are invariant under T then the projection operator P on Vdefined by 
(7.7) P v  = w I  for v = w ,  + w,, wi E Wi 
satisfies 
(7.8) T(g)P = PT(g) for all g E G. 

Conversely, if P is a projection operator on V satisfying (7.8) then V = W, 
@ W,, where W ,  = R, and W, = N p  are invariant under T. 
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Proof. Suppose W,,  W ,  are invariant under T and V = W ,  @ W,. 
Then any v E V can be written uniquely in the form v = w, + w,, 
wi E Wi, and 

PT(g)v = P(T(g)w, + T(g)w,) = T(g)w, = T(g)Pv, 
where Pis defined by (7.7). Conversely, if P is a projection operator satisfying 
(7.8) and w, E W, = Rp, then 

T(g)w, = Tk)Pw, = PT(g)w, E RP 

so W ,  is invariant under T. Similarly, if w, E W, = Np, then 

PT(g)w, = T(g)Pw, = 8 

so Np is invariant under T(g). Q.E.D. 

This theorem establishes a 1-1 relationship between decompositions of 
V into a direct sum of two invariant subspaces and projection operators on 
V which commute with the operators T(g). We now determine which opera- 
tors correspond to subspaces which transform irreducibly under T. Let 
P(T) be the set of all projection operators on V which commute with T(g) 
for all g E G and let ZP(T) be the set of all P E P(T) which cannot be written 
in the form 

(7.9) 
P = P, + P,, Pi E P(T), PIP, = P,P, = Z, P I ,  P, # Z, 

where Z is the zero operator on V. 

Theorem 3.12. Let W be a proper invariant subspace of V and P E P(T) 
a projection operator on W. Then W is irred under T if and only if P E ZP(T). 

Proof. Suppose W is reducible under T. Then W contains proper invariant 
subspaces W ,  and W ,  such that W = W ,  0 W ,  . Also, the invzriant subspace 
W' = Np satisfies 

v =  wg W ' =  w, @ W,@ W'. 

Defining the projection operators P I ,  P, E P(T) by 

P,v = w , ,  P,v = w,, 

where v = w, + w, $- w', with wi E Wi, w' E W ' ,  we obtain P = 

P, + P,. Furthermore, P,P, = P,P, = Z, since W ,  n W ,  = {O}. 
Conversely, suppose P = P, + P,, with P,, P, E P(T),  PIP, = P,P, 

= Z, and P, P I ,  P, # Z. Then 
PZ = (PI + P,), = P,, + PIP, + P,P, + P,, = P, + P, = P 
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S O P  t P(T). Set W = R e ,  W ,  = R p , ,  W ,  = R p , .  Foranyw E W. 

with w, = P,w E W , .  If w t W ,  n W ,  then w = P,P,w = 8 since P,P, 
= Z. Thus W = W ,  @ W,,  where W ,  W , ,  W ,  are nonzero invariant sub- 
spaces of V. Q.E.D. 

w = Pw = P , w  + P,w = w ,  + w* 

We now return to the decomposition (7. I )  of Vinto irred subspaces under 
the action of the operators T(g). Let T Y g ) ,  1 < ,u I a, be a complete set 
of nonequivalent unitary matrix reps of G corresponding to the operator 
reps T(p). We can find an ON basis (v!;), I ~j n,,] for each irred subspace 
Vjp) such that 

(7.10) 
“ P  

k -  I 
T(g)v$) = C Tg)(g)v!i’ ,  I j 5 n,.  

Corresponding to each simple character x(,) of G we define the linear 
operator P, on V by 

(7.1 1) 

Since 17g = 17(gh)ir I ,  for g, 11 E G, i.e., the elements g17 and hg lie in the same 
conjugacy class of G, it follows easily that P, commutes with the operators 
T(h). Now 

where we have used (7.10), (7.1 I ) ,  and the orthogonality relations for matrix 
elements. It follows from this result and Theorems 3.10 and 3.1 I ,  that 
P, E P(T) is the self-adjoint projection operator on the invariant subspace 

(7.13) V ( P )  ~ 5 @ Vjfi). 
I : ,  

In general the spaces Vjp) occurring in the decomposition (7.1) are not uni- 
quely determined. However, since the definition of the projection operators 
P, is basis-independent, the spaces V(0) are uniquely determined. The ambi- 
guity occurs in the decomposition of each V(p)  into irreducible subspaces. 
If a,  > 1 there is no unique way to perform the decomposition (7.13). 

To carry out this nonunique decomposition we define operators 

(7.14) 

Since 

Ik - n, c Q(g)T(g), I, k = I , .  . . , n , .  
p, - n(G) 8 E G  
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it follows that PLk is the self-adjoint projection operator on the a,-dimensional 
space Wj/) spanned by the ON basis vectors {vjf), i = I ,  . . . , a,]. Further- 
more, the relations 
(7.16) p:”py = S,,!Gk,,P:k’, (PLk)>* = Pt!, 

(7.17) 

follow easily from (7.15). 
If v E V such that for some 1, k,  p we have PFv = w, # 8, then the 

n, vectors wj = PFv = Pcw,, 1 I j < n,, are all nonzero and span an 
invariant subspace of V which transforms irreducibly according to the rep 
T(P). Indeed, if 

then 

and 

Furthermore, if v, v’ E V are such that the vectors w, = Pzv and w,’ = PFv’ 
are orthogonal for some fixed I ,  k ,  p then 
(7.18) (Pjkv, P;kv’) = (PjlPp, P;P:”v‘) 

= (P:’Wl, P%WI‘) = 6ij(w,, w,’) = 0 

so w j  1 wi‘ for 1 < i, j 
From the above considerations we can decompose V into irred subspaces 

as follows: For each p = 1, . . , CL apply the projection operator PL‘ to V 
and let W ‘ f )  be the range of this operator. Choose an ON basis {w)?), 1 
I < a,} for the a,-dimensional space W‘f) .  Then the vectors {wjy), 1 j 
5 n,}, where wlp) = PLIwjf), form an ON basis for an invariant subspace 
Vjr) of I/ such that the restriction of T to V { p )  is equivalent to T(p). In fact, 

n,. 

T(g)wjp) = C T,&(g)wjf, 1 5 j < n,. 
k 

Furthermore, 

(7.19) 

and the Vjp)  are mutually orthogonal. The totality of ON vectors {w$)] form 
a basis for Vsince the number of elements in this set is equal to the dimension 
of V. Since this decomposition depends on the choice of basis vectors 
{wk)} for W p )  and matrix reps T(”)(g), it is not unique. 

I/ = 2 9 @ Vj,) 
,=1 I I 
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An interesting special case occurs when T is the left regular rep L of G 
on the group ring R,. We can use the convolution structure on RG to derive 
additional information about the projection operators and irred subspaces. 
Recall that the action of L on R, is given by 

L(g)x = gx, x E R, ,  g E G. 

We can consider L as a unitary rep on R,  with inner product defined by 
(3.13). The multiplicity of the irred rep T(c) in L is n,. All of our results 
concerning projection operators can immediately be specialized to R,. For 
example the projection operators P,, (7. I I ) ,  become 

(7.20) 

where 

However, we can analyze such operators in another manner. 
Let W be an invariant subspace of R,  and let P be a projection operator 

determined by the decomposition R,  = W @  W‘ with W‘ also invariant 
under L, i.e., W = R , ,  W’ = N , .  Then P commutes with L(g) and 

g(Px) = P(gx), x E R,, g E G. 
Let e‘ = Pe, where e is the identity element of R,. Then for any x = C x(g).g 
we have 
(7.21) Px = C x(g)-Pg = C x(g).gPe = C x(g)-ge’ = xe’. 

Furthermore, P2x = P(xe’) = x(e’)z = Px = xe’ and setting x e we 
obtain 
(7.22) (e’), = e’ 

so e’ is an idempotent. (An element y of R, is called an idempotent if y z  = 

y y  = y.)  Note that W = (xe’: x E R,). Conversely, if e‘ E R,  satisfies 
(7.22) it  is easy to verify that P defined by 

Px = xe‘, x E R,  

is a projection operator which commutes with left multiplication by elements 
of G. It follows that there is a 1-1 correspondence between idempotents 
e‘ and projections P commuting with L. The idempotent e is associated with 
the operator E. If the idempotents e l ,  e ,  are associated with projection 
operators P,  and P, - E - P, , respectively, then the relation E = P I  + P, 
implies e = e l  + e , .  Furthermore, the relation PIP,  = Z implies eze l  = 0 
since 

0 = P,P,e = (P,e)e, = eezel = e z e l .  
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Proceeding in this manner we see that properties of projection operators 
P on R, which commute with left multiplication can be translated into 
properties of the corresponding generating idempotents e'. For example, 
Theorem 3.12 yields the following theorem. 

Theorem 3.13. Let W be a subspace of RG invariant under L and let P be 
a projection operator on R, such that W = R p ,  and Px = xe', all x E R,. 
Then Wis irred if and only if there do not exist elements e l ,  e2 of RG such that 

(7.23) 
e' = e ,  + e , ,  e l 2  = e l  # 0, eZ2 = e,  # 0, e1e2 = e,e, = 0. 

An idempotent e' is called primitive if there exists no decomposition 
of the form (7.23). Thus, if e' is primitive then the set 

W = {xe': x E Re) 

is an irred subspace of R, under L. Conversely, if W is irred then every 
idempotent that generates W is primitive. 

We shall now give another criterion for a primitive idempotent which 
is frequently simpler to verify than (7.23). If e' is an idempotent and Px = 

xe' is the corresponding projection operator then we can write R, = W ,  @ 
W,,  where the invariant subspaces W, and W ,  can be characterized by 

W ,  = Rp = {xe': x E R G ] ,  W ,  = NP = {x(e - el): x E R,] .  

Furthermore xe' = x for all x E W ,  , and ye' = 0 for all y E W,. 

Theorem 3.14. If e' is a primitive idempotent then e'xe' = Axe', 1, E 6, 
for each x E R,. Conversely, if e' is idempotent and e'xe' = Axe' for each 
x E R, then e' is primitive. 

Proof. Suppose e' is a primitive idempotent. Then for any x E R, the 
operator A defined by 

Ay = ye'xe', y E R, 

commutes with the L(g). Furthermore, Ay E W ,  for y E W ,  and Ay = 0 
for y E W,. Thus A , ,  the restriction of A to W ,  , commutes with the L(g) 
and maps the irred space W ,  into itself. Theorem 3.5 implies A,  = AXE,, 
for some 1, E Q. Thus A = 1,P or e'xe' 

Conversely, suppose e' is idempotent and e'xe' = Axe' for' each x E Re. 
Let e' = e ,  + e l ,  with e l 2  = e l ,  eZ2 = el ,  e,ez = e2e1 = 0. Then e'e,e' = 

(el  + e,)e,(e, + e l )  = e l ,  so e ,  = 1e'. Since e ,  and e' are idempotent it 
follows that A2 = 1 or 1 = 0, 1. Thus, there exists no decomposition of 
e' for which e l ,  e ,  are both nonzero and e' is primitive. 

Axe'. 

Q.E.D. 
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Theorem 3.14 will prove very useful in Chapter 4 when we discuss the rep 
theory of the symmetric groups. 

Suppose W ,  and W ,  are invariant subspaces of R,  which define equivalent 
reps of G. Then there exists an invertible transformation S from W ,  onto 
W ,  such that gSw = Sgw for all g E G, w E W , .  Furthermore xSw = 

S(xw) for all x E R, .  Let e l ,  e ,  be generating idempotents for W ,  and W,,  
respectively, and set c = Se, E W , .  Then for any w E W ,  we have Sw = 

Swe, = wSe, = wc. Therefore, any equivalence mapping S from W ,  to W ,  
is given in terms of right multiplication by a ring element c. Since c E W ,  
we have c = ce , .  Furthermore c = Se, 2 S e , e ,  = e l s e ,  = e , c ,  so c = 

e l c e z .  Thus we can assume that the equivalence is given by a nonzero ele- 
ment of the form e ,xe , ,  x t R,. If W ,  and W ,  are irred we can say more. 

Theorem 3.15. Two irred subspaces W , ,  W ,  with primitive idempotents 
el, e2 define equivalent reps if and only if there exist nonzero elements 
e l x e 2 ,  x E R,. Each such element defines an equivalence mapping S from 
w, to w,. 
Proof. If W ,  and W ,  define equivalent reps, then by the argument in the 
preceding paragraph, e lcez  f 0, where c = Se,  . Conversely, if e ,xe ,  f 0 
then S w  = welxe2 ,  w E W , ,  is a nonzero mapping from W ,  into W ,  which 
commutes with the operators L(g). By Theorem 3.4 and the hypothesis of 
irreducibility, W ,  and W ,  define equivalent reps. Q.E.D. 

The subspaces W of R, which are invariant under the left regular rep are 
called left ideals. 

Definition. 
x E R,, w E W .  

A left ideal W is a subspace of R, such that xw t W for all 

If c E R, the set 
(7.24) R,c = { X C :  x E Re) 

is clearly a left ideal. Moreover, we have shown that every left ideal can be 
obtained in this form. A left ideal W is said to be minimal if it contains no 
proper left ideal, i.e., if W is irred under the left regular rep. There is a 
similar definition of right ideals, which are just the subspaces of R, invariant 
under the right regular rep. 

A two-sided ideal is a subspace of R, which is invariant under both the 
left and the right regular reps. 

Definition. 
all x ,  y t R,, u E U. 

A two-sided ideal U is a subspace of R, such that xuy E U for 
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Let n be the multiplicity of the irred rep T in L. Then there exist n linearly 
n, each transforming under T independent irred subspaces W,, 1 < j  

so that the space 
U = W , @ . . . @ W ,  

contains all irred subspaces W of R, such that LI W is equivalent to T. 
We have shown above that U is independent of the choice of the W, . We will 
now show that U is a two-sided ideal. Let u E U .  Then 

u = u , +  . . .  f u n ,  u, E w,. 
If y E R, it follows from Theorem 3.15 that u,y  is either zero or an element 
of a left ideal equivalent to W,. In either case, uiy E U for 1 < i 5 n. Thus 
uy E U for all u E U, y E R,. This proves that U is a right ideal. On the 
other hand, U is a left ideal since each of the Wi is a left ideal. 

Finally, we will show that U is a minimal two-sided ideal. That is, U 
contains no proper two-sided ideal U' .  For, if U' g U and U' # 10) then 
U' contains a minimal left ideal W. By Theorem 3.1 5 there exist ring elements 
c,, . . . , c, such that W, = We,, 1 5 i 
U ' .  Therefore, U = U ' .  

T(fl). [Note that U,  = V(,) ,  (7.13), in the case V = R, . ]  Then 

n. Since U' is a right ideal, W, 

Let U ,  be the minimal two-sided ideal corresponding to the irred rep 

(7.25) R G = U 1 @ ' - . @ U P L  

and U,U, = (0) for p # Y. Indeed, the first expression follows from (7.13) 
and (7.19). To prove the second formula note that U,U, G U ,  n U ,  = (0) 
since U p  and U, are disjoint two-sided ideals. A proof of the relation U,U, = 

U,, is left to the reader. 

3.8 Applications 

We now study several applications of the rep theory of finite groups to 
problems in theoretical physics. These examples have been selected so that 
they can be understood without an extensive knowledge of physics. Some of 
the most important applications which require a knowledge of the rep theory 
of certain Lie groups, particularly of the group S0(3 ) ,  will be discussed in 
later chapters. 

Our first application concerns the use of symmetry groups to determine 
the structure of tensors occurring in physical theories. We start by defining a 
tensor. 

Let V be an rn-dimensional vector space, real or complex, and consider 
the n-fold tensor product 

(8.1) P f l  = V @  V @  . . . @ V (n-times). 
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If { v J ,  1 < j  m]  is a basis for V then the mn vectors {v,, @ . . @ vJn, 
1 < j , ,  . . . , j ,  I m) form a basis for VEn. The elements of Van  are called 
(contravariant) tensors of rank n. Every tensor a can be written uniquely in 
the form 

(8 .2)  a = c a,, h V J ,  0 . . . 0 V J ,  
I ,  I n  

In  terms of a new basis (v,') for V related to {v,) by 
m 

I =  I 
" J  zz c gklVk', j < m, (8.3) 

we find 

where the tensor components a and a' are related by 

The matrices g = (gkj) are nonsingular and  any nonsingular matrix defines 
a change of basis. One should carefully distinguish between the tensor a 
and the tensor components a j , .  . I ,r .  The components of a fixed tensor depend 
on the basis chosen in P". 

Let G be a group of linear transformations g on V. (We d o  not require that 
G be finite.) Then, as discussed in Section 3.5, we can define a rep Ts" of G 
on YE" by 

(8.6) T""(g)w, 0 ~2 @ . . . W, = gw, @ gw, @ * .  . 0 gw,, g c G, 
for all w ,  , . . . , w, E V. As usual, we choose a basis {vj} for V and define the 
matrix (gkj) corresponding to each g E G by 

m 

gvj = c gkjvk, 1 j <  m. 

Then the tensor a, Eq. (8.2) is transformed into the tensor T"(g)a, where 
k = l  

(8.7) 

T@"(g)a a;, . k m V k ,  @ ' . ' (8 v k n ,  
I kn 

(8.8) 

(8.9) 

Expressions (8.5) and (8.9) are identical, but their interpretations are different. 
In the first case (passive) the tensor is fixed and  the basis is changed. In the 
second case (active) the basis remains fixed while the tensor a is mapped into 
a new tensor by the operator T'""(g). For the present we consider only the 
active case and fix the basis (vj). Then every tensor a is uniquely determined 
by its components aj,., ,j, ,  with respect to the basis and we can consider the rep 
Tw" to be defined by (8.9). Another useful rep of G is obtained by forming the 
tensor product Q @ T4", where Q is the one-dimensional rep Q ( g )  = det g. 

. k n  = c lngkiil . ' ' gk"],; 
j t  j,, 
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(Recall that the value of the determinant is independent of basis in V.)  The 
basis space for this rep is V@" again and g E G acts on the tensor a with 
components aj ,  ... j ,  to transform it into a tensor with components 
(8.10) u i t . , , k n  = detk)  j ,  . . . j  @ j , , - j s g k t j l  * * g k , , j m *  

Frequently the above reps occur in physical theories where V is a real 
three-dimensional inner product space and G = 0 ( 3 ) ,  the group of all 
length-preserving linear transformations on V.  Then with respect to an ON 
basis v , ,  vt, vg for V,  the matrix 0 of each 0 E O(3) is orthogonal: 0' = 

0 - l .  The tensors a E V @  which transform according to the rep T@", 

(8.1 1) 

are called polar tensors of rank n. Those which transform according to 

are called axial tensors of rank n. Note that det 0 = 

We give some familiar examples of polar and axial tensors. The action 
of O(3) as a transformation group on R,, considered in Chapter 2, defines a 
rep of O(3) in which each v E R, transforms as a polar vector (polar tensor of 
rank 1). The well-known vector product or cross product u x v of two polar 
vectors transforms as an axial vector. In particular, under the inversion 
operator I E O(3), u +  -u, v -  -v, and u x v - (-u) x (-v) = u  x 
v. The scalar product of two polar vectors transforms as a scalar (polar tensor 
of rank zero), while the scalar product of a polar vector and an axial vector 
transforms as a pseudoscalar (axial tensor of rank zero). 

Let S be some physical system (molecule, crystal, garbage truck, etc.) 
in three-dimensional space R, .  We choose an arbitrary point, say 8, as the 
origin in R, and construct an orthogonal coordinate system at 8 with ON 
basis vectors v ,  , v, , v, pointing along the coordinate axes. We position 
ourselves at the point 8 and measure various physical properties of the 
system S.  These measurements are performed very rapidly; so fast that they 
all take place in a single instant of time t o .  (We will be concerned with deter- 
mining the properties of the system at a given instant of time and not with 
the time evolution of the system.) Once we have measured some physical 
property p of S with respect to the ON basis {v i }  we can perform an orthogo- 
nal transformation 0 on R, and then measure the same physical property of 
the system 0s with respect to {vi}. Hopefully, there will be some functional 
relationship Op = f ( O ,  p)  between the new measurement O p  and the old one 
x. Indeed, the measurable quantities p frequently transform as components of 
an axial or polar tensor. We mention some examples, at least a few of which 
should be familiar to the reader. The temperature at 8 is a scalar, while the 

1. 
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rotary power of an optically active crystal is a pseudoscalar. The electric 
field and the current density are polar vectors, while the magnetic field is an 
axial vector. The resistivity and moment of inertia tensors are polar tensors 
of rank two, as are the stress and strain tensors. The optical gyration tensor 
is axial of rank two. 

Let G be the point symmetry group of the physical system S. (This means 
that S and gS are physically indistinguishable for all g in the point group 
G.) if a E V@" is any tensor describing a physical property of S it necessarily 
follows that T@"(g)a = a. In terms of tensor components this relation becomes 
(8.13) ak, . . .  k , =  a , , . . j , , g k , j , ' " g k " j , ,  k i = 1 , 2 , 3 ,  

j , -  -h 

valid for all g E G, where gkj are the matrix elements of g with respect 
to the vi basis of R,. [Equation (8.13) is valid for polar tensors of rank n .  
The results are modified in an obvious manner if a is an axial tensor.] This 
relation places a restriction on the tensor components of a. If G 2 {el and the 
tensor components are subject to no symmetry requirements then the nth- 
rank tensors have 3" independent components. However, if G is a nontrivial 
symmetry group then by (8.13) the 3" components are not all independent. 
We can use the symmetry group to determine the maximal number of linearly 
independent components of an nth-rank tensor, hence the number of para- 
meters needed to uniquely determine a physical property of S associated with 
the tensor. 

As a n  example of the restrictions provided by the symmetries of S ,  sup- 
pose G contains the inversion I .  Then (8.13) with g = I yields 

which shows that all polar tensors of odd rank are identically zero. Thus if 
some physical property of S is described by a polar tensor of odd rank, i t  
follows from symmetry conditions alone that this tensor is identically zero. 
Similarly, if I E G then all axial tensors of even rank are zero. 

The most common method used for computing the possible tensors in- 
variant under G is the brute force method. One chooses a set g , ,  . . . , g, 
whose elements generate G and then substitutes each of these elements into 
(8.13) to obtain a system of identities relating the tensor components of a. 
These identities must then be solved to determine the number of linearly 
independent components of a and the dependence of all components on a 
suitably chosen set of independent ones. I f  the components of a satisfy Eq. 
(8.13) for the generators of G then the components will automatically satisfy 
these equations for any g c G. 

We can develop more sophisticated methods to solve this problem by not- 
ing that the solutions a t I"," of the equation 

TBn(g)a == a, all g E G, 

k .  - -  ( - l ) n a k b  k ,  
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form a subspace I/(') which is invariant under T@". Let dim V ' )  = q and let 
a,, . . . , aq be a basis for Vl). Then each of the a,. generates a one-dimensional 
invariant subspace Wi of V ( ] )  such that the action of To" on Wi is equivalent 
to the irred identity rep T(I): 

V ( l )  = w ,  @ * .  . @ w,. 
Thus, q is the multiplicity of the identity rep of G in Ton and the number of 
linearly independent tensor components for solutions a of (8.13). To find Y c l )  
we can make use of the projection operator P I  of Section 3.7: 

(8.14) 

Then 
(8.15) V ( ' )  = {P,b: b E V B n }  

or V ( ' )  is the space of all solutions a of the equation 
(8.16) P,a = a. 

We can use the orthogonality relations for characters to obtain a simple 
expression for q. Let x be the character of the natural three-dimensional rep 
T of G as a transformation group on R,, 

xk) = tr g, g E G. 

It follows from (1.13), Section 2.1, that 
(8.17) 
for g = CJp) E G and 
(8.18) 

for g = Sk(p) E G, so the character x is immediately determined from a 
description of the action of each g. Since Ton is the tensor product of n copies 
of T, the character x" of this rep is 

,y(g) = 1 + 2 cos p 

x(g) = - 1 + 2 cos $9 

(8.19) X " W  = [x(g)l"* 

[This result is correct for polar tensors of rank n. For axial tensors of rank n 
the character is 

(8.20) x'"(g) = E,X"(g) 

where E ,  = 1 if g E G n SO(3) and E ,  = -1 if g is an improper rotation.] 
Then we have 

(8.21) 

The reader may be wondering why we have applied character theory to 
the real rep T@' since we emphasized earlier that this theory applies only to 
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x 3 - 1 1  1 1 

Tensors describing physical phenomena frequently possess internal 
symmetry properties which are independent of their external point symmetry 
properties. For example, the moment of inertia and stress and strain tensors 
are all symmetric polar tensors of rank two, i.e., ujk = ukj for 1 < j ,  k < 3. 
Other physically interesting tensors of rank two are skew-symmetric, ujk = 
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-akj  for 1 5 j ,  k 5 3. Here'we consider only polar tensors of rank two. The 
procedure needed to extend our results t o  tensors of higher order should be 
clear after an examination of this simple case. 

It follows easily from the transformation law (8.1 I )  that every symmetric 
tensor a E V B 2  is mapped into a symmetric tensor TB2(0)a by any 0 E O(3). 
Similarly, a skew-symmetric tensor is mapped into a skew-symmetric tensor. 
If the tensor 

is both symmetric and skew symmetric then 

uIk -akl = ukl = 0 

so a = 9. Given any a E Vsz we can construct a symmetric tensor as with 
components 

and a skew-symmetric tensor a" with components 

- 1 
Ik ~ Z('ik + uk,) 

';'k == $('lk - ' k , ) ,  

so a = as + a". This shows that 
V@Z= w s g  W A  

where W s  and W A  are the invariant subspaces of all symmetric and skew- 
symmetric tensors, respectively. Here dim W s  = 6,  dim W A  = 3. (Prove it!) 
The character x2 of the rep TB2 acting on Vo2 can be written 
(8.27) x2(d  = x" (d  + x " ( d 9  

where xS is the character of To'] Ws and x A  is the character of P21 WA.  
The symmetric tensors which are fixed under G form a subspace Vc,l) of 
Ws, while the skew-symmetric tensors fixed by G form a subspace Val) of 
WA. If qs = dim V p ) ,  q A  = dim Val), then qs + qa = 4 and 

4s = (x", x'"), q A  = ( x " ,  x'"). 
We will compute the character ,ys directly. It is easy to show that the set of 
six symmetric tensors 

is a basis for Ws. Then 
{vl 0 v k  + v k  @ vl, 1 < j k < 3) 

p2((s)(v1 8 ' k  1- ' k  @ '1) f ( T ! , ( g ) T h k ( g )  t T l k ( g ) T h , ( g ) )  

('1 @ v h  + vh  @ ' 1 ) '  

Taking the trace of this transformation, we find 
(8*28) x"((s) = 4 ( T 1 l ( g ) T k k ( g )  1 T , k ( g ) T k , ( g ) )  t(x'fg) x(g21). 
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Furthermore, 
(8.29) 

We apply these results to compute the dimension qs of the space V y l  
of symmetric polar tensors of rank two which are invariant under C4n. 
From (8.26) and (6.16) we find 

x"k> = x'k> - x"k) = i(x"g> - x(g")>. 

E e42 2e, 2e,  2e,. 
I 

(8.30) 9 1  1 1  1 
6 2  0 2 2 

X A  I 3 - 1  1 -1  -1 
Thus, 

qs = (x", x'") = 2, qa = 0. 
Since qs = q = 2 it follows that all second-rank polar tensors fixed under 
C,, are symmetric. A skew-symmetric tensor of this type describing a 
physical property of a system with C,, symmetry is zero. One physical conse- 
quence of this computation is that all solids with C,, symmetry have moment 
of inertia tensors which are determined by two parameters. The homogeneous 
four-pyramid is such a solid. ( i n  this special case we found q = qs. However, 
this equality is the exception rather than the rule.) 

Our next application of group rep theory pertains to perturbation theory 
in quantum mechanics. So as not to interrupt the continuity of our presenta- 
tion we assume that the reader understands a few basic facts about Hilbert 
space, Lebesgue integration, and the Hamiltonian operator in quantum 
mechanics. The relevant definitions are presented in the appendix. We 
concentrate on algebraic and group-theoretic questions and ignore certain 
analytic difficulties pertaining to unbounded operators in Hilbert space. 

Consider a nonrelativistic quantum mechanical system consisting of k 
particles with masses m ,  , . . . , ink,  respectively. We suppose that the interac- 
tion between the particles is described by a real-valued potential function 
V ( x , ,  . . . , x k ) ,  where x j  t R ,  refers to the coordinates of thejth particle. 
The possible (pure) states of this sytem are elements of the Hilbert space 
X consisting of all complex valued functions 

w, > . . . I X k > ,  

such that 

The inner product (-, -) on X is defined by 

(8.31) ( Y , @ )  = J Y ( x , ,  . . . ,X,)@(X,, . . . , X k ) d 3 X ,  . . . d J X k .  
( R 3 V  
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The Hamiltonian operator H of this system is defined by 
h2 HY(x,, . . . , xk) = - C - A J Y ( x ! , .  . . 9 x k )  

J 12mj (8.32) 

+ V(X,, . . . , XkW(X, 3 . . . X k )  

where 

and h = 2nh is Planck's constant. In the remainder of this book we choose 
units such that h = 1 .  

Note. The Hamiltonian operator is not defined for all Y E X. Expression 
(8.32) defines an element of X only if the function HY is square integrable. 
A precise definition of the domain of H is difficult and we refer the interested 
reader to Helwig [l]. For most potential functions V ( x l ,  . . . , xk) which 
occur in quantum mechanics it is possible to define the Hamiltonian in a 
satisfactory manner such that the domain of H is dense in X. Furthermore, 
it can be shown that H is a symmetric operator, i.e., 
(8.33) (Y, Ha) = (HY, @) 

for all 'Y, 0 in the domain of H. Equation (8.33) is easy to obtain formally 
but difficult to prove by a rigorous computation. In some of the following 
arguments we shall also proceed formally, as do almost all textbooks on 
applications of group theory to quantum mechanics. The needed rigor can 
be supplied by Helwig [ I ]  and Kato [l]. 

In analogy with Example 5 of Section 3.1 we define a unitary rep of 
E(3) on X by 
(8.34) 

The relation 
(8.35) (T(g)Y, T(g)@) = V, @), '€', @ E X 
follows from (8.31) and a simple change of variable. Let C be any subgroup 
of E(3) consisting of transformations g such that 

T(g)Y(x,, . . . , x,) = Y(g-'x1, . . . , g-lx,), g = (a, 0) E E(3). 

V ( g x , ,  . . . , gx,) = V(x,, . . . , xk), all xj  E R, .  
Then by an elementary computation similar to that carried out in Examples 
4 and 5 of Section 3.1 we can show 

T(g)HY = HT(g)Y', g E G, 
for all vectors Y in the domain of H. Thus, the operators T(g) define a unitary 
rep of G on X and these operators commute with H. The group G is called a 
symmetry group of the Hamiltonian. 
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The fundamental problem for this quantum mechanical system I S  the 
determination of the eigenvalues and eigenvectors of H, i.e., the solutions 
of the eigenvalue problem 
(8.36) HYLAY, Y E X .  
(We study only the point spectrum of H. Group-theoretic methods also apply 
to the continuous spectrum but such a treatment is beyond the scope of this 
book.) Equation (8.36) is called the (time-independent) Schrodinger equation. 
Since H is symmetric the eigenvalues are real. Indeed, suppose A is an  
eigenvalue of H with eigenvector Y. We can normalize Y so that (Y, Y) = 

I .  Then 
A = (HY, Y) = (Y, HY) = 1 

so 1 is real. Furthermore, if 1, ,u are eigenvalues of H with corresponding 
eigenvectors Y, 0 then 

A(”, (P) 1 (HY, 0) = (Y, H@) = p(Y,  @) 

so (Y, 0) = 0, if 1 # p .  
Let A be an  eigenvalue of H and define the eigenspace W, c X by 

W ,  = (Y c X :  HY = AY}. 

If g E G we have 
(8.37) HT(g)Y ~ T(g)HY = AT(g)Y 

for all Y E W,. Therefore T(g)Y E W, and W, is invariant under the 
unitary rep T of the symmetry group G. Suppose W, is finite-dimensional and 
G is a point group. Then we can decompose W, into a direct sum of subspaces 
which transform irreducibly under G :  

Here, the restriction of T to Wl”) is equivalent to the irred rep T(,) of G 
and a,, is the multiplicity of T(,) i n  T. The reps T(I), . . . , T(”) form a complete 
set of nonequivalent irred unitary reps of G. If F’), . . . , T(”’ are a corre- 
sponding complete set of unitary matrix reps we can find an ON basis 
{wip’, 1 C j  I n,) for each space W:”) such that 

Then the complete set of symmetry-adapted basis vectors {w$)) forms an  ON 
basis for W,. In this way we use the irred reps of G to label the eigenvectors of 
H. 

The complete symmetry group of the Hamiltonian H is the group K of 
all unitary operators U on  X such that 
(8.38) UH = HU. 
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Since the elements of K are unitary operators, K defines a unitary rep of itself. 
Just as in (8.37), we can show that W, is invariant (even irred) under K ,  so 
the reps of Kcan be used to label the elements of W,. However, it may be very 
difficult to determine all elements of K. Thus we usually restrict ourselves 
to consideration of the subgroup G’ consisting of all symmetries of H taking 
the form (8.34). The symmetry group G‘ can be determined by inspection. 
(Later we shall include in G‘ spin transformations and permutations of 
indistinguishable particles when this is appropriate.) 

The eigenspace W, is usually irred under G’. The degeneracy of the eigen- 
value 1, i.e., the dimension of W,,  is then equal to the dimension of some 
irred rep of G’. For certain specially chosen potential functions V ( x ,  , . . . , x,) 
it is possible to find eigenvalues 1 of H for which W, is not irred, but this 
is rare. In such a case the eigenvalue 1 has an accidental degeneracy, i.e., a 
degeneracy which does not follow from the symmetry of the Hamiltonian. 
(See the discussion of the hydrogen atom, Section 9.7.) Accidental degeneracy 
can be removed by a slight alteration of the potential function which does not 
change the symmetry group of the Hamiltonian. 

If a point symmetry group G is a proper subgroup of G’ then W, need not 
transform irreducibly under G and in general W, will break up into a direct 
sum of irred reps of G. In practice, if a physicist finds that W, is not irred 
under the action of G he has strong reason for suspecting the existence of a 
larger symmetry group. Thus, he is likely to search for additional symmetries 
of H. 

The eigenvalue equation 
(8.39) HY =A” 

has been solved exactly for only a few simple Hamiltonians. The 
Hamiltonians H for which (8.39) can be solved usually correspond to physical 
systems which exhibit a high degree of symmetry. The two most important 
examples are the hydrogen atom and the harmonic oscillator, which will be 
discussed in later chapters. For systems with lower symmetry, Eq. (8.39) 
usually cannot be solved explicitly and some sort of approximation has to be 
employed. Group-theoretic methods are of the utmost importance here be- 
cause they yield information about the multiplicities of the eigenvalues even 
in those cases where (8.39) cannot be solved exactly. 

As an example, suppose H admits the point group G as a symmetry group 
and suppose we can find an eigenvector Y of H with eigenvalue 1. Further- 
more, suppose Y is an element of a subspace V ( r )  of X such that the action 
of G on V(lr) is equivalent to the irred rep Ti’). Then the nonzero subspace 

n W, is invariant under G. Since V ( r )  is irred i t  follows that V ( r )  = 

V C N )  n W,,  so V r )  G W, and dim W, 2 n, = dim Tip). Thus, the eigenvalue 
1 has multiplicity at least n,. The reader should be able to construct an ON 
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set of n, eigenvectors by a judicious application of the projection operators 
PLk, (7.14), to Y .  

Consider a physical system with Hamiltonian 
(8.40) H = H , + H ,  

where 
k 1  
= I 2m, (8.41) H I  = -c - A j  t V , ( X l ,  . . . , x k ) ?  H2 = V ~ ( X I  9 . .  . 7 X k )  

and suppose the eigenvalue equation 
(8.42) H I Y  = 1Y 

can be solved explicitly. We think of the physical system with Hamiltonian 
H as obtained from the system with Hamiltonian H I  by the addition of a 
“small” perturbing potential V,.  If the perturbation is not too large we would 
expect the eigenvalues and eigenfunctions of the Hamiltonian H to be 
“close” to those of H I .  Proceeding formally, let us consider a family of Hamil- 
tonians 

(8.43) H ( t )  = H ,  +- tH, 

where the real parameter f runs from 0 to I .  Then H(0) = H I ,  H(l) = H. 
If the perturbing potential is not too big it is reasonable to suppose that 
the eigenvalues and eigenfunctions of H(t) will be continuous functions of 1. 

To be more precise, let A ,  be any isolated eigenvalue of H I  with finite multi- 
plicity m. Then we suppose there exist m continuous functions A , ( t ) ,  . . . , 1,(t) 
and m eigenvectors Y,r, . . . , Ymr in X which are continuous functions of t 
(in the norm I I - I I) and satisfy 

(8.44) H(t)Y,[ = A,(t)Y,,, 0 < t 5 I ,  1 I 1  I m. 

I t  is assumed that the set {‘€‘?,I is ON for each f and 1,(0) = 1,. It can be 
shown (Kato [ I ] )  that for a wide variety of perturbing potentials V ,  the above 
suppositions are correct and in fact, the A l ( t )  can be expanded in power 
series in t .  Physicists commonly employ a perturbation theory to compute the 
first few terms in the power series and get an approximation for the desired 
eigenvalues A / ( I ) .  One of the most important problems is to determine 
the multiplicities of the eigenvalues ,?,(I) of H, that is, to determine how the 
m-fold degenerate eigenvalue 1, of H I  splits into eigenvalues & ( I )  as the 
perturbing potential V ,  is turned on. Group theory yields exact information 
about this splitting. 

Suppose the point group G is a symmetry group of both Hamiltonians 
H I  and H. Then the operators T(g) will commute with both H I  and H,,  so 
G will be a symmetry of H(t) for all t .  Let W ,  be the eigenspace of H I  corres- 
ponding to eigenvalue 1,. Then the restriction of T to W,  can be decomposed 
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into irred reps, 

TI W ,  f: @ a,OT(,), 
p =  I 

(8.45) 

where upo is the multiplicity of T(p) in TI W,. For each t between 0 and 1 the 
eigenvectors {Y,,} form an ON basis for the direct sum W, of the eigenspaces 
of H(t) corresponding to the eigenvalues 1 , ( t ) ,  . . . , 1,(t).  Thus W, is invari- 
ant under T and we have the decomposition 

TI W, g f: @ a,'T(p). 
p = l  

(8.46) 

The integers a,' must remain fixed as t varies from 0 to I .  To see this we 
compute the character x,(g) of TI W,.  Since the ON basis vectors {Ylr] are 
continuous in t the matrix elements 

<T(g)y,r, yjr> = T>,(g) 

are continuous functions of t for fixed g. Thus the character x,(g) is con- 
tinuous in t ,  as is a,' = (xf, x'")). Since a,' is an integer it must remain 
constant: a; = ago = a,. 

Therefore, the reps T 1 W ,  and TI W ,  are equivalent. This result shows that 
the perturbation V ,  splits the rn-fold degenerate eigenspace W ,  of H I  into 
a, + . . . + a, eigenspaces of H. There are a ,  eigenvalues of H, each with 
multiplicity n, , . . . , and a, eigenvalues of H, each with multiplicity n,. 
At most a ,  + . . . + a, of these eigenvalues are distinct, i.e., some of them 
may be equal. If the original rep TI W ,  is irred then TI W ,  is also irred and the 
rn-fold eigenvalue 1, of H I  is perturbed to an rn-fold eigenvalue 1, of H. 

Now suppose GI  is the largest point symmetry group of H I .  Let 1, 
be an eigenvahe of H I  and suppose the corresponding m-dimensional 
eigenspace transforms according to the irred rep Q of G , .  Furthermore, 
suppose H, does not admit G I  as a symmetry group but only a proper sub- 
group G of G , .  Then G is the maximal point symmetry group of H(t) = 

H ,  + tH,. The restriction of Q to the subgroup G splits into a direct sum of 
irred reps T(,) of G: 

c 

Q I G C @j a,,T(g). 
g = I  

(8.47) 

It follows from the analysis of expression (8.45) that the m-fold eigenvalue 
A 0  of H I  splits into a, eigenvalues of H, each of multiplicity n , ,  . . . , and a, 
eigenvalues of H, each of multiplicity n , .  Unless there is accidental degen- 
eracy, there will be a, + 

As an example, consider the case where H ,  has octahedral symmetry 0 
while the perturbing potential H, has only tetragonal symmetry D,, a sub- 
group of 0. (There are several subgroups of 0 which are isomorphic to 

. + a, distinct eigenvalues. 
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x 

D,, but any two of these subgroups are conjugate, so it makes no difference 
which one we choose.) The character tables of D, and 0 are given in (6.17) 
and (6.22). We denote the irred reps of D, by T(l), . . . , T(,) and those of 0 
by Q"), . . . , Q(s) .  Since 0 has irred reps of dimensions one, two, and three, 
these are the possible multiplicities for eigenvalues of H I .  To determine the 
manner in which each eigenspace of H I  splits into eigenspaces of H we must 
determine the multiplicities a, of T(r) in Q(') 1 D, . These multiplicities can 
easily be computed from the character tables. We have 

Q(I) I D, g T(I), n ,  = I ;  Q(,)I D, z T(,), n, = 1 ;  

3 - I  - 1  - 1  1 

Q") 1 D, g T(') @ T(3), 

Q(4) I D, z T(,) @ T(,), 

n ,  = n3 = 1 ; 

n,  = I ,  
(8.48) 

n,  = 2; 
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to the rotation group SO(3) and the symmetric group S, whose reps will be 
studied later. In Chapter 7 we will return to the study of symmetry in pertur- 
bation theory. 

The routine proofs of the following statements are omitted. Let W, be 
an eigenspace of the Hamiltonian (8.32). Since the potential V is real, the 
complex conjugate function T ( x l , .  . . , x,) E W, for all ~ ( x , ,  . . . , x,) E 

W,.  If V ( p )  is a subspace of W, transforming under the irred rep T(P) of the 
symmetry group G then the complex conjugate space p(fl) E W, transforms 
under the irred rep T ( p ) .  If the simple character ,yfr) is real-valued then 
T(”) is equivalent to T ( p ) .  Hcwever, if ,y(r) # f ( p )  then T(p) and T ( p )  are 
nonequivalent irred reps and the eigenspace W, is not irred. This degeneracy 
is due to the fact that the (nonlinear) complex-conjugation operator com- 
mutes with H, and is not considered accidental. Reps of G with complex 
characters always occur in complex conjugate pairs. (However, a rep with a 
real character need not be real; see Hamermesh [ l ,  p. 1381.) 

Problems 

3.1 Let Tbe an irred matrix rep of the finite group G and let C be a conjugacy class in G. 
Show that cEEc T(g)  is a multiple of the identity matrix. 
3.2 Let G be a finite group with commutator subgroup Gc. (See Problem 1.8.) Show that 
the number of one-dimensional reps of G is equal to the index of Gc in G. 
3.3 Let Tj,Tj’, ( j  = 1,2) be reps of the groups G such that T j z T j ’ .  Show that 
TI @ Tz 
3.4 Let T, T’ be unitary reps of G on the inner product spaces V, V’, respectively. 
If (-, -), {-, -)’ are the inner products on V, V’ show that (u @ u’, v @ v’) = {u, v)<u’, v’)’ 
defines an inner product on V @  V‘ with respect to which T @ T‘ is unitary. 
3.5 Prove: If T is an irred rep and Q a one-dimensional rep of G then T @ Q is irred. 
3.6 Let T i ,  Tz be irred reps of the finite group G with dimensions dl > dz. Show that 
T I  @ Tz contains no irred rep T3 with dj < dl/dZ. 
3.7 Compute the character table of the icosahedral group Y. 
3.8 Prove: The dimensions ni of the irred reps of the finite group G are divisors of n(G). 
(This is a difficult theorem. See Hall [ I ,  Section 16.81.) 

3.9 Determine the dimensions of the following subspaces of second-rank tensors which 
are fixed under Y: (a) polar, (b) symmetric polar, (c) axial, (d) symmetric axial. Repeat for 
the group C Z ~ .  

3.10 Consider a quantum mechanical system with octahedral symmetry 0. Suppose a 
perturbation is applied which reduces the symmetry to (a) T, (b) D 3 ,  (c) Cq. In each case 
determine how the possible energy levels of the original system are split by the perturbation. 
3.11 Let K be a subgroup of H and H a  subgroup of the finite group G. Prove the following 
properties of induced reps: (a) If T is a rep of K then (TH)G TG. (b) If R is a rep of H 
and S a rep of G then R G @  S 
3.12 Let G be a groupof order Nand x ( g )  a character of G. Prove that N-1 sgtG [x(g)p  
is a nonnegative integer for each n = I ,  2, . . . . 

Ti’ @ Tz’. 

(R @ (Sl H))G. 
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3.13 Let T l ( g )  and Tzlg)  be n x n matrix reps of G with real matrix elements. These reps 
are real equivalent if there is a real nonsingular matrix S such that T l ( g ) S  = ST2(g) for all 
g E G. Show that T I  and T2 are complex equivalent if and only if they are real equivalent. 
(Hint: Write S = A + iB, where A and B are real, and show that A + tB is invertible 
for some real number t . )  

3.14 Show that the matrix elements of two real irred reps of a group C which are not 
real equivalent satisfy an orthogonality relation. Show that every real irred rep is real 
equivalent to a rep by real orthogonal matrices. 



Chapter 4 

Represen taiions of the Symmetric Groups 

4.1 Conjugacy Classes in S, 

The symmetric groups occur as symmetry groups of quantum mechanical 
systems which contain n identical particles. Furthermore, the irred reps of 
S, are intimately bound up with the irred reps of certain Lie groups, most 
notably GL(n, 6) and O(n, 6). (See Section 4.3, where we discuss the relation 
between S, and symmetry classes of tensors.) For these reasons a knowledge 
of the rep theory of S, is indispensable for an understanding of the role of 
groups in modern physical theories. 

5, we could use the methods of Section 3.6 
to compute the character tables and rep matrices of S,. For example S ,  is 
isomorphic to the octahedral group 0 and has the character table (6.22). 
(Every g E 0 is uniquely determined by a permutation of the four threefold 
axes.) However, the construction of character tables becomes rapidly more 
difficult as n increases. 

To obtain the irred reps of S,  for all n simultaneously, we develop new 
tools which exploit the structure of these groups. In distinction to the general 
methods of Chapter 3, the methods introduced in this chapter apply to the 
symmetric groups alone. Furthermore, the proofs of the basic facts about the 
rep theory of S,  are somewhat complicated, although the final results are not 
difficult to state. We will not give a complete coverage of the symmetric 
groups, but merely determine the primitive idempotents in the group ring of 
S, ,  compute the simple characters, and study the relation between S, and 

For low values of n, say n 
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symmetry classes of tensors. The principal omissions, which the reader can 
fill in by consulting Boerner [ I ] ,  Hamermesh [ 13, Robinson [I], or Rutherford 
[ I ] ,  are a construction of the matrix elements of irred reps and a detailed 
study of the computational problems involved in construction and decompo- 
sition of reps. The theory developed here is sufficient for all subsequent 
applications of S,  which occur in  this book and for the majority of applica- 
tions to modern physical theories. 

To begin we investigate the structure of S,  in more detail. We will use the 
notation for permutations introduced in Example 5 ,  Section 1. I .  Let 

( 1 . 1 )  

be an element of S, and 
h ( x )  (x,, - -  XJ, x = (XI, . . . , X"), 

1 < p < v / n  
(1.2) 

where the xi are arbitrary variables. I f f  is any function of x we define the 
new function T,f by 
(1.3) 

(1.4) [T,,.fl(x) . f ( x 5 , )  =: {r , [T , f  IW 

T A X )  = f x, = ( X d ,  1, . ' * , Xd"l) .  

This mapping satisfies the homomorphism property since 

for s, t E S,. Indeed s[t ( i )]  = sr(i) and [T , f ] (x , )  [ T , f ] ( y )  = f ( y , )  =f (x , , )  
since yi = x s ( i j  and yrc i l  = x ~ , , ~ , .  Now [T,yh](x) = &h(x),  for every s t S, ,  
where /7 is the function (1.2). That is, an arbitrary permutation of the indices 
of x either leaves h fixed or changes its sign. The restriction of the operators 
T ,  to the one-dimensional vector space generated by / I  yields an irred rep of 
S,  called the alternating rep. We can regard this rep as a homomorphism p 
of S, into the cyclic group of order two containing the elements (*l) .  The 
permutation s is even if p maps s into + 1 and odd if s is mapped into - I .  
The reader can verify that the permutation s = (12) in cycle notation is odd. 
This proves that p is onto for n 2 2 .  Let A ,  be the kernel of p,  i.e., the set of 
even permutations. By Theorem I .3, A ,  is a normal subgroup of index two in 
S,. Thus { A n ,  (12)A,} is a coset decomposition of S,. 

A two-cycle ( i I  i2) t S, is called a transposition. If s is the permutation 
(1.1) then ~(12)s-I = (s(l), s(2)). Thus, any two transpositions in S, are 
conjugate. Since (12) $ A ,  all transpositions are odd. It follows that a prod- 
uct of an odd number of transpositions is odd while a product of an even 
number of transpositions is even. Every permutation s is a product of 
transpositions. Indeed s is a product of cycles and any cycle 

( 1  3)  ( i l i 2  . . . ij) 7 (ili2)(i2i3) + . . (ij-Iij) 
is a product of transpositions. A permutation can be written as a product 
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of transpositions in many ways but the number of factors is always even or 
odd depending on the parity of the permutation. 

The conjugacy classes of S, are easily described. If s, t E S, then 

[ s t s - ’ ] ( s ( j ) )  = s t s - l s ( j )  = s [ t ( j ) ] ,  1 5 j < n, 
so 

Thus sts- ’  is obtained from t by applying s to the numbers in the two rows of 
1 2 . . f  

t = (  
t(1) r (2) . . r(n) 

In terms of cycle notation the results are even more transparent. For example, 
if t = (13642)(57)(8) E S ,  and s is given by (1.1) with n = 8, then 
(1.7) srs- ’  = (s,s,s,s,s,)(s,s,)(s,), s ( j )  = s,. 

Two elements of S,  are conjugate if and only if they have the same cycle 
structure. Furthermore, the elements of a conjugacy class are either all 
even or all odd. 

As an illustration we list the five conjugacy classes of S ,  : 

i4,  
1(12)(34), (1 3)(24), (14)(23)), 

((121, (13), (141, (23), (241, (3411, 

1(123), (1241, (1321, (1341, (1421, (143)~ (234)- (24311 
{(1234), (1243), (1324), (1342), (1423), (1432)}. 

To each set of nonnegative integers (v, , v,, . . . , v,) such that 

(1.8) n = v, + 2v, + . - .  + nv, 
there corresponds a conjugacy class in S,. This class consists of those ele- 
ments with Y, one-cycles, v, two-cycles, . . . , and v, n-cycles. According to 
Section 1.2, the number of elements in the conjugacy class (vi)  is m, = n!/n,, 
where n, is the order of the group 

H’ = { t  E s,: tst-’  = s) 

and s is an element in the conjugacy class (v,). We compute the number of 
possible permutations t .  Any cycle of length i in s remains invariant under 
any one of the i cyclic permutations of its digits. Each of the v, i-cycles can 
be acted on independently in this fashion and the i-cycles can also be per- 
muted among themselves. Thus, there are a total of iyivi!  permutations which 
preserve the cycles of length i in s. Since cycles of different length can be 
considered independently, we find 
(1.9) n, = l Y * v , !  2”2vZ! . . n ~ , ! ,  m, = n ! / n , .  
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The number of conjugacy classes in S,, hence the number of nonequiva- 
lent irred reps is just the number of sets of nonnegative integers (vi) satisfying 
(1.8). The structure of such solutions (v,) is more easily comprehended in 
terms of the nonnegative integers A i ,  

1, = v ,  + v, -t . . . 
1, = v, + v, + . . .  

+ v" 
+ v, 

(1.10) 
A ,  = v 3  + v, -I- ' . .  + 7" 

A" = V". 

Clearly, 
(1.1 1) 
The integers { A , )  satisfying (1.11) are said to form a partition of n. We have 
shown that each conjugacy class (v,) corresponds to a partition of n. Con- 
versely if { A , ,  . . . , 1") form a partition of n then the integers 
(1.12) v, = A,  - A , , , ,  1 i 5 n - 1, v, = A,, 
determine a conjugacy class (v,) in S,. Thus the number of conjugacy classes 
of S, is equal to the number of partitions (1.11)  of n .  

Ordinarily a partition { A , ,  . . . , A,, 0 ,  . . . , 01 of n 1s written { A , ,  . . . , A,), 
i.e., we leave out the A,  that are 0. Also, if several of the 1, are equal we use 
exponents to shorten the notation. Thus, the partitions {22100], I211 lo}, 
{31100] of 5 are usually written in the abbreviated forms 

1, + A ,  + . . . + 1, = n,  1, 2 1, 2 . * * 2 1,2 0. 

(2211, (2131, (3121, 
respectively. The cycle structure of the conjugacy classes corresponding to 
( A i )  can be recovered from ( I  .12). As an example we list the five partitions of 
4, or what is the same thing, the five conjugacy classes of S , :  

{4L (311, (2'1, {212), { I 4 ) .  
In this example as in the rest of this chapter we adopt a dictionary ordering 
of partitions. That is, the partition ( A , ,  . . . , A,} precedes (or is greater than) 
the partition { A , ' ,  . . . , An'} if the first nonzero difference 1, - A, ' ,  i - 

1, . . . , n, is positive. 

4.2 Young Tableaux 

We now proceed to determine the irred reps of S,, by the method of Young 
as simplified by Von Neumann (Boerner [I] ,  Weyl [3]). In this approach one 
computes the primitive idempotents in the group ring. As we have shown in 
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Section 3.7 each such idempotent generates an irred rep of S,, . We will obtain 
the simple characters indirectly via an examination of symmetry classes of 
tensors. 

There is another approach to this theory, due to Frobenius, in which 
the method of induced reps is employed to compute the simple characters 
directly. The primitive idempotents and matrix elements of irred reps are 
then derived from the characters. See Hamermesh [ I ]  and Littlewood [ I ]  
for an exposition of this method. 

Let R, = Rsn be the group ring of S,. Every x E R, can be written 
uniquely in the form x = C x(s).s, where s runs over the n !  elements of S, .  
According to the results of Section 3.7 any primitive idempotent in R, gen- 
erates an irred rep of S, and every irred rep can be so geherated. We already 
know two irred reps: the one-dimensional identity and alternating reps. Each 
of these reps is contained exactly once in the decomposition of the left regular 
rep L of S, on R,.  The corresponding idempotents are easily constructed. 
Consider the element c = @!)-I C s, where the sum extends over S,. Clearly, 
sc = cs = c for all s E S,, . I t  follows that c2 = c, so c is idempotent. Further- 
more, c is primitive idempotent because the invariant subspace it generates 
consists of the elements Ac, A E Q. Since L(s)c = sc = c, the restriction of L 
to {Ac} is equivalent to the identity rep of S,. 

Similarly the element c’ = (a ! ) - *  C 6,s, where 6, = + 1 if s is even and 
6,  = - 1 if s is odd, satisfies sc’ = c’s = 6,c‘ for all s E S,. Thus, (c’), = c’ 
and c’ is idempotent. The reader can check that c’ generates an invariant sub- 
space under L which transforms according to the alternating rep of s,. 

Unfortunately the remaining idempotents are not so easy to find. To 
simplify our discussion slightly we introduce the concept of essential idem- 
potence. An element c is essentially idempotent if there exists a nonzero 
constant A such that c2 = Ac. If c is essentially idempotent then c’ = A-’c 
is idempotent since ( c ’ ) ~  = A-,c2 = A-’c = c’. We shall find it convenient 
to work with essential idempotents c and there is no loss of generality in doing 
so since c can be normalized to an idempotent element. 

There are exactly as many irred reps of S, as there are partitions { A j ]  of 
n, A ,  + A ,  + . . . + A, = n, A l  2 A ,  2 . . . 2 A,,> 0, so it seems reason- 
able that each partition should be related to an irred rep. We shall describe 
this relationship first and then verify its validity. 

Consider the partition (A,] of n with A ,  2 A ,  2 . . - 2 A, > 0, A,+, = 

Ar+2  = . . . = A, = 0. To this partition we associate a frame consisting of n 
squares arranged in r rows. The first row consists of A ,  squares, the second of 
A ,  squares,. . . , and the rth of A, squares. For example the partition 
{3, 2,, 1) = {3, 2 , 2 ,  1,0,0,0,0} of n = 8 is associated with the frame shown 
in Fig. 4.1. A Young tableau is obtained by filling in the n squares of the frame 
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FIGURE 4. I 

with the digits I ,  2, . . . , n taken in any order. Each digit is used exactly once. 
As an example Fig. 4.2 shows two tableaux each of whose frame is that of 
Fig. 4.1. Clearly, there are n! tableaux associated with the frame { A j } .  

a. 

FIGURE 4.2 

Given a tableau T we define two sets of permutations R(T)  and C(T).  
Here R(T)  consists of all p E S, that permute the digits in each row of T 
among themselves without altering the row in which a digit lies. The elements 
pare  called row permutations. The set C(T)  consists of all q t S,  that permute 
the digits in each column of T. The q are called column permutations. It is 
easy to verify that R(T)  and C ( T )  are subgroups of S, .  

p 
FIGURE 4.3 

Corresponding to the tableau T we construct the elements 

in the group ring R, ,  where 6, = + I if q is even and - 1 if q is odd. 

Theorem 4.1. The ring element c = PQ is essentially idempotent and the 
invariant subspace R,c determines an irred rep of S,. Reps determined by 
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different tableaux with the same frame are equivalent, while those determined 
by tableaux with different frames are nonequivalent. 

According to this theorem there is a 1-1 correspondence between irred 
reps of S, and frames {A j ] .  The proof is complicated and relies heavily on the 
methods of Section 3.7. We verify the theorem through a series of lemmas. 

Note that R(T) n C(T) = {e )  since only the identity element is simul- 
taneously a row and a column permutation. If p q  = p'q', where p ,  p' E 

R(T)  and q, q' E C(T),  then q(q')-' = p- lp '  = e,  so q = q', p = p' .  Thus, 
each of the terms p q  in 

is a distinct element of S,, so c # 0. 
If T is a tableau and s E S,, let T' = sT be the tableau obtained by 

applying s to the digits of T. Thus, if T is the tableau pictured in Fig. 4.2(b) 
and s = (257)(34)(16), then we have the situation shown in Fig. 4.4. 

ST = 

FIGURE 4.4 

We say that a digit m is at  position ( i , j )  in T if m lies in the ith row and 
j th  column of T. In Figure 4.3, 4 is in position (1, 2) and 5 is in position 
(232). 

Lemma 4.1. Let r, s E S, and T' = sT. If the digit m at position ( i , j )  in  
T lies at  position ( i ,  , j , )  in rT then the digit s(m) at position ( i , j )  in T' lies at 
position ( i ,  , j , )  in r'T', where r' = srs-I. We say that r' is the permutation 
corresponding to r for T'.  

Proof. If the digit m lies at position ( i ,  j )  in T and ( i ,  , j , )  in rT  then the digit 
k at ( i , ,  j , )  in T satisfies r(k) = m. Therefore, the digit at  position (i ,  , j , )  
ofr'T' = (srs-')sTis srs-l .s(k) = s[r(k)] = s(rn), which is the digit at position 
( i , j )  of T' .  Q.E.D. 

Example. 
4.2(b). Then r' = srs-l = (647). 

Le ts  = (257)(34)(16), r = (135) and let T be the tableau in Fig. 

T =  
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T' = sT = r, r'T' = srT = p. 
Now the digit 3 at  position (3,l)  of T goes to position ( I ,  1) of rT, while the 
digit 4 = 43) at position (3, 1) of T' goes to position (1, 1) of r'T'. Similarly, 
the reader can check the validity of the lemma for all entries of T. 

Corollary 4.1. If T' = sT then R(T') = sR(T)s-' ,  C(T') = sC(T)s-', 
P' = sPs-', Q' = sQs-', C' = SCS-'. 

Proof. By the lemma, if p is a row Permutation of T then p' = sps-' is a 
row permutation of T'.  Similarly, if q E C(T) then q' = sqs-' E C(T'). 
The corollary follows easily from these remarks and the elementary fact that 
6,. = 6,.  Q.E.D. 

Lemma 4.2. An element s of S ,  can be written s = pq,  where p ,  q are row 
and column permutations of the tableau T, if and only if no two digits in the 
same row of T lie in the same column of T' = sT. 

Proof. Suppose s = p q  and m,,  m2 are distinct digits in the ith row of T. 
Then sT : (pqp-')pT = q'pT. According to Lemma 4.1 we can obtain the 
tableau sT from T by performing a row permutation p on T followed by a 
column permutation q' = pqp- l  on the resultant tableau pT. Clearly, m ,  
and m, are still in the ith row of pT, so they must lie in different columns of 
q'PT. 

Note. The tableau pqT may not be obtained by applying a row permutation 
to qT. The element p is a row permutation of T but not necessarily an element 
of R(qT). 

Conversely, suppose no two digits in the same row of T lie in the same 
column of T' .  Then the digits in the first column of T' lie in different rows of 
T. Applying a suitable row permutation to T we can move these digits into the 
first column. Leaving the first column fixed, we can apply the same procedure 
to the second column, and so on. Thus there is a p  E R(T) such that the digits 
in each column of T' are the same as the digits in the corresponding column 
of pT, though not necessarily in the same order. Finally we can apply a col- 
umn permutation q' to pT such that T' = q'pT. Writing q = p- lq 'p  we note 
from Corollary 4.1 that q E C(T) .  Therefore, T' = pqT. 

Example. The permutation s = (257)(34)(16) is not a p q  for the tableau 
of Fig. 4.2(b) since the digits 2, 5 which lie in row two of T also lie in column 
one of sT (Fig. 4.4). 

Q.E.D. 
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Lemma 4.3. If T belongs to the frame {,Ij} and T' belongs to the frame (1;) 
with (A,} > {A,'}, then there exist two digits which lie in the same row of 7' 
and the same column of T'. 

Proof. If such a pair of digits did not exist then the I ,  digits in the first row 
of T would lie in different columns of T'. Thus, A,' 2 A ,  but since {A,] > 
{I , ' }  it follows that 1,' = I , .  By means of a column permutation of T' we 
can transform T' to a tableau T" with the same first row as T. Since this per- 
mutation does not change the distribution of digits among the columns, we 
can repeat our argument on the second row of T" to obtain A,' = I , .  Simi- 
larly I,' = I ,  for a l l j  and { A j ' J  = { A j } ,  which is impossible. Q.E.D. 

Let T and T' be two tableaux associated with S,, not necessarily with the 
same frame. Let P,  Q, c, respectively P' ,  Q', c', be the ring elements defined 
by (2.1) and (2.2). 

Lemma 4.4. If there exist two digits which lie in one row of T and one col- 
umn of T' then c'c = 0. 

Proof. First we remark that 

(2.3) 

(2.4) 

p P  = Pp = P, qQ = Qq = 6,Q 

pcq = pPQq = S,C 
for all p E R(T)  and q E C(T).  The occurrence of the parity 6, follows from 

By hypothesis there exist two digits m, k such that the transposition 
r = (mk) E R(T) n C(T').  Thus, Q'P = Q't. rP = - Q'P, SO Q'P = 0, 
since t 2  = e and 6, = -1. Therefore c'c = P'Q'PQ = 0. 

6 s m  = 6,,6,,. 

Q.E.D. 

We shall now show that property (2.4) characterizes c up to a scalar mul- 
tiple. 

Lemma 4.5. If x E R, such that pxq  = 6,x for all p E R(T) and q E C(T)  
then x = I c  for some I E Cr, 

Proof. Let x = C x(s).s. Then 
x = dqp-lxq-' = 6, c x(s)-p-'sq- ' - ~ 6, c x(psq)*s 

s 

so 

(2.5) 4 s )  = a,X(PJq) 

for every s E S , , p  E R(T),  q t C(T).  Setting s = e we see that x(pq)  = 

6,I, where 1 = x(e). A comparison of this result with (2.2) shows that the 
lemma is true provided we can show x(s) = 0 whenever s is not a pq.  
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If s is not a p q  there exist two digits in the same row of T and the same 
column of sT. The transposition p of these digits belongs to R(T) n C(sT).  
Similarly the transposition q-' = s-'p.r E C ( T )  by Corollary 4.1. Thus 
s = psq and x(s) = x(psq) = -x(s) by (2.5), so x(s) = 0. Q.E.D. 

Lemma 4.6. The ring element c = P Q  corresponding to the tableau T 
is essentially idempotent, and the invariant subspace R,c yields an irred rep 
of S, whose degree divides n! .  

Proof. Since pc2q = pccq = 8,c2 for all p E R(T),  q E C(T),  it follows 
from Lemma 4.5 that c2 = 1c for some 1 E Q. Thus, c is essentially idem- 
potent if 1 # 0. [Since the coefficients c(pq)  of c are f l  it follows that 1 is 
an integer.] 

Consider the linear transformation A on R, defined by Ax = xc, x E R,.  
We will compute the trace of A in the natural basis { s j ]  of elements of S,.  
Writing c = C$, c ( s j ) - s j  = C d , - p q ,  we find 

[As,](sj) = [ s j c ] ( s j )  = c(e) = 1, 1 5 j < n!. 
Therefore the trace of the matrix describing A is n! .  

Next we compute the trace of A with respect to a basis v,, . . . , vn!, 
where v, , . . . , vf form a basis for thef-dimensional space R,c. If x = yc E 

R,c then Ax = xc = ycz = 1yc  = Ax, so Avj = Iv,, 1 5 j sf. Further- 
more vj $ R,c fo r f f  1 < j < n !  and Av, E R,c for all j .  Thus the trace of 
A in the v-basis is if. We conclude that 1 = n ! / f >  0. Since i is an integer, 
f divides n !. 

By Theorem 3.14, to show that I - l c i s  a primitive idempotent, it is enough 
to verify that Z = cxc is a multiple of c for every x E R,. For anyp E R(T) 
and q E C(T)  we have 

pRq = pcxcg  = 8,cxc = 6,1. 

Therefore, by Lemma 4.5, 2 is a multiple of c. Q.E.D. 

Lemma 4.7. Tableaux corresponding to different frames yield nonequiva- 
lent reps of S,, while those corresponding to the same frame yield equivalent 
reps. 

Proof. Suppose T is a tableau with frame { A j }  and T' is a tableau with differ- 
ent frame {Aj ' } .  Without loss of generality we can assume 11,) > {A,'].  By 
Theorem 3.15, to prove that the reps determined by T and T' are nonequiva- 
lent it is enough to show c'xc = 0 for all x E R,.  From Lemmas 4.3 and 4.4 
there follows c'c = 0. Furthermore sT has the same frame as T and essential 
idempotent scs-' for each s E S,. Thus, c'scs-l = 0 or c'sc = 0 for all 
s E S,. Therefore c'xc = C x(s) .  c'sc = 0 for all x E R, . 

If T and T' have the same frame then T' = sT for some s E S,  and 
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c' = scs-'. Thus c'sc = (scs-l)sc = sc2 = Isc # 0 since I c  # 0. By Theo- 
rem 3.15, c and c' generate equivalent reps of S, .  Q.E. D. 

Lemmas 4.1-4.7 constitute a proof of Theorem 4.1. Note that the identity 
rep of S, corresponds to the frame (n} ,  i.e., the frame with one row of n 
squares. The alternating rep corresponds to the frame (I"] ,  i.e., the frame with 
one column of n squares. 

Since there are n !  tableaux with the same frame, Theorem 4.1 enables 
us to construct n !  subspaces in the n!-dimensional space R, which transform 
under a givenf-dimensional irred rep of S,,. The multiplicity of this irred rep 
in R, is onlyf, so these subspaces are not all independent of one another. 
We shall show that it is possible to selectfgenerating idempotents c I  , . . . , cf 
corresponding to the given frame such that R,c , ,  . . . , R,cf are linearly 
independent. Then, according to the general theory of Section 3.7, every 
irred subspace R,c corresponding to this frame is a subspace of 

R,c, @ . ' .  @ R J , .  

As an example, we already know that the one-dimensional identity rep 
has multiplicity one in R,. Therefore, the n !  generating idempotents c j  cor- 
responding to the frame {a} must all generate the same one-dimensiocal sub- 

Let {A,, . . . , An) be a frame with corresponding (essential) generating 
idempotents c , ,  . . . , c,,!. We shall first show that the n !  left ideals R,cj 
span the minimal two sided ideal U which contains all left ideals transforming 
under the irred rep { A j } .  

space of R, .  The reader can easily show that c, = c2 = . . - - C,!. 

Lemma 4.8. 
to the irred rep {,Ij) under L. Then 

Let R,c be an irred subspace of R, transforming according 

R,c G R,c~ + R,c, -1- . * 3 + R,c,!, 

i.e., each x E R,c is a linear combination of elements in the R,cj.  

Proof. Since R,c and Rncl correspond to equivalent reps of S, under L 
it follows from Theorem 3.15 that there exists y E R, such that R,c = R,c,y 
(as vector spaces). Now y = C y(s).s, so the lemma will be proved if we can 
show that for each s, R,c,s = R,cj,  where c j  is one of the generating idem- 
potents. If TI is the tableau with idempotent c,  then s-l TI = T j  is a tableau 
with the same frame corresponding to the idempotent (say) c j .  Thus c j  = 
s-'c,s, so xc,s = xscj G R,cj for all x E R,.  Since both R,c,s and R,cj 
are minimal left ideals it follows that R,c,s = R,c j .  Q.E.D. 

The left ideals R,cj span the two-sided ideal U but they are not linearly 
independent. We can obtain a linearly independent set of left ideals which 
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span U by considering the standard tableaux. A tableau T is called a standard 
tableau if the digits in each row of T increase from left to right and the digits 
in  each column increase from top to bottom. For example, the tableaux in 
Fig. 4.2 and 4.3 are standard, while the tableau in Fig. 4.4 is not. 

We have already defined a dictionary ordering for frames. Similarly we 
can define a dictionary ordering for the standard tableaux belonging to a 
given frame. Given two such tableaux T,  T' we compare their corresponding 
digits, starting at the left end of the first row and going from left to right. If 
the first nonzero difference m - m' is positive for corresponding digits m 
in T and m' in T' we say T > T' .  If all corresponding digits in the first row are 
equal we compare digits in the second row, etc. As an example we list the 
standard tableaux in increasing order of the frame 13, 12]: 

1 2 3  1 2 4  1 2 5  1 3 4  1 3 5  1 4 5  
4 3 3 2 2 2 
5 5 4 5 4 3 

Theorem 4.2. The dimensionfof the irred rep corresponding to the frame 
{ I j )  is equal to the number of standard tableaux T, ,  . . . , Tf belonging to this 
frame. 

A proof of this theorem will be given in Section 4.4. The theorem implies, 
for example, that the dimension of the rep {3, l z )  is six. More important, 
it says that the multiplicity of the rep { A j }  is equal to the numberfof standard 
tableaux belonging to the frame { A j } .  We shall show that the generating idem- 
potents c, , . . . , cf of the standard tableaux generate linearly independent 
left ideals Rnclr  . . . , R,c,. 

Lemma 4.9. If Ti < TI then c,ci = 0. 

Proof. By Lemma 4.4 it is enough to show that there exist two digits in the 
same row of T, and the same column of T, . Consider the first space ( j ,  k )  
(row j ,  column k )  which is occupied by different digits, m in T, and m' in T,.  
Clearly, m' > m since T, > T,.. If k = 1 then the entry at ( j ,  1) is the smallest 
integer not in the first j - 1 rows. Thus the entries m, m' at ( j ,  I )  would be 
the same for the two tableaux, which is impossible. Thus, k > 1. The digit 
m lies at  ( j ,  k )  in Ti. We will determine the position (a,  6)  of m i n  T,.  Since 
m < m' we cannot have a 2 j and b 2 k,  i.e., m cannot lie below and to the 
right of ( j ,  k) .  Also, by definition of ( j ,  k), m cannot lie at a position which 
comes before ( j ,  k )  in the dictionary ordering. Thus the only possibility is 
a < j ,  b < k ;  so m lies below and to the left of ( j ,  k )  (Fig. 4.5). The position 
( j ,  b) comes before ( j ,  k) in the dictionary ordering, so the digit q at this 
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jw 

U 

Ti 
FIGURE 4.5 

b k  

position is the same for both T. and T,. Thus, the digits q, m lie in thejth row 
of T. and the bth column of T,. Q.E.D. 

Theorem 4.3. The left ideals R,c, , . . . , Rncf corresponding to the standard 
tableaux are linearly independent and 

U = R,c, @ * * @ R,c,. 

Proof. By Theorem 4.2 it is enough to show that if 
(2.6) x lc l  4- . . .  $- xfcf 0, xi E R,, 

then each term x,cj = 0. If we multiply on the right by c , ,  then Lemma 
4.9 implies that all terms cjcl are zero unlessj = I .  Thus X , C , ~  = 0 or Ax,c, 
= 0, with 1 # 0. Similarly, multiplication of (2.6) on the right by c2 yields 
x2c2 = 0. Continuing in this way, we can show that xjcj = 0, 1 I j If. 
Q.E.D. 

4.3 Symmetry Classes of Tensors 

An important application of S, rep theory to physics is in the con- 
struction of symmetry classes of tensors. As we shall see, this subject is closely 
related to the rep theory of the general linear groups. A formula for the simple 
characters of S, will arise as a by-product of our analysis. 

Let V be a complex m-dimensional vector space and consider the rep 
defined on V by the group GL(m,&) of all invertible linear operators, 
g :  V -  V. In terms of a basis {vi] for V the rep matrices g = (giJ)  are 
defined by 

m 

gvi = C gi~vj, 1 5 i 5 m. 
, = I  

(3.1) 

(It will prove convenient to adopt this superscript-subscript notation for 
indices.) As g runs over the group of invertible operators on V ,  g runs over 
the group of complex m x rn nonsingular matrices. We will refer to either 
of these isomorphic groups as GL(rn, 6). 

Consider the tensor product rep T of GL(m, 6) on Vou defined by 

(3.2) T(g)[w, @ * * @ w,] == gw, @ * * * 0 gw, 
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for any wj E V (see Section 3.5). In terms of the basis {vJ for V, 

= 5 a j ~ r ' j ~ v j ,  @ . . * @ vj, E V@'", 
j,. . . j,= 1 

m 

jl.. . j a =  1 

(3.3) 

(3.4) 

(3.5) 

T(g)w = C [T(~)u]'~".'~v~, @ . . @ vim, 

gK. [ ~ ( ~ ) ~ ] i l " ' i a  = 5 a j t " ' j a g y ,  . . . . 
j, . . . j , = ,  

We can view this rep either as acting on tensors of rank a [Eq. (3.2)], or on 
the tensor components [Eq. (3.5)]. It will be convenient to shift back and forth 
between these equivalent interpretations. 

The definitions of reducible and irred reps given in Chapter 3 hold for 
the infinite groups GL(m, 0) as well as for finite groups. Also, the Schur 
lemmas are immediately applicable to infinite groups. However, those 
results which explicitly use the finiteness property of a group, such as the 
character theory, cannot be directly applied to GL(m, 6) .  Indeed, Theorem 
3.3, which states that any rep of a finite group can be decomposed into a 
direct sum of irred reps, is not true for GL(m, 0). Fortunately, we can show 
that the tensor product rep T of GL(m, 0) = G, on Pa is decomposable into 
a direct sum of irred reps. The symmetric group S ,  figures strongly in this 
decomposition. 

To clarify the relationship between S ,  and G, = GL(m, E) we define a 
rep of S ,  on Pa. For any s E S , ,  

(3.6) 

let s be the linear operator on Pa defined by 

s w  = Ws.I(,) @ ' . . @ Ws-*(=> 

for w = w,  @ . a @ w, any indecomposable element of Pa. These opera- 
tors are well-defined and yield a rep of s,. If an arbitrary tensor w is given 
by (3.3) then the action of s on the tensor components ajl"'ju of w is 

(3.7) (sa)jt-' ja = a j 2 < o  j,w 

(Verify this.) For example, if a = 4, s = (12)(34), then (sa)2331 = a3213,  
(sa)llll = allll. If s = (123) then = a 3 3 2 1 .  The reader should check 
these examples carefully to make sure he understands Eq. (3.7). 

The symmetric tensors are those w E Pa such that sw = w for all 
s E S, .  Clearly, these tensors form a subspace $, of Vou.  It follows from (3.7) 
that with respect to the fixed basis {vj, @ . . . @ vj,}, the elements of S are 
those tensors w whose components differing only in the order of the indices 
are equal. Thus w E S is uniquely determined by the independent com- 
ponents ajL"'jU with j ,  5 j ,  5 . . e < j,. To compute the dimension of S 
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note that the integers j ,  , j ,  + l , j ,  + 2, . . . , j ,  + a - 1 are a distinct 
numbers chosen from 1, 2 , .  . . , m + a - 1, and every such choice labels 
a component. Therefore dim S = (m + a - l)!/[a!(m - l)!], the number 
of combinations of m + a - 1 objects taken a at a time. 

The tensors v @ v @ . . . @ v, v E V,  obviously lie in S. We shall show 
that every w E S is a linear combination of such tensors. 

Lemma 4.10. The set of all tensors v @) v @) . . @ v spans S. 

Pvoof. If v = C ahj  then v @ . - @ v has tensor components ajiaj2 - . - a’“. 
By symmetry we can restrict ourselves to the components for which 1 < 
j ,  5 j ,  5 . . . < j ,  < m. If the set of all such tensors does not span S then 
there must exist constants Cj , , . , /= ,  not all zero, such that 

for all numbers a’, 1 5 j < m. (Prove it!) In each term uji . . . aja let k ,  be 
the number ofj, equal to one, k ,  the number ofj, equal to two, etc., and write 

ajl . . . ail - - (a l )k l  . . . C j  ,... j ,  = c k , . .  k,. 

Then (3.8) becomes 

It is a well-known result from algebra (Van der Waerden [l]) that this 
homogeneous polynomial of degree a can be identically zero for all a l ,  
. , . , am only if all the coefficients c k  ,... k ,  = 0. Q.E.D. 

Expression (3.2) for the operatorsT(g) makes sense for all linear operators 
g on V, invertible or not. Furthermore, the homomorphism property T(g,g,) 
= T(g,)T(g,) holds even if g, , g, are not invertible. The set G, of all linear 
operators on V is said to  form a semigroup, that is, G, satisfies the group 
axioms except that an element of G, need not have an inverse. Thus, we can 
define a rep of G, on V by means of the operators T(g). 

Note that sT(g)w = T(g)sw for all s E S,, g E G,, w E Pu, i.e., the 
operators s and T(g) always commute. The proof follows from 
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We now determine the largest set A ,  of linear operators on Pa which 
commute with all permutations s. Each such operator a has matrix elements 
defined by 
(3.12) 

The requirement sa = as for all s E S,  implies 
(3.13) 
as the reader can verify. The elements of A ,  are called bisymmetric trans- 
formations. Clearly, the operators T(g) are elements of A , .  It is evident that 
A ,  is a vector space since linear combinations of bisymmetric transformations 
are bisymmetric. Moreover, A ,  is an algebra, i.e., if a, 63 E A ,  then a(R E: 

We now show that the relation between Pa and the symmetric tensors 
provided by Lemma 4.10 is analogous to the relation between the bisymmetric 
transformations and the operators T(g). 

Theorem 4.4. The set of all operators T(g), g E G,, spans A , .  

Proof. Designate the matrix elements of a E A ,  by ct:;::!y= = Ct,,...,= 
where the pair of indices (i,, j,) is considered as a single index p ,  which takes 
m2 values. According to (3.13) we can consider A,  as the subspace of all 
symmetric tensors in WBU, where dim W = m2. The totality of all operators 
T(g) forms a subset of A ,  with matrix elements g:?, . - - g z  = g,, - - . gfla, 
where the m2 values g, range over all complex numbers. By Lemma 4.10 the 
tensors gz, . . . g,, span the subspace of symmetric tensors in W@". Hence, 
they span A , .  Q.E.D. 

q v j ,  @ * * - @ V j n ]  = c q;.::ymvit @ . . . @ vim. 
ij.. .ie 

@it r u  . . .in (01)  ,,<,, . . . I ,  (DIJ  = q;::.ya 

A , .  

We have shown that the algebra of bisymmetric transformations A ,  is 
generated by the operators T(g), g E G,. Similarly, we can consider the 
algebra B, of operators x generated by the permutations s: 

(3.14) 

Clearly, B, is a homomorphic image of the group ring R ,  . The mapping 

is not only a vector space homomorphism, but a ring homomorphism. That 
is, the product transformation x(yw) = (xy)w corresponds to the convolution 
product for x, y 'E R , .  The mapping may not be an isomorphism since a 
nonzero element x in R,  may be mapped into the zero operator on Pa. 

Any operator on Pa which commutes with all permutations s must 
commute with every element of B, .  This proves the following theorem. 

Theorem 4.5. The linear operator C on PU commutes with all elements of 
B, if and only if C E A , .  

xw = c x(s).sw, x(s)  E &, w E V@".  

x = c x(s).s - x 
S t S a  
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Let A be an associative algebra with multiplicative identity e and let 
W be a complex vector space. A representation T of A on W is determined 
by a set of linear operators T(a) on W such that 

(1) T(ya + pb)  = yT(a) + pT(b), 
(2) T(ab) = T(a)T(b); 
(3) T(e) = E. 

a, b E A :  Y, P E 0; 

The notions of reducibility, irreducibility, and equivalence of reps of A are 
analogous to those for group reps. 

The rep of S,  on Pa defined by the operators s induces a rep of the group 
ring R, by the operators in B, .  We know that V B 5  can be decomposed into a 
direct sum of subspaces such that each subspace is irred under S, .  

The reader can verify the following facts: (1) Every rep T of S,  deter- 
mines a rep T of R, . [Set T(x) = C x(s)T(s).] (2) Every rep of R, determines 
a rep of S , .  [Restrict the operators T(x) to x = 1.s.I (3) Equivalent reps 
T, T’ of S, correspond to equivalent reps of R,. [UT(x)U-’ = T’(x) for all 
x = C x(s)-s if and only if UT(s)U-’ = T’(s) for all s E S,  .] 

According to the above remarks, the rep of R, provided by the operators 
in B, can also be decomposed into a direct sum of irred reps. The irred 
subspaces of Pa under R, are just the irred subspaces under S, .  We will 
show that this decomposition of Pa into a direct sum of irred subspaces 
induces a similar decomposition for the rep of the algebra A ,  defined by 
(3.12). 

Let D“’, , , . , D‘”’ be a complete set of nonequivalent irred matrix reps 
of S, .  Then with respect to a suitable basis for Pa the ma x mu matrix 
corresponding to each permutation s is 

(3.15) 

Z 

Z 

D‘#’(s: 

That is, the permutation rep decomposes into a direct sum of irred reps, 

a,D‘” @ U,D‘~’  0 . . . @ aPDlp’. 

The matrices corresponding to A, are just those which commute with the 
matrices (3.15) for all s E S, .  It is instructive to work out a simple example. 
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Suppose the matrices (3.15) take the form 
n ,  n2 n3 

'D"'(s) z Z 

(3.16) 
Z 

with n, = dim D"', n,  = n,  = dim DZJ.  The matrix of a bisymmetric 
transformation a can be written 

@ I 2  'I3 

(3.17) a =  @'22 '23) 

a32 a331 

where a,, is an 1 2 ,  x nk matrix. The condition a E A ,  is just that the 
matrices a and s commute for all s E S,.  Now 

a ,  ,D(l'(s) al,D'2'(s) aI3D'2 ' ( s )  

as = a, ,D( l ' (S)  az,D'2'(s)  a23D'2'(s) 

a3 ,D'I)(s)  a,2D'2'(s) a33D'2)(s)  

D ( ' y s ) a ,  , D'"(s)a,2 D"'(s)a, ,  

s a  = D y s ) a ,  , D'2'(s)a2, D y S ) a , ,  

i 
i D'2'(S)ct3 , D'2'(s)a3, D'2'(S)a3, 

(3.18) 

The requirement as = sQ. leads to a series of relations of the type 

Since D"' and DI2' are nonequivalent irred reps of S,, the Schur lemmas, 
Section 3.3,  imply a, ,  = Z and a , ,  = A,,En,, ,  where A , ,  is any complex 
number and En, is the n ,  x n ,  identity matrix. These considerations lead to 
the result 

a , , D " ) ( s )  = D(1 ' ( s )a I , ,  a , , D ' y s )  = D'1'(s)a12. 

IIIE", z 
(3.19) a = [ Z A,&,, 

z L E " ,  A33E,, 

A simple rearrangement of rows and columns yields the matrix realization 

(3.20) a = 

Z 
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We shall see that (3.20) is an explicit decomposition of the rep of A ,  on Pa 
into irred reps. Note that the multiplicities n , ,  n ,  of the matrix blocks in 
(3.20) are just the dimensions of D"' and LYZJ, while the multiplicities 1, 2 
of D"' and D',' are the dimensions of the matrix blocks in (3.20). 

The general case is now clear. If the permutation rep of S ,  decomposes 
in the form (3.15), 

s - a,D'"(s) @ . ' @ Q,D("(S), 

where a, is the multiplicity of D'J' and n, = dim D(J ' ,  then the elements of 
A ,  are all those of the form 
(3.21) a - n,C"'(a) @ ' * @ n,c'qa) 
where CIk'(a) runs over all a, x a, matrices as a runs over A , .  The matrix 
block CIk'(a) occurs nk times along the diagonal in the matrix expression for 
a analogous to (3.20). Evidently, each of the matrix blocks C"" is itself a 
matrix rep of A , .  Furthermore, this rep is irred. Indeed any a, x ak matrix B 
with the property BC'k'(a) = C'k'(a)B for all a E A ,  must be a multiple of 
En*, since the C'k'(a) run over all ak x a, matrices. 

The irred reps C"', C',' f o r j  # k must be nonequivalent because C")(a)  
and C',)(a) run over all a, x a, and a, x a, matrices completely independent 
of one another. 

Theorem 4.6. The algebra A ,  of bisymmetric transformations acting on 
I/@ can be decomposed into the direct sum (3.21) of irred reps C','. 

According to Theorem 4.4 the irred matrix reps C'k'(Ct) must remain 
irred when a is restricted to elements of the form T(g), g E G,. This is 
because an arbitrary C2. E A ,  can be written in the form a = C P,T(g,), 
g, E G,. If the restriction of C'k' to G, were reducible then the property 
C'k'(a) = C PtC(kl(gz) would imply that C',' was itself reducible. [For 
simplicity we write C'"(g) for C'k'(T(g)).]  

If there were a nonsingular matrix B such that CCki (g )  = BC'''(g)B-' 
for some j # k and all g E G,, then by the argument in the preceding 
paragraph, C'k' and C(j1 would be equivalent reps of A , .  Since this is false, 
the restrictions of the C',' to G, remain nonequivalent. Finally, we can 
restrict the C',] to G, = GL(rn, E), or more precisely to the elements T(g), 
g E G,. The matrix elements of C'"(g) are homogeneous polynomials of 
order a in the g!'. Let B be an a, x a, matrix such that BC'k'(g) = C'k'(g)B 
for all g E G,. This relation leads to a number of identities between the 
matrix elements of C'k'(g) which remain valid for singular matrices g E G,. 
However, the restriction of C',' to G, is irred, so B is a multiple of the identity 
and the C(,)(g) define an irred rep of G,. A similar argument shows that 
C"',  . . . , C(@' yield nonequivalent irred reps of G,. 
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Theorem 4.7. The rep T of GL(m, 6 )  on Pa can be decomposed into a direct 
sum of irred reps 

(3.22) 

analogous to the decomposition 

T 2 n,C"' 9 . . . 5 n,C'fi" 

a , D " '  @ . - .  @ a,D'@' 

of the permutation rep of S ,  on V@la. Here ak = dim C ( k )  and nk = dim D'kl .  

I t  will be shown in Chapter 9 that the decomposition (3.22) is essentially 
unique, i.e., the irred reps C'k' occurring in the decompositon and their 
multiplicities are uniquely determined. This does not follow from the results 
of Chapter 3, since GL(m, 8) is not a finite group. We could prove the unique- 
ness directly a t  this point by making use of the rep theory of complete matrix 
algebras, but the proof will be deferred to  save space. 

A proof of the following theorem will also be deferred to Section 9.1. 
(See Boerner [ I ,  p. 1371 for a direct proof.) 

Theorem 4.8. Let W be a subspace of Y a x  which is invariant under the rep 
T of G,. Then there exists an  invariant subspace W' such that V@" = W c+> 
W'.  

It is clear that A ,  consists of all linear transformations that commute with 
every x c B,. On the other hand, we have the following result. 

Theorem 4.9. 
with each (3 t A , .  

B, consists of all linear transformations on Y g a  that commute 

The major steps in the proof of this theorem are provided by the fol- 
lowing lemmas, which are of independent interest. 

Lemma 4.11. Let D be an irred n x n matrix rep of the finite group H .  
Then the matrices D(/7), /7 E H ,  span the n2-dimensional space of all n x n 
matrices, i.e., every matrix can be expressed as a linear combination of the 
matrices D(/I). 

Proof. 
must exist a relation 

If the matrices D(h) do  not span an n2-dimensional space there 

(3.23) 

among the matrix elements of D(l7) which is satisfied for constants ci j  not all 
zero. However, the orthogonality relations (3.7), Section 3.3, and (3.23) 
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lead to 
0 = n ( H ) - ’  c [C CijDij(h)] Dtm(h-1) = c J n  

h t H  i,j 

so cmI = 0 for m, I = I , .  . . , n. Q.E.D. 

According to this result the matrix rep of the group ring R, determined by 
D has the property that D(x) runs over all n x n matrices as x = C x(h).h 
runs over R,. Indeed, D(x) = C x(h)D(h) and the x(h) range over all 
complex numbers as x runs over R,. 

Let H be a finite group and 

RH = U ,  @ U ,  @ . . *  @ U, 

the decomposition of RH into minimal two-sided ideals as described at the end 
of Section 3.7. The ideal U, corresponds to the irred rep D‘”’ of H.  Indeed, 
under the left regular rep, U, decomposes into a direct sum of n, left ideals, 
each left ideal transforming according to D(”). Let D be a rep of RH on the 
vector space Wand let W, be an irred subspace of W such that D I W ,  D(”). 
(Recall that every irred rep of RH remains irred when restricted to H . )  

Lemma 4.12. If v # p ,  then D(y)w = 8 for all w E W, and all y E U,,. 

Proof. Let W,‘ be the subspace of W, spanned by all vectors of the form 
D(x)w, x E U , ,  w E W,.  Since W, is irred, either W,’ = {O) or W,’ = W , .  
We shall show, W,’ # {O). 

From Section 3.7, P,w = w for all w E W,, where the projection operator 
is 

(3 .24 )  

(3.25) 

If we assume that the matrices D‘.)(h) are unitary, the relation 

R(g)B:‘,‘(h) = b y h g - ’ )  Ik = c Dk)(g )By(h)  
1 

implies that the ring elements 6%) = C fi$)( /z ) - /z  for 1 I <  n, and fixed 
j form a basis for the rep D‘”). Thus each of these ring elements lies in U, 
and it follows that p v  E U , .  Therefore, W,’ = W,. 

If y E U , ,  p # v, and x E U, then yx E U, n U, = {0}, so D(y)D(x)w 
= D(yx)w = 8 for all w E W , .  But then D(y)w‘ = 8 for all w’ E W, since w’ 
can be expressed as a finite linear combination of elements of the form 
D(x)w. Q.E.D. 
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Now we turn to the proof of Theorem 4.9. To clarify the argument we 
consider the example given by expressions (3.17)-(3.20). Suppose the bisym- 
metric transformations have the matrix realization (3.19). To find all opera- 
tors which commute with every element of A ,  i t  is enough to determine those 
matrices B that commute with all matrices (3.19). The result is easily shown 
to be 

n ,  n2 n2 

B"' Z Z n ,  

(3.26) B = [ , Z  fJ;1 ;z) nz 

n2 

where 5"' and BC2' independently range over all n, x n ,  matrices, n,  x n, 
matrices, respectively. Comparing (3.26) with (3.17) and using the lemmas 
we see that each matrix B corresponds to an element of B,. Indeed as x = 

C x(s)-s ranges over R ,  the matrices D"'(x) = C x(s)~'~ ' (s) ,  i = 1, 2, range 
over all ni x ni matrices BL". Moreover, according to Lemma 4.12 the matrices 
B"' and BC2' are independent. That is, given any two matrices B"' and B'2' 
there is an x E R,  with D"'(x) = B"' and D 2 ' ( x )  = B','. Thus the matrix 
B, (3.26), corresponds to an element of B,. The argument for the general case 
proceeds exactly as in our example. Q.E.D. 

We now resume the analysis of the rep T of G, = GL(m, 6)  on P o l .  

Our previous results have shown that T can be decomposed into a direct 
sum of irred reps and that this decomposition is closely related to  the decom- 
position of Yo< into subspaces irred under the permutation rep of S,. How- 
ever, these results are of a theoretical character and do not lend themselves 
to a practical method for decomposing tensor reps of G,. 

Theorem 4.9 provides us with the proper tool to obtain such a practical 
decomposition. Let W ,  be a subspace of YQlu which is invariant under T. 
According to Theorem 4.8 there exists a T-invariant subspace W, of VQlu 
such that YBU = W ,  @ W,. Let P be the projection operator on W ,  defined 
by RP = W ,  , Np = W,. From the results of Section 3.7, T(g)P = PT(g) 
for all g E G,, hence P commutes with all elements of A , .  Theorem 4.9 
yields the important conclusion: P E B, .  

We can immediately apply Theorems 3.10-3.12 to the rep T. Let P(T)  
be the set of all projection operators on Vo" that commute with the operators 
T(g). 

Theorem 4.10. (1) There is a 1-1 relationship between projections P in P(T) 
and decompositions Y O a  = W ,  @ W ,  into T-invariant subspaces, given by 
R p =  W , ,  NP = W,. 
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(2) If P E P(T) then P E B,. Conversely, if Q E B, and Qz = Q f Z 
then Q E P(T).  

(3) Let W, be a T-invariant subspace of Pa and let P E P ( T )  be a pro- 
jection operator on wl .  Then w, is irred if and only if there do not exist 
nonzero operators P I ,  P, E P ( T )  such that P = P, + P; and PIP, = 

P,P, = Z. [Recall that the projection operators P corresponding to irred 
subspaces W ,  are the elements of the set ZP(T).] 

This theorem implies that any T-irred subspace W of Pa is given by 
(3.27) w = {xv: v E V@"] 

where x is a primitive idempotent in the algebra B,. (Usually x is not uniquely 
determined by W.) Conversely, each primitive idempotent x in B, uniquely 
determines a T-irred subspace W by (3.27). 

Next we investigate the relationship between B, and the group ring R , .  
To clarify the discussion we introduce the notation D(x) = x, x t R, ,  
for the elements (3.14) of B,. The D(x) define a rep of R ,  which may not be 
faithful. That is, we may have D(x) = D(y) for x # y.  Let 0, be the set of all 
x E R,  such that D(x) = Z. 

Lemma 4.13. 0, is a two-sided ideal in R,. There exists a two-sided ideal 
a, in R, such that 
(3.28) 
and the map x + D(x) of 

R, = a, 0 0,, 

into B, is 1-1 and onto. 

Proof. If x E 0,, y E R,, then 

D ( ~ x )  = D(y)D(x) = Z, D ( x ~ )  = D(x)D(y) = Z 

since D(x) = Z. Thus yx, xy E 0, and 0, is a two-sided ideal. 

be expressed as a direct sum of minimal two-sided ideals 
According to the results at the end of Section 3.7 the group ring can 

(3.29) R, = U, @ . . '  @ Uk 

where k is the number of conjugacy classes in S ,  and the number of parti- 
tions (frames) { A , ,  . . . , A,} of a. Taking the frames { A j }  in dictionary order, 
we label the two-sided ideals such that Ui consists of those minimal left 
ideals (irred subspaces under L) that correspond to the ith frame. The ideal 
0, can be written as a direct sum of minimal left ideals. It follows from the 
last paragraph of Section 3.7 that if 0, contains a minimal left ideal cor- 
responding to the ith frame then 0, contains all minimal left ideals corre- 
sponding to the ith frame, i.e., U, c 0,. Thus, 
(3.30) 0, = u;, @ uj, @ . . . @ uj, 
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where 
such that {jl, . . . , jk] is a permutation of 11, . . . , kf we see 

1 I j ,  < j ,  < . . . < j ,  5 k .  Choosing integers j,,, < 

R, = (Uj ,  @ . . . @ U j , )  @ (Uj,,, @ . . ' @ Uj,) = 0, @ am 

az = uj!*, @ . . . @ uj, 

where 

(3.31) 

is a two-sided ideal. 
Let x , ,  x2 E @, such that D(x,) = D(x,). Then D(x, - x,) - - 

x, ,- x2 E 0,. Thus, x, - x, E 0, n 63, = (01 or x ,  = x,. This proves that 
the map x - D(x) is an isomorphism of and B,. Q.E.D. 
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< jk 

z so 

Because of the isomorphism between a, and B, we can identify the 
operator D(x) E B, with x E Uia.  Thus, there is a 1-1 correspondence be- 
tween projection operators P t ZP(T) and primitive idempotents c in @=, 
given by P = D(c). In the previous section we have already discussed the 
determination of primitive idempotents in R , ,  Our analysis of symmetry 
classes of tensors will be complete if we can develop a practical method for 
determining Ui, and for decomposing Pa into a direct sum of T-irred sub- 
spaces W ,  , 

V@" = w, @ - ' . @ wy. 
The basic problem remaining to be solved is this: How do we choose the 
primitive idempotents c, t @a such that W, = {D(cJw: w t Pa]? A clue 
to the solution of this problem is the observation that there is a 1-1 relation- 
ship between T-invariant subspaces W of Vo" and right ideals 9 in am. 

(3.32) 9, = {x E a,: xv E W for all v E Pa} 

[Recall that D(x)v = xv.] If x E 4 ,  and y E then (xy)v = x(yv) E W 
for all v, so xy E 4,  and gW is a right ideal. Moreover, if P = D(z), z E a,, 
is a projection operator on W which commutes with the T(g) operators, 
then z E 4,, so 9, f {O}. 

On the other hand, given a nontrivial right ideal 4 in @a we can define a 
T-invariant subspace W ,  of V s a  generated by all elements of the form 
xv, x E 9, v E P'". 

Before proceeding with this analysis we remark that the basic facts 
concerning left ideals proved in Section 3.7 have an obvious modification 
for right ideals in a group ring R,. A right ideal is just an invariant subspace 
of the group ring under the right regular rep. If x E R, then the set xR, 
is a right ideal. Conversely, every right ideal is of this form. If 9 is a right 
ideal then there is a generating idempotent c E R,  (not unique) such that 

Indeed, let W be a nontrivial T-invariant subspace and let 
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9 = cR,. Also, 9 is a minimal right ideal if and only if c is a primitive idem- 
potent. 

Let 9 be a right ideal in ma and W a T-invariant subspace of Y E Q .  

Theorem 4.11. (1) W(,,,.) = W. 
(2) g,,,, = 9. 
That is, the relation between right ideals and T-invariant subspaces 

(3) Let 9 = 9,. Then 9 is minimal if and only if W is T-irred. 
(4) Let B = 9,, g' = g,,. Then 9 and g' are equivalent right ideals in 

ma if and only if the T-invariant subspaces Wand W' define equivalent reps 
of G, .  

defined above is 1-1. 

Proof. (1) Let c be the generating idempotent of 9,. Then W = cVke 
since every x E 9, can be written x = cx. Now W,,,, is the space generated 
by all elements of the form xv = cxv, x E 9,, v E Pa, which is obviously 
CVB'". 

(2) If c is a generating idernpotent of g, then W,  = c P Q .  If x E 9, 

v E Pa, then xv = (cx)v = c(xv) E W,, so 9 c 9(,,, . Conversely, suppose 
y E g(,$). Then yv E W,, so yv = c(yv) = (cy)v for all v E PU. This shows 
y = cy E 9, so 9 = go,,. 

(3) This follows immediately from Theorem 3.13 and the fact that D(c) 
is a projection on a T-irred subspace W if and only if c is a primitive idem- 
potent. 

(4) By property (3) it  is sufficient to prove this assertion for primitive 
right ideals 9, g' .  Suppose 9 and g' are equivalent ideals with primitive 
generating idempotents c, c'. Then there is a nonzero x = c'xc E g' such that 

D(x) W. Since W and W' are T-irred and the nonzero operator D(x)  from W 
to W' commutes with the T(g), Wand W' define equivalent reps. Conversely, 
if W is equivalent to W' there is a nonzero mapping A of W onto W' which 
commutes with the T(g). Let W" be a T-invariant subspace such that Vc*a = 

W @  W". We can extend A to F'@a by requiring A(w + w") = Aw for all 
w E W, w" E W". Clearly, the extended operator A commutes with the 
T(g), so A E B, and A = D(x) ,  x E ma. This shows that W' == A W = x W. 
Since g = { y  E ma: yVBa c W }  with a similar definition for g' ,  it follows 
that {0} c x9 5 g'. But 9 and g' are minimal, so g' = xg and the ideals are 
equivalent. Q.E.D. 

g' = xg = Thus, W = cV@ and W' = c've." = XV@Q xcv@a 

We can now exdicitlv decompose Pa into T-irred subspaces. Let = 
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Then 
(3.34) V'Z, = w, @ * ' .  @ w, 
where W j  = c, Pa is a T-irred subspace. Indeed it is evident from Theorem 
4.10 that the sum W ,  @ . . . @ W, is direct. The spaces W , ,  . . . , W, 
span Vi;< since the identity operator E belongs to B, z am. Thus, E = 

D(x), x E a,, where x has the unique decomposition 

x j  E 9,. If v F: V g Q .  then 

where cj(xjv) E- W,. The T-irred subspaces W j  are called symmetry classes 
of tensors. 

To conclude our analysis we determine the relationship between Theorems 
4.7 and 4.11. The first of these theorems decomposes T in terms of minimal 
left ideals of R,, while the latter decomposition is in terms of minimal right 
ideals. In particular the T-irred subspaces W j  are not in general invariant 
under the operators D(s), s E S , .  

Let us fix our attention on one of the T-irred subspaces W,  = cjVBU 
in (3.34). According to Theorem 4.7 the restriction of T to W ,  is equivalent 
to the irred rep C'PJ of G,. Let D'P' be the corresponding rep of S,  deter- 
mined by this theorem and let U,  be the minimal two-sided ideal in R, con- 
sisting of all minimal left ideals (L-irred subspaces) that transform according 
to D'P'. By Lemma 4.12, D(x)w = 8 for all x E U,, v # p ,  and all w t W,. 
Let 9 be the minimal right ideal in ma associated with W,: 

Clearly, x W ,  # {O] for nonzero x E 9, so the minimal two-sided ideal in 
containing 9 must be U,. Thus, the minimal left and right ideals associated 

with W j  lie in the same two-sided ideal U , .  
Let D'P, be a unitary matrix rep corresponding to  the operator rep 

DIP'. Then the matrix elements b){ ' ( s )  considered as element of R, satisfy 
the relations 

(3.35) L(t)fi:P,'(s) D$' ( t - ' s )  = C DIf)(t)@&)(s), 1 < j ,  k n P .  

Thus, the ring elements fi$) = C fi:pk)(s).s for fixed k generate a minimal 
left ideal in U p ,  and the totality of these npz elements form a basis for U,.  
The minimal right ideals in U, all transform irreducibly under the right 
regular rep R, and the irred reps determined by these right ideals are equiv- 
alent. We will identify this irred rep. A simple computation yields 

.Y = x1  + . . .  I x, = c ,x ,  4- . . '  + c p , ,  

v EV = xv 7 c , (x ,v)  - 1  . . . + c,(x,v) 

9 = {x E ma: xv E W j  for all v E V g m }  

"P 

1 1  
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Thus, for fixedj the ring elements &) form a basis for a right ideal trans- 
forming according to Bib), i.e., the matrices of this rep are the complex 
conjugates b(J)(t). The character f ( f l )  of this rep is the complex conjugate of 
the simple character xi,). Since ( zcB) ,  f c b J )  = 1 it follows that f ' b )  is also a 
simple character. 

The computations in the preceding paragraph are valid for any finite 
group H. In the following section we will explicitly compute the simple 
characters of S,  and show that they are all real. That is, f ' p ) ( s )  = x c B ' ( s )  
for s E S , .  Anticipating this result we see that the minimal left and right 
ideals in U, all define irred reps of S ,  equivalent to D'B). 

To clarify the relation between minimal left and right ideals in  if, con- 
sider the mapping x - R of R ,  onto R,  defined by 
(3.37) 

where x = C x(s)*s. This transformation is a vector space isomorphism. 
(Prove it.) However, it is not a homomorphism of the group ring onto itself 
since xy = 92. In particular st = (s t ) - '  = t - l s - '  = fi for s, t E S,. Such 
a map is sometimes called an inverted isomorphism, since it inverts the order 
of ring multiplication. It is clear that each left ideal is transformed into a 
right ideal by this mapping. Since (a)^ = x it also follows that each right 
ideal is the image of some left ideal. The left ideal R,c with generating 
idempotent c is mapped onto the right ideal tfi, = f R ,  with generating 
idempotent 15. [Note that f 2  = (cz))^ = f.] The idempotent c is primitive if and 
only if c^ is primitive. 

Let d: be a minimal left ideal in U,. There exists a basis {xi} for 6: such that 

R = c x(s).s-l = Cx(s-l).s 
3 E S .  s 

A A 

" B  

I=  I 
(3.38) sxI = C D$)( s )x j ,  1 i n,. 

Under the transformation x - 2, d: is mapped onto a minimal right ideal 
with basis {R,) such that 

" B  
2,s-l = C D$;'(s)Rj, 

[obtained by applying the inverted isomorphism to (3.38)]. Since the right 
ideal k yields the irred rep D',) it follows that 5 G U,. Thus, x - 2 maps the 
two-sided ideal U, onto itself. 

According to Section 4.2, the irred rep DIP) of S ,  corresponds to a 
partition { A , ,  . . . , 1,) of a. Recall that 1, 2 1, 2 . . . 2 1, 2 0 and 
1, + . . - + 1, = a. We use the same notation {A,, . . . , A,} to denote the 
frame corresponding to this partition. Let Ti, . . . , Tf be the f standard 
tableaux of the frame in dictionary order, and let c ,  , . . . , cf be the corre- 
sponding essential idempotents. According to Theorem 4.3, 

j =  1 
(3.39) 

Up = R,c ,  @ ' * * @ R,c, 
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is a decomposition of U, as a direct sum of minimal left ideals. Applying the 
inverted isomorphism we immediately conclude that 

U, = f , R ,  9 9 t ,R, 
is a decomposition of U, into a direct sum of minimal right ideals. Thus, 
W j  = f jPa ,  I < j  < L  are T-irred subspaces of Pa all transforming 
according to equivalent reps of G,. Applying this process to each minimal 
two-sided ideal in R , ,  we obtain a decomposition of V @  into a direct sum of 
T-irred subspaces. (Note that an essential idempotent determines the same 
T-invariant subspace as does the corresponding idempotent.) 

Let T be a standard tableau belonging to the frame { A , ,  . . . , A,) and let 
c be the essential idempotent corresponding to T. From Theorem 4.1, 
c = PQ, where 

I t  follows that ĉ  = O F ,  where 
P = = c = = - p - ' ,  0 =c6,q:cs,q-'. 

P P 9 rl 

However, p -  ' ranges over R(T)  as p does, q- ' ranges over C ( T )  as q does, 
and d,., = 6,. Thus, = P ,  0 = Q, and 
(3.40) 

The essential idempotent f is obtained from c = PQ by interchanging the ring 
elements P and Q .  

Finally, we note from Theorem 4.7 that there is a 1-1 relationship 
between frames (1, , . . . , La], 1, + . . -i- 1, = a ,  and equivalence classes 
of irred reps of G,. Therefore, we can use the frames to label the tensor 
irred reps of G,. 

Examples. Consider the case a = 2, WI 2 2 .  There are two frames cor- 
responding to S , :  

i.e., ( 2 ,  0) = ( 2 )  and { I ,  I ] .  The only standard tableaux are 

so each frame defines a one-dimensional rep of S,. The corresponding 
essential idempotents are 
c^ = Q P =  e[e I (12)] = e - 1  (12), t' ~ - Q'P' = [e - (12)le = e - (12 ) .  

The space of second-rank tensors is decomposed into two T-irred subspaces 
W ,  = i 2 P 2  and W ,  = i 2 ' P Z .  Introducing a basis {v,] for I/ and {v, @ v,} 
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for V B 2  we see from (3.7) that the elements of W ,  are those tensors b whose 
components can be represented in  the form 

where the a''" are arbitrary, i.e., the symmetric tensors. The elements of 
W, are tensors b whose components take the form 

biji2 = a i l i p  + a i d ,  

iI biz = a i l c t  - 
7 

the skew-symmetric tensors. (It is convenient to arrange the superscripts 
in the shape of the frame.) We have shown that Y E Z  = W ,  @ W 2 ,  which 
we already knew, and that these two subspaces define irred reps of G,. 

Now consider the less trivial case 6! = 3, m 2 2. There are three frames 
corresponding to a = 3 :  {3), {2, 11, {13}. The frames {3), {13} have one 
standard tableau each : 

T=1'12731, ...=e. 
The frame {2, l }  has two standard tableaux: 

T , ' = p ,  T, =$ 
The essential idempotents are 

S = e + (12) + (13) + (23) 4- (123) + (132) 
f" = e - (12) - (13) - (23) + (123) + (132) 
6,' = e + (12) - (13) - (13)(12), S2' = e - (12) + (13) - (12)(13) 

Thus, 

is a decomposition of V @  into T-irred subspaces. The subspace correspond- 
ing to frame 13) consists of those tensors whose tensor components 

(3.41) V@3 = &VB3 @ t,'V@3 @ t,'V@ @ t ' ,V@3 

(3.42) bti'1l' 

are completely symmetric with respect to the interchange of any two indices. 
Furthermore the subspace corresponding to { 1 3} consists of the completely 
skew-symmetric tensors 

I ,  

(3.43) b d  

which change sign upon the transposition of any pair of indices. There are 
two subspaces corresponding to the frame {2, I]. One space consists of all 
tensors of the form 

Ill?. 

, ailk arbitrary, (3.44) b ' 3  = a"'2 '3  + a l * r l l l  - a'""" - a"'"" 
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and the other consists of all tensors 
1111 (3.45) (&)I* = a""" - ai*'"' a r l r l l l  - a i r r I r l .  

Note that both of these tensor classes are skew-symmetric with respect 
to the transposition of indices in the same column. However, they are not 
symmetric with respect to  the transposition of indices in the same row. 

If m 2 3 it is easy to see that each of the subspaces in the decomposition 
(3.41) is nonzero. Thus, a, = R , ,  0, = { O )  and we have decomposed the 
tensor rep T of G ,  on P3 into three irred reps, one with multiplicity two. 
The corresponding tensor subspaces are called symmetry classes of tensors. 

However, if m = 2, the tensors (3.43) are identically zero. Indeed, any 
tensor component must have at  least two equal indices. A transposition of 
these indices obviously leads to the same component. On the other hand 
such a transposition changes the sign of the component since the tensors 
are completely skew-symmetric. Thus, the tensors (3.43) are identically zero 
and t"R,  E 0,. The reader can easily check that the other symmetry classes 
of tensors are nonzero, so t " R ,  = 0, and 

a, = t R ,  @ t , ' R ,  @ f2 'R ,  

for the case m = 2. 
How do we determine the two-sided ideals 0, and a, in the general case? 

Let T be a Young tableau with frame {A,, . . . , A%] and Young operator 
c ^ =  QP, 

(3.46) 
T =  F 

Then the elements b of EV@, have tensor components 

(3.47) 

Since qQ = S,Q for any q E C(T) we have qb = qQPa = 6,QPa = 6,b. 
In particular, the tensor components of b change sign whenever two indices 
in the same column of J are transposed. The tensors b are skew-symmetric 
in the columns of J.  In general, the tensors b are not symmetric in the rows of 
J unless J has only one row. 

These remarks enable us to determine (3, and a, for the representation T 
of G, on Vsa with dim V = m. Each minimal two-sided ideal U, in the group 
ring R, is uniquely associated with a frame in,, . . . , Am} and R,  = (Re @ 0,. 
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Theorem 4.12. The two-sided ideals Up corresponding to frames with 
r rows, Y > m, lie in 0,. If r < rn then U, G a,. Thus, the decomposition of 
V @ -  into T-irred subspaces is determined by those frames of S,  with r 5 m 
rows. 

Proof. Let b be a tensor corresponding to a tableau T, (3.46), with r > m 
rows. Then each tensor component bJ, (3.47), of b has r > m indices in the 
first column of J and a t  least two of these indices must be equal. A trans- 
position q E C(T) of two equal indices obviously leaves bJ fixed, qbJ = b-’. 
On the other hand qb’ = -bJ since bJ is skew-symmetric in the columns of 
J.  Therefore, bJ = 0. 

m rows and consider the tensor a E 

VBa with components aJo = 1, 
Now suppose the tableau has r 

1 1 1 1 
2 2 . . .  2 

J - .  
O - .  

r r r 

and a’ = 0 for all indices J # Jo . (Here we arrange the indices in the shape 
of the tableau T.) We will show that Ea = QPa f 8, where i2 is the Young 
operator corresponding to T. This proves U, c R, .  Clearly, (Pa)’@ = n > 0, 
where n is the order of R(T) and (Pa)-’ = 0, J f J , .  Thus, Pa = na, so Ea = 

nQa = n C 6,qa. The reader can easily check that each tensor qa has exactly 
one nonzero component and qa, q‘a have the same nonzero component if and 
only if q = q‘. This follows from the fact that r < m.  Thus, the sum C 6,qa 
is nonzero and Ea # 8. Q.E.D. 

In summary, we have the following result. 

Let T be a tableau of S,  with r Theorem 4.13. m rows. Then the subspace 
E , P a  transforms according to an irred rep of G,, where fT = QP and Q, P 
are obtained from T by (2.1). Tableaux T and T‘ determine equivalent reps of 
G, if and only if they belong to the same frame { , I j ] .  Furthermore, 

P- = c @ EJ@* 
T 

where T runs over all standard tableaux of S,  with r < m  rows. The 
multiplicity of the irred rep {, I j ]  of G, in TI V B S  is equal to the number of 
standard tableaux with frame { A j ] .  

We shall examine this construction from another point of view in Chapter 
9, where we study the irred reps of G, by Lie theory methods. 
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4.4 The Simple Characters of S, 

We now use the results of Section 4.3 to compute the simple characters 
of S , .  As usual we consider the reps T of G, and D of S,  on Pa defined by 
(3.2)-(3.7). The irred reps C[”I of G, and of S ,  that occur with nonzero 
multiplicty in T and D are labeled by those frames { A , ,  . . . , A,> of S ,  that 
have r < m rows. According to Theorem 4.7, the multiplicity of CIAJ; in T 
is equal to dim DlaJ1 and the multiplicity of D‘”” in D is equal to dim C[lJ1. 

According to (3.10) and (3 ,1l) ,  sT(g) = T(g)s for all g E G,, s E S , .  
Thus we can define a rep T’ of the direct product group S ,  x G, on Y g m  by 

T’(sg) = sT(g). 

In terms of a basis {vj: 1 j j  < m) for I/ we have 

[see (3.10)J. We will compute the character x of T’ in two different ways. 

and c = dim C‘”” then there exist cd linearly independent tensors 

(4.2) 
such that 

First it follows from the proof of Theorem 4.7 that if d = dim D‘”1 

{vlk: 1 j k j d, 1 j I j c) 

T(g)vlk = 2 C#1(g)v;, SV; = 5 Bp/d(g)vf’, 
1‘- I k ’ =  I 

(4.3) 

where the matrix reps CfAJ1, Di”I correspond to the operator reps C’l~l,  
D[lJi. Choosing vectors {vlk) for each frame {A,, . . . , A,) of r I m rows we 
get a total of ma linearly independent vectors, which form a basis for Pa. 

We compute the trace of the operator T’(sg) restricted to the subspace 
W‘”I spanned by the basis vectors (4.2). Since 

sT(g)vlk = 2 5 Ci.:”(g)DL$!(s)vfi’ 
1 = 1 k ‘ =  1 

we find 
tr [ S T ( ~ ) ] ~ [ ~ ~ I  = C Ci:J1(g)DPil(s) = p‘A31(g)x‘Ai1(s) 

1. k 
(4.4) 

where piLJ, x[AJJ are the characters of C‘”” and D[”I, respectively. Thus, 

(4.5) 

where the sum is taken over all partitions { A , ,  . . . , A,] with A ,  + . . . + 1, 
= a and L, 2 A,> 

x ( a )  = tr [sT(g)l = c ~‘”l(g)x“””(s) 

2 A,> 0. 
Now we compute x(sg) another way. From (4.1) there follows 
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(4.1 1 )  I E ~ ~ ,  . . . , ~ ’ “ 1  = det 

We know that x depends only on the conjugacy class in which s lies, not on 
s itself. Suppose s belongs to the conjugacy class (v,, v 2 , .  . . , v,), i.e., v ,  
one-cycles, v, two-cycles, etc. Clearly, to each p-cycle (klp . . . z )  in  s there 
corresponds a closed sum 

(4.7) 
rn 

C j*...j,=, gj:g$:gip . . . gi; = tr(g”) = up.’ 

Therefore, 
x(sg) = (a,)”‘(a,)”’ . . . (a,).= 

where gp is the trace of the matrix g”. We have derived the formula 

&:‘ &” . . . E:” 
. 

(0,).~(0,>.~ . ’ (a,).. = c (p‘”yg)x‘”’(s). 
11,i 

(4.8) 

Another identity is obtained by using the orthogonality relations for the 
characters x‘””. By (1.9) the conjugacy class (v,  , . . . , v,) contains 

m, = a!/( l”lv , !  - avuv,!)  
elements. Taking the inner product of (4.8) with x’^el(s) we obtain 

(4.9) 

where the sum goes over all conjugacy classes (v) = (v, , . . . , v,) in  S,  and 
is the value of the simple character ~ ‘ ” ~ ( s )  for s in the conjugacy class 

From (4.9) the simple character qfiJl(g) is a generating function for the 
characters X , ! ~ J ~  of S,  . In Section 9.2 we shall compute qPji(g) by a method en- 
tirely distinct from that used here. The result is as follows: Let E , ,  . . . , E ,  

be the eigenvalues of g E G, .  Then 

(4. 

(4.10) I &‘I, & I ¶ ,  . . . , &‘“-a, El” 1 
I & “ - I ,  E n - 2 ,  . . . , E ,  1 I 9 ’ y & ,  , . . . , E m )  = 
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There is a similar formula for (4.9). These results are correct whether or not 
g can be diagonalized. 

The expressions (4.12) can be used to compute the characters f"" 
directly. Indeed, as g ranges over G, the E ,  , . . . , E ,  independently range over 
all nonzero complex numbers, so the coefficients x!,lJ1 on the right-hand side 
of (4.12) are uniquely determined. It is evident from an examination of this 
expression that the characters of S ,  are real. In fact the characters take on 
only integer values. Although ,ylAJ1 can be computed directly from (4.12) by 
expanding in powers of the e l ,  this process is difficult even for low values of 
m and a. In practice the characters are usually determined by graphical 
procedures or recursion relations which are derived from (4.12). 

As an example we show how to compute the dimension of the irred rep 
{A,)  of S , .  This number is equal to x i A J 1 ( s )  for s = e in the conjugacy class 
(a, 0, . . . ,O) ,  i.e., v I  = a, v 2  = . . . = v, = 0. Therefore, the dimension 
""1 is determined by 
(4.14) 

[In order that the coefficient N'"I appear in (4.14) it is necessary that all but 
the first m terms A I  , . . . , A,  of { A , ,  . . . , A m ]  be zero. Otherwise, the value of 
m is immaterial. To be definite we can choose m = a.] The determinant 
I . . . , E ,  I I changes sign under the interchange of two rows. Thus, the 
left-hand side of (4.14) is a skew-symmetric function of the E , ,  i.e., i t  changes 
sign under the interchange of any two of these variables. If we expand 
o I u  
(4.15) 
no terms with p ,  = P I  for i # j  can occur with nonzero coefficient in  the 
expansion. Indeed if the variables E , ,  E ,  are raised to equal powers then the 
term is invariant under an interchange of E ,  and E ,  while o,, I S " - ' ,  . . . , 1 1 
changes sign, so the offending term must have zero coefficient. Furthermore, 
by skew-symmetry the occurrence of the monomial (4.15) on the right-hand 
side with coefficient c implies the occurrence of each of the monomials 

with coefficient c, where t is any permutation of the integers 1, . . . , m and 
6, is the parity of t .  

( E l +  . . .  4 Ea)=l&m-l , . . . )  & , l I = ~ " " ~ ( & " ,  . . . )  &'"I. 
11,l 

', . . . , E ,  11 as a sum of monomials 
& f l & $ l  . . . &k 

6,&?1)&?2) ' . . E%) 

The right-hand side of (4.14) reads 

so is the coefficient of the term 
(4.16) E ; t f m - l E y + m - 2  . . . Ek 

i n  which the highest power comes first, the next highest power comes second, 
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and so on. The coefficients of the terms which are not in the ordered form 
(4.16) are obtained from the skew-symmetry. 

To obtain N["] we multiply 

a times by 0 ,  = 6, + . - - + E, and compute the coefficient of (4.16) in the 
resulting expression. The only term in (4.17) which contributes to the result 
is the ordered term 

& m - I  m - 2  (4.18) 1 &z . . .  & m - I . l  

since at  some stage of the multiplication process each of the other monomials 
would have two variables raised to the same power. Thus, is equal to 
the total number of ways we can obtain (4.16) from (4.18) by means of a 
successive multiplications by the variables E , ,  making sure that at  each step 
no two variables are raised to the same power. Clearly, the number of times 
we multiply by 8 ,  is greater than or equal to the number of times we multiply 
by E , ,  etc. 

An example should clarify the situation. Let us compute the dimension 
of the rep {2, 1'3 of S, .  For rn = a = 5, (4.18) becomes E , ~ E ~ ~ E , ~ E , .  We must 
end up with E , ~ E , ~ E , ~ E , ~ ,  Eq. (4.16), by multiplying by one variable ei at a 
time, making sure that at  each step the exponents of no two variables are 
equal. The possibilities are as follows: 

(4.19) 
(1) &~&,&Z&,&,(&I~&Z~&,~&~), ( 2 )  &~&,&I&Z&,(~I~&Z~&~~&~) 

(3) &4&1&,&~&1(&1~&2~&,~&4), (4) &,&~&,&Z&I(&I~&,~&,~&~). 

We conclude that the dimension of (2, 1 3 }  is four. 
Our method has a graphical interpretation. From our rule for obtaining 

NIA~J,  this integer is just the number of distinct ways we can fill in the frame of 
{ A , ,  . . . , A,} successively with a dots, making sure that at  each step every row 
in the frame has at least as many dots as the rows below it. The dots are filled 
in from left to right in any given row. Multiplication by ei corresponds to 
the application of a dot in row i. As an example we again consider the frame 
12, I,}. If we number the dots from I to 5 in  the order of their application we 
obtain the results 

which correspond exactly to the expressions (1)-(4) of (4.19). Note that the 
tableaux (4.20) are just the standard tableaux associated with the frame 
I2, 131. 
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The reader should now recognize that the number of ways we can fill 
in  a frame { A j ]  with dots satisfying the above rules is exactly the number of 
standard tableaux associated with { A j } .  This proves Theorem 4.2. 

Similar but more complicated graphical methods can be used to compute 
the characters xtAJ1 (see Hamermesh [l], Boerner [l], Murnaghan [I]). 

Problems 

4.1 Compute the conjugacy classes of s6 and the number of elements in each class. 
4.2 Apply the methods of Chapter 3 to deduce the character tables of SI , S4, and SS . 
Hint: Use formula (5.27), Section 3.5, to derive characters of S, from the simple characters 
of S,-I c s,. 
4.3 List the possible frames of S S  and the standard tableaux corresponding to each 
frame. 
4.4 Let c be an essential idempotent corresponding to the frame [2, 1). Determine the 
invariant subspace R3c directly and use i t  to compute a matrix rep of S3 equivalent to 
I2, 11. 
4.5 Construct the ring element c = P Q  corresponding to the tableau of Fig. 4.3 and 
verify directly that c is an essential idenipotent. What is the dimension of the irred rep of 
s6 determined by c ?  

4.6 Compute the dimension of the rep (4, 3, 1, 11 of S S .  
4.7 Decompose the space V@4 into subspaces irred under GL(m, E), dim V = rn 2 2. 
4.8 Use formula (4.12) to obtain the character tables for S3 and Sq 
4.9 Let G be a group, not necessarily finite,and let T ( l ) ,  . . . , T(r)  be irred nonequivalent 
matrix reps of G. Show that the matrix elements (T/T)(g)J ( I  I i, j l  n k ;  I I k < r )  are 
linearly independent functions on G. (This is not easy. See Curtisand Reiner [ I ,  Chapter IV].) 



Chapter 5 

Lie Groups and Lie AlNebras 

5.1 The Exponential of a Matrix 

Let A be a linear operator on the n-dimensional inner product space V. 
The norm 1 1  A 1 1  of A is defined by the expression 

[Recall that the norm of a vector is / ( v I (  = (v, v)’ *.I To see that this defini- 
tion makes sense choose an ON basis {vj] for V with respect to which A has 
matrix elements A i j  and v has vector components a j .  Then 

This maximum clearly exists, so 1 1  A 1 1  is well-defined. (We have assumed that 
V is complex in this computation. There is an analogous result for V real.) 

If v is a nonzero element of V then v/ll v / /  = w has norm one. Thus 1 )  Aw I /  
I IlAll from (l.l), so 
(1.3) IIAvIIIIIAlI IIVII ,  

where we have used the fact 1 1  av 1 1  = a I /  v 1 1  for a 2 0. Expression (1.3) is 
also valid for v = 8. 

Lemma 5.1. Let A and B be linear operators on V.  Then 1 1  AB 1 1  < 1 1  A 1 1  
I1 BIL 

152 
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Corollary 5.1. IIA"/I < llA(lm, m = 1 , 2 , .  . . . 

Proof. Lemma 5.1 with A = B, and induction on  m. 

Lemma 5.2. 
for all a 2 0 and I/A + BII 5 1 1  All + l l B / ( .  

Let A and  B be linear operators on V. Then / I  aA 1 1  = a 1 I A ( 1  

Proof. These results follow directly from the definition ( 1  . I )  and  the rela- 
tions / / aAvl (  = a ( / A v l (  and /IAv + Bv/I < JIAvlI + (IBvI/. 

We can define the matrix norm 1 1  A 1 1  of an  n x n matrix A = ( A i j )  by 
I I A 1 I = 1 1  A 11, where A is the linear operator on V determined by A and the ON 
basis { v j } .  In particular, ( 1  A ( 1  is given explicitly by (1.2). Thus, the results 
proved above for operator norms hold as well for matrix norms. 

Recall that a sequence of complex numbers {a j )  is a Cauchy sequence 
if for any E > 0 there is an  integer N ,  > 0 such that 1 oli - aj  1 < E for all 
i ,  j > N,.  Every Cauchy sequence converges, i.e., if {a j }  is Cauchy then there 
is an  a E 6 such that aj  - - +  a. A sequence ( A , }  of n x II matrices is said to 
be a Cauchy sequence in the norm ( 1  . ( 1  if for every E > 0 there is an  integer 
N ,  > 0 such that IIAi - Aj l l  < E for all i, j > N , .  The sequence {Ak, is 
Cauchy in the norm if and  only if for each i, j = I ,  . . . , n the matrix elements 
{ A , , i j ,  k = 1 ,  2 , .  . .) in the ith row a n d j t h  column form a Cauchy sequence 
of numbers. (Prove it.) Thus, if ( A , ]  is a Cauchy sequence of matrices, the 
limits A , j  = lim,+,~ A , , i j  exist and A ,  - -+ A with A = ( A i j ) .  Then for any 
E > 0 there is a n  integer M ,  > 0 such that 1 1  A - A ,  / /  < E whenever k > 
M,. We have sketched a proof of the fact that every Cauchy sequence of 
matrices converges. Passing from matrices to linear operators, we immediately 
obtain the result that every Cauchy sequence of operators converges. Most of 
the results obtained in this section are valid for both operators and  matrices, 
but the formulation of the corresponding operator results is left to the reader. 

The exponential exp A of an 17 x 17 matrix A is defined by the sum 

. A' exp A : C 7 ,  
I = O  J !  

where A o  = En (the n x n identity matrix). To  justify this definition consider 
the finite sums 
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which are well-defined n x n matrices. For k > m we have 

Since 

then for any E > 0 there is an integer N, > 0 with the property 
~ ; = q ( ( l A l ~ / j ! )  < E for every q > N , .  This proves that the sequence of 
matrices ISm] is Cauchy and exp A = Iimm+- S,,, exists. 

Theorem 5.1. If A and B are n x n matrices and B is nonsingular then 
exp (BAB-I) = B(exp A)B-’. 

Proof. 

since 
(IBS,B-’ - B ( e x p A ) B ~ ’ ( ( j ( ( B ( ( . ( 1 4 ,  - expA/(.(1B-’((--,O 

as m + DO. Q.E.D. 

We review a few basic facts about the eigenvalues of matrices. Let 
A , ,  . . . , A ,  be the eigenvalues of the n x n matrix A ,  each eigenvalue re- 
peated a number of times equal to its multiplicity. The L j  are the solutions 
of the characteristic equation 

PA(A) = det(A - AE,) = 0. 
If the matrix C is similar to A ,  i.e., if there exists a nonsingular n x n matrix 
B such that C = BAB-’, then 

P&) = det(BAB-’ - Al3EJI-l) = (det B) det(A - 1E,) detB-I 

Thus, similar matrices have the same eigenvalues. The eigenvalues of a diago- 
nal matrix are just the diagonal elements. We say that a matrix A can be dia- 
gonalized by similarity transformations if A is similar to a diagonal matrix 
D. The diagonal elements of D are just the eigenvalues of A .  

Not all n x n matrices can be diagonalized. For example the matrix 

= det(A - 1E,) = PA@). 

has eigenvalues 1, = 1, = 0. Since A is obviously not similar to the zero 
matrix, it cannot be diagonalized. It is true that every complex matrix 
A is similar to a matrix C in upper triangular form. An n x n matrix C IS upper 
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triangular if Cij  = 0 for all 1 < , j  < i n, i.e., if all matrix elements below 
the main diagonal are zero. The eigenvalues of a upper triangular matrix 
are just the diagonal elements: 

(1.5) 

Theorem 5.2. Let A be a complex n x n matrix with eigenvalues A , ,  . . . , A,. 
Then A is similar to an upper triangular matrix C with diagonal elements 
A , ,  . . . , A , .  

Proof. Induction on n. The theorem is obvious for n = 1. Assume it is 
true for all (n - 1) x (n - 1) matrices and let A be a matrix of degree n. 
Since 1, is an eigenvalue of A there is a nonzero column vector ti = 

(ti,,. . . , w,) such that Av = A,v, i.e., C;=, Aijtij = A1wi .  Let e l  be the 
column vector defined by the n-tuple (1,0, . . . , 0). Clearly, there exists 
an n x n nonsingular matrix B, such that B,v = e l .  Then the matrix B, AB;' 
is similar to  A and takes the form 

where A' is an (n - 1) x (n - 1) matrix. Indeed, B,AB;'e, = B,Av = 

A,B,ti = Ale,. det(A - 1EJ = det(B,AB;' - 1EJ = (A, - A) x 
det(A' - AE,-,), the numbers 12, . . . , A, are the eigenvalues of A' .  Further- 
more, by the induction hypothesis there exists an (n - I )  x (n - I )  non- 
singular matrix Bz' such that Bz'A'(Bz')-l is upper triangular. Defining the 
n x n matrix 

Since 

/ l  0 * * .  

0 
' 

. B,' B, = 

we find B,(B,AB;')B,' = C, where C is an n x n upper triangular matrix, 
Eq. (1.5). Thus BAB-I = C, where B = B,B,. Q.E.D. 
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Corollary 5.2. 
Then exp A has eigenvalues ell, . . . , e". 

Let A be an n x n matrix with eigenvalues A 1 ,  . . . , A n .  

Proof. 
(l.5)]. An elementary computation yields 

The matrix A is similar to an upper triangular matrix C [Eq. 

* * *  

Thus the eigenvalues of exp C are e"', . . . , e". Since A and Care similar there 
exists a nonsingular matrix B such that BAB-l = C. By Theorem 5.1, 
B(exp A)B-I = exp(BAB-I) = exp C, so exp A and exp C are similar. 
Similar matrices have the same eigenvalues. Q.E.D. 

Corollary 5.3. det(exp A )  = exp(tr A )  = etrA. In particular, exp A is a 
nonsingular matrix. 

Proof. The determinant and trace of a matrix are the product and sum of 
its eigenvalues. By Theorem 5.2, det(exp A )  = exp(A, + . - + A,) = 

exp(tr A ) .  Q.E.D. 

We know from complex variable theory that corresponding to any power 
series 

,_ 

f(z) = c CjZj, c j  E 6, 
j = O  

there is associated a number r 2 0, the radius of convergence, such that the 
power series converges absolutely if 1 z 1 < r and diverges if 1 z 1 > r .  In case 
the power series converges for all z, we set r = f m  (see Ahlfors [I].) By 
convergence of the power series for fixed z we mean that the partial sums 

m 

S,(z) = C c jz j ,  rn = 0, I , .  . . , 
j = O  

(1.7) 

form a Cauchy sequence of complex numbers. The limit of this Cauchy 
sequence is f ( z ) .  The only properties of the absolute value needed to prove 
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these results are 

(1.8) I a t - b l I l a l - t  Ibl, I a a I = a l a l ,  I ab I I l a l . l b l ,  

for a, b E (5, a 2 0. Since the matrix norm 1 1  A I (  shares these properties we 
can immediately carry over the fundamental results on power series of com- 
plex numbers to power series of matrices. Thus, if f ( z )  is the power series 
(1.6) and A is an n x n matrix we define the matrix power series 

(1.9a) 

This series converges to an n x n matrix provided the partial sums 

f ( A )  = 2 CjAj. 
J = o  

form a Cauchy sequence with respect to the matrix norm 1 )  . 11. Then 
f ( A )  = lim S,,,(A). 

m-m 

It follows from the above remarks that there exists a nonegative number 
r such that (1.8) converges if 1 1  A 1 I < r and diverges if 1 1  A 1 )  > r .  For example. 
the power series defining exp A corresponds to r = +m. 

If f , ( z )  = C ajzj , f i (z)  = C b,zk have radii of convergence r , ,  r2,  re- 
spectively, then 

f I ( Z > f d Z >  = (C .jZ'><C b,zk) = c c$, I z I < r ,  

where 
1 

c, = C a jb , - j ,  r = minlr,, r,] 
J = o  

The proof of this result uses only the properties (1.8) (Ahlfors [I]), hence it 
carries over immediately to matrix functions f l ( A ) f z ( A ) .  For example, the 
identity e-'@ = 1 for all z leads to the identity 

(1.10) exp( - A )  exp(A) = En 

for all n x n matrices A .  Similarly, the identity (ez)m = em*, m = 0, f l ,  . . . , 
leads to [exp A]" = exp(mA). 

Since ln(1 + z )  = Cp,l ( - l ) j+lz j / j  converges for Iz I < 1 we can define 
the n x n matrix 

(1.11) 

Furthermore, the formulas 

I l A l l  < 1. 
A' N 

ln(E,, + A )  = C ( - l ) j + l 7 ,  
j =  1 

exp[ln(l + z)] = 1 + z, ( z J  < 1, ln(expz) = z ,  IzI < ln2, 
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which are proved by power series expansion, immediately lead to 
(1.12) 
exp[ln(E, + A)] = En + A,  1 1  A 1 1  < 1 ; ln(exp A )  = A,  1 )  A 1 1  < In 2. 

Let L, be the space of all n x n matrices, either real or complex, and let 
G,, be the group of all nonsingular matrices in L,. 

Theorem 5.3. The exponential mapping A - exp A transforms L, into 
G,. There exist positive constants E ,  6 < 1 such that the neighborhood a of 
the zero matrix in L, is mapped 1-1 onto the neighborhood 63 of the identity 
matrix E,, in G,,. Here 

a = { A  E 15,: 1 1  All < E } ,  63 = {B E L,: Ill3 - E,ll < d}. 
Furthermore the mapping A - exp A ,  A E a, and its inverse B -+ In B, 
B E 63, are analytic, i.e,. the matrix elements of exp A and In B are analytic 
functions of the matrix elements of A and B, respectively. 

The proof is immediate from identities (1.12). The theorem shows that 
any matrix B E G,  in a sufficiently small neighborhood of En can be written 
uniquely in the form B = exp A, with A in a sufficiently small neighborhood 
of 2. 

Let t be a parameter, real or complex. We write A ( t )  to denote an n x IZ 

matrix whose components A,,(t) are functions of t .  If each of the matrix com- 
ponents is differentiable we say that the matrix A ( t )  is differentiable with 
derivative k(t) = dA(t)/dt, the matrix with components k,,(t). If A ( t )  and 
B(t) are differentiable n x n matrices, the identities 

(1.13) 

hold, as the reader can easily prove. 
If the power seriesf(z) = 2 cjzj has radius of convergence Y > 0 then 

f ( z )  is differentiable andJ'(z) is obtained by differentiating the power series 
for f ( z )  term by term : 

(d/dt)[aA(t)  + PB(t)] = ak(t> + p m  
(d/dO[A(t)B(t)l = kO>B(t> + A(t)B(t)  

f'(z) = df(z)/dz = C jcjzj-l, j z 1 < r .  
,= 1 

Since the proof of this result employs only the properties (1.8) it can easily 
be extended to compute the derivative of the matrix function exp(tA), A a 
constant matrix. Thus, 

3 t j - 1  

A' = A exp(tA) = [exp(tA)]A. d (1.14) -exp(tA) = C ~ 

dt j = ~  (j- I ) !  
We can use this differential formula to derive other interesting properties of 
the exponential function. Note that the general solution of the matrix differ- 
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ential equation k(t)  = Z (the zero matrix) is A ( t )  = A , ,  where A ,  is any 
constant matrix. To show the util i ty of this remark we will use it to find the 
general solution of the equation k(t) = AA( t ) ,  where A is a constant matrix. 
Suppose A ( t )  is a solution and consider the matrix B(t )  = [exp(-tA)]A(t). 
From ( I  . I3)  and (1.14), we have 

B( t )  = - [ e x p ( - t ~ ) ] ~ ~ ( t )  I [ e x p ( - - t ~ ) ] ~ ~ ( t )  = z 
so B(t )  is a constant matrix A ,  = B(0). Thus A ( t )  = [exp(tA)]A,. Conversely, 
it is easy to show that A ( t )  = [exp(tA)]A, satisfies the equation for all matrices 
A , .  

It is an elementary exercise to show that B(exp A )  = (exp A ) B  for any 
n x n matrices such that AB = BA. 

Theorem 5.4. If AB = BA then exp(A + B )  = (exp A)(exp B). 

Proof. We could obtain this result by explicit power series expansion. A 
more elegant proof is obtained from a consideration of the matrix function 

C(t)  = exp[-f(A 1 B)](exp tA)(exp tB).  

C(t) = {exp[-t(A I B ) ] ) ( - A  - B 3- A -t B)(exp t A )  exp tB = Z .  

Therefore, C(t) is a constant matrix. Since C(0) = En we find (exp[-t(A + 
B ) ] }  (exp t A )  exp tB = En or (exp t A )  exp t B  = exp [ t ( A  4- B)]  for all t .  
Q.E.D. 

From (1.14) we have 

If the matrices A and B do not commute then Theorem 5.4 is no longer 
valid and the simple analogy between the matrix exponential and the usual 
exponential breaks down. However, from Theorem 5.3, if A and B are 
sufficiently close to Z then there must exist a unique matrix C sufficiently 
close to Z such that (exp A )  exp B = exp C. I f  A and B commute then C = 

A + B, but in  the general case C is a complicated function C(A, B )  of A and 
B. There is an explicit formula for C(A, B )  called the Campbell-Baker- 
Hausdorff formula, which we will derive by means of several lemmas, some 
of which are useful in their own right. 

Let L, be the n2-dimensional space of all complex 17 >i n matrices. For 
A E L, we define the linear transformation Ad A on L, by 
(1.15) Ad A ( B )  = -  [ A ,  B] ,  

where 
(1.16) [A ,  B]  ~ A B  - B A  

is the commutator bracket. The matrix of Ad A with respect to a basis for L, 
is n 2  i< n 2 .  Clearly Ad A is the zero operator if and only if A commutes with 
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all B E L, .  By (Ad A)“ we mean the operator 
(Ad A)”(B) = [ A ,  [ A , ,  . . , [ A ,  B]] ,  , . . ] ( rn times). 

We will frequently write eA for exp A .  

Lemma 5.3. Let A ,  B E L,.  Then 

eABe-A = (exp(Ad A))B = C (j!)-’(Ad A ) J ( B )  

-= En - 1  [ A ,  4 i -  $[A ,  [A ,  B]]  t 
I 0  

9 . .  , 

Proof. Set B(t)  = eCABe-‘*. Clearly B(0j = B and  the matrix elements of 
B(t) are entire functions of t .  Thus, there exist matrices C, E L, such that 
B(t )  = C C,tJ, where 

Now 
&t) = AeCABe-IA - e r A f W r A A  =: [ A ,  B(t)]  = Ad A ( B ( t ) )  

and by induction o n j ,  
dJB(t)/dr’ = (Ad A)J(B(t)) .  

We conclude that C, = (.j!)-l(Ad APE. 

Lemma 5.4. 
is an analytic function of the parameter t and let 

Q.E.D. 

Let A ( t )  E L, such that each of the matrix elements 

(an entire-function of 2).  Then 
(1.17) e A c r ~  de- AcrJ /d t  --f(Ad A ( t ) ) ( k ( t ) ) .  

Recall that we can consider Ad A ( t )  as a n  n2 x n2 matrix. 

Proof. 
s it can be written in the form 

Set B(s,  t j  = erAcrJ d(e-JA(rJ) /dr .  Since B(s,  t )  is an  entire function of 

B(s, t )  -: 

Now 
(1.18) 

dB/ds = A(t)B(s ,  t )  ~ B(s, [ ) A ( ! )  - k(r) = (Ad A(r))B(s, 1 )  - k(t). 

dlB(s, r)/dsJ = (Ad A(t))’B(s, t )  - (Ad A ( t ) ) l - l k ( t ) ,  

Differentiating this expression successively with respect to s we find 
j = I ,  2 , .  . . . 
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Since B(0, t )  = 0 we have 

Co(t )  = Z ,  Cj( t )  = (-l/j!)(Ad A(t))'-'k(t), j = 1,  2, .  , . , 
Thus, 

Setting s = 1 we obtain (1.17). Q.E.D. 

If A ,  B E L, have sufficiently small norms there exists a unique C E L, 
sufficiently close to Z such that eAeB = ec, or C = In(&@), where the loga- 
rithm is defined by (1.1 1). That C must lie sufficiently close to Z for unique- 
ness follows from the identity exp(C + 2niD) = exp C,  where D is any 
diagonal matrix with integer coefficients. The logarithm exists provided 
1 1  eAeB - En ( 1  < 1. The function 

is analytic for I 1 - z I < 1. Thus the expression 
g(F)  = Ek $- $(Ek - F )  + $(E ,  - F)' + . * . 

defines a matrix for any k x k matrix F with 1 )  Ek - F II< 1. 

Theorem 5.5 (Campbell-Baker-Hausdorff). 
neighborhood of Z in L, and C = In(eAeB), then 

(1.19) 

Indeed, 

(1.20) C = A + B + + [ A ,  B] 1- &[A, [ A ,  BII - &I& [B, AII + . - * 

and the matrix elements of C are analytic functions of the matrix elements 
of A and B. 

For A ,  B in a sufficiently small 

C = B + S I  g[exp(t Ad A )  exp(Ad B)](A) dt. 
0 

Proof. We will derive a differential equation for C(t)  = 1n(e'"eB), where 
0 I t I 1. Now, efAeB= eC"' and from Lemma 5.3, 

{exp[Ad C(t)])H = erA(eBHe-B)e-tA = [exp(Ad rA)](exp Ad B)H 

for any H t L,. Thus 

(1.21) exp[Ad C(t)] = [exp(Ad tA)] exp(Ad B), 

and for A ,  B such that 1 1  [exp(Ad tA)] exp(Ad B) - En* I (  < 1 for all 0 < t 5 
1, then 
(1.22) Ad C(t) = ln([exp(Ad I A ) ]  exp Ad B ) .  
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By definition of C(t), 
e C ( t )  d e - C ( t l / d t  = - e f A e B e - B e - t A A  ~ - A  

Lemma 5.4 implies 
(1.23) f(Ad C(t))C(t) = A ,  

wheref(z) = (ez - l)/z. We can solve this expression for C(t) by noting that 
f(ln z)g(z) = 1 for 11 - zI < 1. Thus, f(1n F)g(F)  = En, for any n2 x n2 
matrix F with 1 1  En, - F 1 1  < I .  In particular, g ( F )  =f(ln F)-I .  Setting F = 

[exp(Ad tA)] exp(Ad B )  and using ( I  .22), we see that (1.23) becomes 
(1.24) C(t) = g[[exp(Ad t A ) ]  exp(Ad B ) ] ( A )  

or 

(1.25) eft) = s' g{[exp(Ad t A)] exp(Ad @)(A)  dt + C, , 

where C ,  is a constant matrix. Since C(0) = In ea = B, C, = B. Expression 
(1.19) follows from (1.25) by setting t = 1. Expression (1.20) is obtained by 
writing out the power series expansion of the integrand in (1.19) and integrat- 
ing term by term. Q.E.D. 

The preceding theorem will prove to be of great importance in the theory 
of Lie groups. 

5.2 Local Lie Groups 

Roughly speaking, a Lie group is an infinite group whose elements can be 
parametrized analytically. Thus, any group element g can be denoted g(1,, 
. . . , A,) in terms of parameters A,, . . . , 1,. The parameters of the product 
gg' are analytic functions of the parameters of g and g'. Using the notion of 
Lie group one can apply both calculus and algebra to group theory and obtain 
many results which neither discipline alone yields. 

We denote by F the  field of either the real numbers R or complex numbers 
6. Let F, be the vector space of n-tuples g = (gl ,  . . . , gn), gi E F, and let 
e = (0, . . . , 0) be the zero vector in  F.. Suppose V is an open set in F. con- 
taining e. (We adopt the usual topology for n-tuples. The reader can choose 
V as an open sphere in n-space.) 

Definition. An n-dimensional local Lie group G in the neighborhood V G 
Fn is determined by a function cp(g, h) with the following properties: 

(1) cp(g, h) E F,, for all g, h E V.  
(2) cp(g, h) is an analytic function of each of its 211 arguments. 

(4) cp(e, g) = g(g, e) = g for all g E V. 
(3) If cpk h) E v and cp(h k) E V then cp(cp(g, h), k) = cpk, cp(h, k)). 
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To make the above definition more palatable we write q ( g ,  h) = gh. 
[We interpret q ( g ,  h) as the product of the group elements g and h.] Then 
property ( 3 )  is easily recognized as the associative law (gh)k = g(hk). Prop- 
erty (4) becomes eg = ge = g and shows that e is the identity element for 
group multiplication. 

We have not required the existence of an inverse for a group element. 
However, this fact follows from properties (2)-(4). An inverse for g E V 
would be a group element x such that q ( g ,  x) = gx = e. Let q j ( g ,  x) be the 
components of the n-tuple q ( g ,  x). Then from property (4) we have [dpj/ 
dx,(e, x)]l,=. = J i j .  It follows that the Jacobian det[dp,/dx,(e, e)] = I .  
Therefore the inverse function theorem (Apostol [I])  guarantees the existence 
of a unique solution x E Vof the equation q ( g ,  x) = e for all g in some open 
set V,, (e E V,  c V ) .  Furthermore the components of x are analytic func- 
tions of the parameters of g .  This proves the existence of a right inverse x, of 
g for g E V,. Similarly, we could find a unique left inverse x, for each 
g E V,,  an open set containing e. Let V- '  = V,  n V,. Then V-I is an open 
set containing e and for each g E V - '  we have 

x, = x,e = x,(gx,) = (x,g)x, = ex, = x, 

so the left and right inverses coincide. We write x, = x, = g - I .  
By the implicit function theorem for h E V the mapping x - hx, x E 

U, is a homeomorphism of a suitably small neighborhood U of e onto a 
neighborhood U' of h. Indeed U' = hU. 

A local Lie group G is not necessarily a group in the sense of Chapter 1. 
Indeed the group axioms are satisfied only for elements in a sufficiently small 
neighborhood of e. It may not even make sense to write gh for n-tuples g ,  h 
not both in V. Furthermore an n-tuple g E V will not in general have a unique 
inverse unless g E V-'  G V. It is useful (and correct) to think of a local Lie 
group as a neighborhood of the identity element of a (global) group. 

If F = R, then G is a real local Lie group; if F = Q, G is a complex group. 
For the time being we shall develop the theory of real and complex Lie groups 
simultaneously. 

As an example of a local Lie group consider the matrix group GL(m, 6). 
We can uniquely write any m x m matrix g in the form 

g = (g. 11 .) = (aij + x i j ) ,  1 < i, j ni 

where is the Kronecker delta. For all (x i j )  in a suitably small neighborhood 
of the zero matrix, det(6,, + x i j )  # 0, so g E GL(m, &) and we can para- 
metrize the group using the m2 parameters x i j .  It is easy to find a smaller 
neighborhood V of the zero matrix such that for ( x i j ) ,  ( x i j )  E V the matrix 
product g(x,,)g'(xj,) can be expressed as g"(xi>), where the parameters xji 
are analytic functions of x i j  and x i j .  Finally, the identity element e of 
GL(m, 0) corresponds to the parameters x i j  = 0. Thus, GL(m, &) is an 
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m2-dimensional complex local Lie group in the neighborhood V. Similarly, 
GL(m, R)  is a real local Lie group. 

Our definition of GL(rn, a) as a local Lie group depends on the selection 
of coordinates x , ~  and neighborhood V. If we adopt different coordinates or 
choose a different neighborhood then we obtain a different local Lie group. 
However, we will show that all such local Lie groups are essentially the same, 
i.e., they are locally isomorphic. For this reason it  makes sense to speak of 
rhe local Lie group CL(m,Cr) without explicitly mentioning the choice of 
local coordinates. 

Most of the local Lie groups encountered in applications are groups of 
matrices. It is convenient, therefore, to introduce the concept of a local linear 
Lie group. Let W be an open, connected set containing e in the space F, of 
all n-tuples g = (gl, . . . , g"). (Without loss of generality the reader can as- 
sume W is an open sphere with center e.) 

Definition. An n-dimensional local linear Lie group G is a set of m x m 
nonsingular matrices A(g)  = A ( g , ,  . . . , g,,), defined for each g E W ,  such 

A(e) = Em (the identity matrix). 
The matrix elements of A(g) are analytic functions of the parameters 
g l , .  . . , g n  and the map g -? A ( g )  is 1-1. 
The n matrices dA(g)/dgj, j = I ,  . . . , n, are linearly independent 
for each g E W. That is, these matrices span an n-dimensional sub- 
space of the m2-dimensional space of all rn x m matrices. 
There exists a neighborhood W '  of e in F,, W '  c W, with the prop- 
erty that for every pair of n-tuples g, h in  W' there is an n-tuple k 
in W satisfying 

A(g)A(h) = A(k) 

where the operation on the left is matrix multiplication. 

Every local linear Lie group G defines a local Lie group. Indeed we can 
identify the matrix A(g) with the group element g. It follows from (2), (3), 
and the implicit function theorem that the parameters gi are analytic functions 
of the matrix elements of A(g) .  Then (4) implies that there exists a nonzero 
neighborhood V of e such that k = cp(g, h) for all g, h t V where cp is an 
analytic vector-valued function of its 2n arguments and g, h, k are related 
by (2.1). (Clearly we can assume V G W ' . )  Thus, 

(2.2) A(g)A(h) = 4cp(g, h)). 

Since matrix multiplication is associative, cp(g, h) satisfies the associative law. 
Finally, A(e) = Em, so q(e, g) = cp(g, e )  g for all g E V.  This proves that 
an n-dimensional local linear Lie group is an n-dimensional local Lie group. 
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I t  is now apparent that GL(m, 6) is an m2-dimensional local linear Lie 
group. However, GL(rn, 6) is not only a local Lie group, i t  is also a group 
in the abstract sense of Section 1. I ,  i.e., i t  is a global group. This remark leads 
us to the notion of a Lie group. A (global) Lie group G is ( I )  an abstract group 
and ( 2 )  an analytic manifold such that (3) group multiplication and group 
inversion are analytic with respect to the manifold structure. Unfortunately, 
it would take many pages to clarify this definition, particularly property (2 ) .  
Rather than embark on such a topological digression, we refer the interested 
‘reader to Helgason [ I ]  or Hausner and Schwartz [l], and merely show how one 
can construct a (global) linear Lie group from a local linear Lie group. Since 
the vast majority of Lie groups occurring in physics are linear Lie groups this 
simplification of the theory is worthwhile. 

Let C be a local linear Lie group consisting of m x m matrices. We will 
define the (connected) global linear Lie group G containing G. Algebraically, 
G is the abstract subgroup of GL(m, 6 )  generated by the matrices of G. That 
is, G consists of all possible products of finite sequences of elements in G. 
In addition, the elements of can be parametrized analytically. If B E G 
we can introduce coordinates in a neighborhood of B by means of the map 
g -’ BA(g)  where g ranges over a suitably small neighborhood 2 of e in F,. 
In particular, the coordinates of B will be e = (0, . . . , 0). Proceeding in this 
way for each B t G we can cover (? with local coordinate systems or “coordi- 
nate patches.” The same group element C will have many different sets of 
coordinates depending on which coordinate patch containing C we happen 
to consider. Suppose C lies in the intersection of coordinate patches around 
B ,  and B , ,  respectively. Then C will have coordinates g , ,  g , ,  respectively, 
where C = B , A ( g , )  : B,A(g , ) .  Since 

A ( g , )  - BY’BzA(gz), A(&) = B i ’ B , A ( g , )  

i t  follows that in a suitably small neighborhood of e the coordinates g ,  are 
analytic functions g ,  = p ( g , )  of the coordinates g , ,  p is 1-1, and the Jacobian 
of the coordinate transformation is nonzero (Freudenthal and De Vries 
[I ] ,  Cohn [l]) .  Thus, every element of G is covered by coordinate neighbor- 
hoods and the transformation relating any two overlapping neighborhoods 
is (a) 1-1, (b) analytic, and (c) has a nonzero Jacobian. This makes G into an 
analytic manifold. In addition to the coordinate neighborhoods described 
above we can always add more coordinate neighborhoods to G: provided 
they satisfy conditions (a)-(c) on the overlap with any of the original coordi- 
nate systems. We leave i t  to the reader to show that the Lie group G is con- 
nected. That is, any two elements A ,  B in (? can be connected by an analytic 
curve C(t)  lying entirely in(?. Here t is a real parameter, 0 5 t < 1, C(0) = A ,  
C( I )  = B, and whenever C(t) E G lies in  a coordinate patch, its coordinates 
g ( t )  are analytic functions o f t .  ( I t  is enough to show that any element A in 
c can be connected to the identity by an analytic curve in (?. For, if A is 
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connected to Em and Em is connected to B, then the composite curve connects 
A to B.) 

In general an n-dimensional (global) linear Lie group K is an abstract 
matrix group which is also an n-dimensional local linear group. A linear 
Lie group need not be connected. Clearly GL(m, CS) is an m2-dimensional 
Lie group. A single coordinate patch suffices to cover GL(m, CS), but this is 
not true for other Lie groups such as O(m). Furthermore, we shall show later 
that GL(m, 9) is connected, but O(m) is not. 

5.3 Lie Algebras 

Let G be a local Lie group defined in the neighborhood V c F,,. An 
analytic curve through the identity on G is a mapping t - g(t) = (g,(t), 
. . . , g,(t)) of a neighborhood of 0 t F into V such that g(0) = e and the 
g,(t) are analytic in t .  The tangent vector to g(t) at e is the vector 

(3.1) a = [dg(t)/dtl It=,, = ( g , ( O ) ,  . . . , g , ( O ) )  E F,. 
Every vector in F, is the tangent vector at  e for some analytic curve. Indeed, 
the curve 

(3.2) at = (a,t, a,t, . . . , a,t) 

clearly has the tangent vector a = (a, ,  . . . , a,) at e, so we can identify 
the set of tangent vectors with F.. In particular the tangent vectors at e form 
an n-dimensional vector space. 

For g, h E V we have gh = q(g, h), where q is an analytic vector-valued 
function of its 2n arguments. Thus, the components (gh), = pl,(g, h) can be 
expressed as Taylor series in g,, h, about g = h = e. Since q(e, g) = q(g, e) 
= g there follows 

Qj(g, h) = gj + hj + C C j . , s g l h s  + r j k  h), 
I , * = l  

(3.3) 

where r j  consists of terms of order greater than two in g, ,  h, and 

(3.4) cj.13 = (dz/dg, dhs)Vj(g, h) I B = b = e *  

We now examine the relationship between analytic curves through e 
and vector space operations on tangent vectors. Let g(t), h(t) be analytic 
curves through e with tangent vectors a, 8, respectively. Then for any con- 
stants a, b E F, k(t) = g(at)h(bt) = cp(g(at), h(bt)) is also an analytic curve 
through e. The tangent vector y = k(0) can be obtained by differentiating 
both sides of (3.3): y = act + bj?. [Note that only the first two terms on the 
right-hand side of (3.3) contribute to the result.] Here the plus sign (+) 
refers to vector addition in F,. 

The curve e(t) = e obviously has tangent vector t9 = (0,. . . , O )  at e. 
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Let a' be the tangent vector at e of the analytic curve g-'(t). Since e( t )  = 

g(t)g-I(t) it follows that 8 = a + a', or a' = -a. 
The preceding results use only the first-order terms in the expansion for 

q(g, h). We now introduce an operation on tangent vectors at e which depends 
on the second-order terms. With g(t), h(t) as given above, we define the 
commutator [a, p ]  of a and p as the tangent vector at  e of the curve 

(3.5) k(t) = g(z)h(z)g-'(z)h-'(z), t = z2. 

Thus, 

(3.6) [a, PI = [d/d(z2)lg(z)h(7)g-'(7)h-'(7) I r = O  9 

or more precisely, [a, P ]  is the coefficient of 72 in the Taylor series expansion 
for k. (This definition makes sense even if k is not an analytic function of 
zZ, because the coefficient of 7 is zero.) 

Theorem 5.6. [a, PIj  = Cf,5=,  c\saIPs, 1 < j  5 n, where c:* = c ; , ~ ~  - c j , s l .  

Proof. We write gj(z), hj(7), k j ( t )  as Taylor series, 

gj(z) = ajz + bjr2 + * * , hj(7)  = Pj7 + C;Z' + . . * , 
kj(2> = pj7 + ajz2 + . . . , 

where the omitted terms are of order greater than two. Clearly [a, p ] ,  = aj 
if pi  = 0. We will verify that pi  = 0. Since k(t)h(z)g(z) = g(z)h(7) we find 
by (3.3) 

( p j  + P I  + aj>7 + [aj + cj -t bj + C cj,Is(B1as + + p , B s ) b 2  

= ( P j  + aj)7 + (cj  4- bj + C ~j,l~aiP~)7~, 
where only the terms of order less than three are written explicitly. Comparing 
first-order terms in z on both sides of the identity, we obtain p j  = 0. A com- 
parison of second-order terms yields a; = C (cj,,$ - C , , , ~ ) ~ , P , .  Q.E.D. 

The cy are called the structure constants of G. A knowledge of the struc- 
ture constants yields information about the second-order terms in the expan- 
sion of q(g, h). It is, however, a remarkable fact that one can essentially 
determine the function q(g, h) from the structure constants, i.e., all informa- 
tion conveyed by the local Lie group G is already contained in the cy. For 
example, if G is abelian (gh = hg for all g, h E V )  then it follows from (3.6) 
that [a, 81 = 8 for all tangent vectors a, P at e,  and the structure constants 
are all zero. Conversely, we shall show that if the structure constants are 
zero then G is necessarily abelian. 

The basic properties of the commutator are given by the following theo- 
rem. 
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Proof. Properties (1) and (2) follow directly from the expression for the 
commutator in Theorem 5.6. The Jacobi equality is an expression of the 
associative law (gh)k = g(hk) for local Lie groups. It is an identity for 
the structure constants which is obtained by substituting (3.3) into the associ- 
ative law and equating terms of the same order. Q.E.D. 

Definition. The Lie algebra L(G) of a local Lie group G is the set of all tan- 
gent vectors at e equipped with the operations of scalar multiplication, vector 
addition, and commutator product. 

Definition. An abstract Lie algebra S over Fis  a vector space over F together 
with a product [a, 81 E S defined for all a, P E 6 such that for all a, P ,  
y E $j and a, b E F (0 is the zero vector): 

(1 )  [a, PI = - [A  a]. 
(2) [@a + bP, rl = a[& 71 + b[P, rl- 
(3) “a, PI, ri + “7, mi, 81 + “8, y1, 011 = 0. 
Property (1) expresses the skew-symmetry of the commutator, while (1) 

and (2)  imply that [a, P] is bilinear. The identity (3) is again called the Jacobi 
equality. We will always assume that S is a finite-dimensional vector space. 

Clearly, L(G) is an abstract Lie algebra. It is not clear (but true) that any 
abstract Lie algebra is in fact the Lie algebra of some local Lie group. The 
exact meaning of this statement will be clarified later. 

The significance of our results concerning Lie algebras and commutators 
becomes much clearer when we consider linear Lie groups. Let G be an 
n-dimensional local linear Lie group of m x m matrices and let A ( t )  = A(g(?)), 
A(0)  = Em, be an analytic curve through the identity. We can identify the 
tangent vector a at e with the matrix 

Thus, we identify the tangent space at e with the space of all m x m matrices 
of the form (3.7). From the definition of linear Lie groups, the set {ej]  is 
linearly independent and spans an n-dimensional subspace of the space of 
all m x m matrices. Since the vectors a are arbitrary we see again that the 
tangent space is n-dimensional. 
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Many of the properties which were obtained for general local Lie groups 
are much simpler to verify for local linear Lie groups. For example, let 
A ( t ) ,  B ( t )  be analytic curves in G with tangent matrices a, 63 at the identity. 
Since 

(3.8) (d/dt)(A(t)B(t))  = 4 t ) ~ ( t )  i ~ ( t P ( t )  

and A ( 0 )  = B(0) = Em, it follows that A ( t ) B ( t )  is an analytic curve with 
tangent matrix a + 63 a t  E m .  

With A( t ) ,  B ( t )  as above we define the commutator of the tangent matrices 
a, 63 by 
(3.9) [a, 631 = (d /d t ) [A(T)B(T)A~' (T)B- ' (T)] ,=o,  

where r = T ~ ,  i.e,. [a, 631 is the tangent matrix a t  the identity of the curve 
C(t) = A ( T ) B ( T ) A - ' ( T ) B ~ ' ( T ) .  

Theorem 5.8. [a, 631 = a63 - 638 t L(G). 

Proof. We copy the proof of Theorem 5.6 taking advantage of the simplifica- 
tions afforded by matrix groups. Expanding A(T) ,  B(T), and C(r) as Taylor 
series in T we find 

A(T) = Em + a?. - 1 .  a'T2 $- . . . , 
c(t) = Em 4- (37 + (3'2' -1 

B(T) = Em + 637 -k @ITz -1~ . . . , 
. . . . 

We will show that e = 2, so (3.9) is weli-defined and e' = [a, 631. Since 
C(t)B(z)A(T) = A(T)B(T) there follows the identity 

E,+(a+C%+e)T+(a'-I 63'+e'-I-63a+e63-~-ea)T2~f . * .  

= Em -1 (a + @)T f (a' -1 @' -k a63)T2 i- . . . . 
Equating terms in T and T* we find e = 2 and e' = a63 - @a. Q.E.D. 

Clearly, L(G) cannot be an arbitrary subspace of matrices, for we must 
have [a, 631 E L(G) for all a, 63 E L(G). This requirement greatly restricts 
the possibilities for matrix Lie algebras. 

Using Theorem 5.6 and (3.7), we can relate the structure constants cy 
of G to the matrix commutator: 

(3.10) 
n 

[e,, e,] = c cyej, 1 I I, s I n. 
,= 1 

It follows directly from Theorem 5.7 that the matrix commutator is skew- 
symmetric, bilinear, and satisfies the Jacobi equality. However, it is worth- 
while to verify these properties directly from the definition [a, @] = a63 - 
6336. Skew-symmetry and bilinearity are trivial to check. Moreover, as the 
reader can easily show, the matrix commutator automatically satisfies the 
Jacobi equality. Thus, a set 9 of m x m matrices which is closed under addi- 
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tion of matrices, scalar multiplication, and matrix commutation is necessarily 
a Lie algebra. It is not necessary to check the Jacobi equality. (Note: We do 
not yet know that 6 is actually the Lie algebra of some local Lie group.) 
This fact makes matrix algebras much easier to study than general abstract 
Lie algebras. 

Fortunately, we can restrict ourselves to the study of matrix Lie algebras 
with no loss of generality. To show this we need the concepts of homomor- 
phism and isomorphism of Lie algebras. Let S, 9’ be abstract Lie algebras 
over F with operations +, [-, -1 and +’, [-, -If, respectively. 

Definition. A homomorphism from 9 to 6’ is a map z: 6 --t 6’ such that 

(1) z(aa + bp) = az(a) + W p ) .  
(2) r([a, PI) = [r(a), ‘dp)]‘, a, b E F, a, p E 6. 

A Lie algebra homomorphism which is a 1-1 map of 6 onto 6’ is an isomor- 
phism. An isomorphism of 6 onto 6 is an automorphism. 

Note that a homomorphism z is a linear mapping of 9 into 6’ which 
preserves commutators. We can identify isomorphic Lie algebras 9,s’ since 
they have the same structure as abstract Lie algebras. 

Theorem 5.9 (Ado). 
Lie algebra. 

Every abstract Lie algebra is isomorphic to a matrix 

The proof of Ado’s Theorem is difficult and will not be given here (see 
Jacobson [I]). Moreover, there is no known general method to construct 
a matrix Lie algebra isomorphic to any given abstract Lie algebra, even 
though such a matrix algebra must exist. We quote Ado’s theorem as moral 
support. Even though we limit ourselves to matrix Lie algebras in the follow- 
ing sections, we will actually be studying all Lie algebras (up to isomorphism). 

Definition. A (local) analytic homomorphism of a local Lie group G into a 
local Lie group G‘ is a map p :  G -+ G’, where p(g) is defined for g in a sui- 
tably small neighborhood W of e such that 

(3.1 1 )  Agh) = p(g)p(h), g, h, gh E G3 

and p is an analytic function of the coordinates of G. The group multiplica- 
tion on the right-hand side of (3.1 1) takes place in G’. If p is a 1-1 homo- 
morphism of G onto a neighborhood of e’ in G’ such that the mapping 
p - l :  G’ + G is analytic, then p is called an isomorphism and G is (locally) 
isomorphic to G‘. An isomorphism of G onto G is an automorphism. 

It follows from (3.11) that p(e )  = e’, where e’ is the identity element of 
G‘, and p(g-’) = p(g)-I for g in a suitably small neighborhood of e .  Note 
that p is purely local. Even if G and G‘ are (global) Lie groups, it is not 
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necessary that p be defined on all of G. Furthermore, p need not be an 
abstract group homomorphism of G in the sense of Chapter 1, since (3.11) is 
required to hold only in a neighborhood of e. As usual, we identify isomor- 
phic local Lie groups. 

In  Section 5.5 it will be shown that two local Lie groups are isomorphic 
if and only if they have isomorphic Lie algebras. 

5.4 The Classical Groups 

Here we introduce the classical groups, a family of linear Lie groups which 
is of fundamental importance in physics and geometry. The reader should 
note the significant role of Theorem 5.3 in the following analysis. Among the 
classical groups are the following. 

G, = GL(m, 0) .  We have already seen that G, is an rnz-dimensional com- 
plex Lie group. (If we write the complex coordinates as sums of real and 
imaginary parts we can also consider G, as a 2m2-dimensional real Lie group.) 
The Lie algebra of this group consists of all matrices of the form 

a = (d/dt)A(r)  1,- 0, 4 0 )  = Em, 

where A( t )  is a n  analytic curve in G,". Clearly U is an m x m matrix. Converse- 
ly, if a is any m x m matrix then A ( t )  = exp ta is an analytic curve in G, 
with tangent matrix a. [See expression ( I ,  14).] Thus, L(G,) is the &dimen- 
sional space of all m x m matrices. There is an analogous result for the real 
Lie group GL(m, R).  

SL(m) = SL(m, 0).  The special linear group 

SL(m) = { A  c GL(rn, a): det A = 11 

is an (mz  - I)-dimensional complex Lie group. Indeed, by Theorem 5.3 
and Corollary 5.3, every A E SL(m) sufficiently close to the identity can be 
written uniquely in the form A = exp a, where a is an m x m matrix with 
t r  a 0. It is easy to see that a has m2 - I independent parameters which 
can be used as local coordinates for SL(m). With these coordinates SL(m) 
is a complex linear Lie group. [If we write the matrix elements of a in terms 
of real and imaginary parts we can also consider SL(m) as a 2(m2 ~ 1 ) -  
dimensional real Lie group.] 

Theorem 5.10. 
of trace zero. 

The Lie algebra of SL(rn) is the space of all m x m matrices 

Proof. Let A ( t ) ,  A ( 0 )  = Em, be an analytic curve in SL(m). For t sufficiently 
close to zero we can write A ( t )  = exp a([), a(0) = Z ,  where a(t) is an analytic 
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curve in the space of traceless matrices. Let 63 = &(O). Since d/dr(tr a(t)) = 

tr & ( I )  we have t r  63 = 0. A simple computation shows that 63 is the tangent 
matrix to  A ( t )  at  Em. 

Conversely, let 63 be an m x m matrix with tr 63 = 0 and consider the 
analytic curve A(?)  = exp t(B. Since det A(?)  = exp (tr t63) = 1, the curve 
A( t )  lies in SL(m). Furthermore A(0)  = Em, and the tangent matrix to A ( t )  
at  Em is k(0) = 63, so 63 is an eIement of the Lie algebra. Q.E.D. 

There is a similar result for the real Lie groups SL(m, R).  

O(m) = O(m, Q). Recall that O(m) is the group of all complex matrices 
A such that A'A = E,,,. For each A E O(m) sufficiently close to Em we can 
find a unique matrix a sufficiently close to Z such that A = e x p a .  Since 
A E O(m), we have (exp at)(exp a) = Em = exp Z .  For a sufficiently close 
to 2 this is possible only if at + a = Z, i.e., only if a is skew-symmetric. 
Conversely, if a is skew-symmetric and A = exp a then A'A = exp a'. 
exp a = Em, so A E O(m). We can use the independent matrix elements of 
a as local coordinates for O(m). As the reader can check, there are m(m - 1)/2 
independent matrix elements in an m x m skew-symmetric matrix, so 
O(m) is an m(m - 1)/2-dimensional complex Lie group, [or an (m2 - m)- 
dimensional real Lie group]. 

Theorem 5.11. 
symmetric matrices. 

The Lie algebra of O(m) is the space of all m x m skew- 

Proof. Let A(t) ,  A(0) = Em, be an analytic curve in O(m) with tangent 
matrix a at  the identity. Differentiating the expression At(t)A(t)  = Em and 
setting f = 0 we find a' + a = Z .  Thus, the elements of the Lie algebra are 
skew-symmetric matrices. 

Conversely, let a be a skew-symmetric matrix. Then A ( t )  = exp ta is 
an analytic curve in O(m) with tangent matrix k(0) = a, so a E L(O(m)). 
Q.E.D. 

There is a similar result for O(m, R).  
Note that the elements of O(m) which lie in a small neighborhood of the 

identity all have determinant + 1. Indeed if A = exp a with at = -a then 
det A = exp(tr a) = + 1 since the trace of a skew-symmetric matrix is zero. 
Thus, the Lie algebra of O(m) is exactly the same as the Lie algebra of SO(m) 
= SO(m, (5): 

SO(rn) = ( A  E O(m): det A = +I}.  
We shall see later that SO(m) is a connected Lie group. In particular, every 
A E SO(m) can be connected to the identity by an analytic curve A(t ) ,  
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A(0)  = Em, A(1)  = A,  0 I t 5 1, which lies entirely in SO(m). However, 
O(m) is not connected. If it were, we could find an analytic curve A(! )  in 
O(m) such that A(0) = Em and A ( I )  = -Em. Then for m odd, detA(t) 
would be an analytic function of t taking only the values *I  with det A(0)  
= -det A(1)  = 1. No such function exists. Thus, O(m) consists of two con- 
nected components, the cosets SO(m) and -E,,,.SO(m). We leave to the 
reader a verification that O(m) also has two connected components for m 
even. 

U(rn). The unitary group is the set 
U(m) = { A  E GL(m, 6): PA = E m ]  

of all m x m unitary matrices. Given A E U(m) in a sufficiently small neigh- 
borhood of Em we can find a unique matrix a in a sufficiently small neighbor- 
hood of Z such that A = e x p a .  The requirement AtA = Em implies exp 
@ exp a = Em or  exp sufficiently close to Z this implies 
at = -a, i.e., a is skew-Hermitian. On the other hand if a is a skew-Her- 
mitian matrix and A = exp a then ' A  = exp a exp a = E m ,  so A E V(m). 
Thus we can use the matrix elements of a to provide local coordinates in 
V(m). As the reader can check, an m x m skew-Hermitian matrix has m2 
real independent parameters. (Write the matrix elements of a in terms of 
real and imaginary parts.) Using these parameters as local coordinates we 
see that U(m) is an m2-dimensional real Lie group. Here U(m) is a real Lie 
group even though it consists of complex matrices. 

= exp( -a). For 

Theorem 5.12. The Lie algebra of U(m) is the space of all m x m skew- 
Hermitian matrices. 

Proof. Analogous to Theorem 5. I 1 

If a is skew-Hermitian then the matrix X = -ia is Hermitian, i.e., 
= X. Thus, any unitary matrix A sufficiently close to the identity can be 

expressed A = exp ( i X ) ,  where X is Hermitian. It is of considerable interest 
that such an expression is valid for all unitary matrices A ,  not just those 
sufficiently close to the identity. 

Theorem 5.13. 
such that A = exp(iX). 

Proof. We know from linear algebra that the eigenvalues E ,  of A take the 
form E, = eieJ, Oj  r ea l , j  = I ,  . . . , m, and that A can be diagonalized by a 
unitary similarity transformation. Thus there exists B E V(m) and a diagonal 
matrix D with diagonal entries, elst, . . . , e'O,, such that BAB-' = D (Fink- 

I f  A E U(m) there exists a Hermitian matrix X (not unique) 
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beiner [l]). Clearly, D = exp(iD), where 9 is the diagonal matrix with matrix 
elements 8,, . . . , O m  down the diagonal. Thus A = B-IDB = exp(iX), 
where X = B-IDB. The matrix X is Hermitian because Xt = #6(@)-l 
= B-'a)B = X. Q.E.D. 

We can use the above result to show that U(m) is connected. Indeed, for 
t < 1, any A E U(m) the matrix function A( t )  = exp(itX), A(1) = A ,  0 

defines an analytic curve in U(m) connecting A to Em. 

SU(m). The special unitary group is the set 

SU(m) = { A  E U(m): det A = + I ) ,  
a subgroup of U(m). Recall that ldet A 1 = 1 for A E U(m). It is left to the 
reader to show that SU(m) is an (mz - 1)-dimensional real Lie group whose 
Lie algebra consists of all skew-Hermitian matrices with trace zero. 

Sp(m). Let J be the 2m x 2m skew-symmetric matrix 

Definition. A symplectic matrix is a 2m x 2m complex matrix A such that 
A'JA = J.  The symplectic group Sp(m) = Sp(m, CS) is the set of all 2m x 
2m symplectic matrices. 

Theorem 5.14. Sp(m) is a matrix group. 

PruuJ Clearly the identity matrix belongs to Sp(m). Suppose A ,  B E 

Sp(m). Then (AB)'J(AB) = BYAtJA)B = BtJB = J,  so AB E Sp(m). 
Thus, we need only show that A - *  belongs to Sp(m) for each A E Sp(m). 
Taking the determinant of both sides of the identity A'JA = J and using the 
fact det J = 1, we obtain (det A ) 2  = 1, so A and A' are invertible. Then ( A - I y  
JA-I = (A')-'(A'JA)A-' = J and A-I E Sp(m). Q.E.D. 

Since J-'  = --J the relation &JA = J implies A - l =  -JAtJ. 
For A E Sp(m) in a sufficiently small neighborhood of E,, we can find 

a unique matrix a in a sufficiently small neighborhood of 2 such that A = 

exp a. Since A-I = J-IA'J it follows that exp(-a) = J-'(exp at)J = exp 
(J - 'a tJ ) ,  or -a = J-IatJ for a in a sufficiently small neighborhood of 2. 
This result is usually expressed in the form Ja + a'J = Z .  Conversely, if 
A = exp a, where a satisfies the preceding equality, then it is easy to show 
that A E Sp(m). Thus, Sp(m) is a complex Lie group with the independ- 
ent matrix elements of a as parameters. As the reader can check, there are 
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2mZ + m independent parameters. Note that we can also consider Sp(m) 
as a (4m2 + 2m)-dimensional real Lie group. 

Theorem 5.15. 
matrices a such that J(2 + atJ = Z .  

The Lie algebra of Sp(m) is the space of all 2m x 2m 

Proof. Analogous to Theorem 5.1 I .  

In each of the above examples, every element A of the Lie group G suf- 
ficiently close to the identity can be expressed uniquely in the form A = exp 
(2, where a is an element of the corresponding Lie algebra L(G) sufficiently 
close to Z .  Thus the structure of G as a local Lie group is uniquely determined 
by L(G). In the next section we shall show that this is a general property of 
local Lie groups: G is uniquely determined by L(G). Thus, all questions 
concerning the structure of G can be reduced to purely algebraic questions 
about the structure of the Lie algebra L(G). 

5.5 The Exponential Map of a Lie Algebra 

Let G be a local Lie group, not necessarily a matrix group. If g, h E V 
then 

gh = cp(g, h) = (cp,(g, h), . * ’ 1 p,(g, h)) 

is an analytic function of g and h. For fixed h we expand this function in a 
Taylor series about g = e :  

FijW = tdPik!, h>/&?jl I F C ,  

where the omitted terms are of order two or more in the gj. By the associative 
law, g(hk) = (gh)k for g, h, k E V sufficiently close to e. Expanding each 
side of this equality about g = e ,  we find 

d g ,  hk) = cp,(h, k) + f: gjFij(hk) + . . . , (5.2) 
j= I 
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Let g ( t )  be the analytic curve in G defined in some neighborhood W of 
0 E F such that g ( 0 )  = e and 

(5.5) g(s)g(t) = qP(g(s), g(t)) = g ( s  + t ) ,  s, t ,  s -1- 2 E W. 

Such a curve is called a one-parameter subgroup of G. Suppose, a E L(G) 
is the tangent vector to g(t)  at e. Differentiating (5.5) with respect to s, setting 
s = 0 and making use of ( 5 4 ,  we obtain the system of differential equations 

dgi(t)/dt = 2 a j F i j ( g ) ,  i = 1 ,  . . 9 n. 
/ =  1 

(5.6) 

Thus, g(r) is a solution of the differential system (5.6) such that g(0) = e, 
i.e., gi(0) = 0. 

Now (5.6) is a system of first-order analytic ordinary differential equa- 
tions. There is a standard existence and uniqueness theorem for such systems 
which states that for given constants a = ( a , ,  . . . , a,) in  V, Eq. (5.6) have 
one and only one solution g(r)  with g ( 0 )  = a. This solution is defined and 
analytic for all I t 1 < E ,  where E > 0 depends on the Fij  but not on a (see 
Ince [I]). 

We derived (5.6) by assuming g(r)  was a one-parameter subgroup with 
tangent vector a. Now we choose an arbitrary a E L(G), and look for a 
solution g(r)  of (5.6) such that g ( 0 )  = e .  [Recall that the functions F i j ( g )  
are known.] By the theorem quoted above, there exists a unique solution, 
defined and analytic for 1 t I < E .  We write g(r)  = exp at. 

Theorem 5.16. The integral curve g ( t )  = exp at is a one-parameter subgroup 
of G with tangent vector a a te .  In particular, exp a(s + t )  = (exp as)(expat) 
for suitably small values of 1s 1, 1 t I. 

Proof. We have shown that expat is an analytic curve in G such that 
exp a0 = e. By (5. I ) ,  Fij(e) = ai j .  Setting t = 0 in (5.6) we find gi(0) = a,, 
1 i 5 n, so a is the tangent vector to exp ar at e. Let h(t) = g(s + r )  = 

exp a(s -t r )  for fixed s sufficiently close to zero. Then 

(5.7) &(' + ') = 2 ajFij(h(t) ) ,  hi(r)  = h(0) = g ( s ) ,  dt j =  1 

as follows easily from (5.6). On the other hand the function k(t) = g ( t ) g ( s )  
satisfies 

d v i ( g ( 0 ,  ~ 2 d9i(&), a .F . (g(r ) )  
J I /  d t  j , /  I d h ,  

(5.8) k i ( l )  = 

2 ajFij(k(l)), k(0) g(s). 
j - l  

Here we have made use of (5.4) and (5.6). The expressions d v , / d h ,  refer to 
the derivatives of (pi  with respect to its first n arguments. Thus h(t) and k(t) 
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satisfy the same differential system and have the same value at t = 0. Accord- 
ing to the uniqueness theorem these solutions must be equal: h(t) = k(t). 
Therefore, (exp as)(exp at) = exp a(s + t ) .  Q.E.D. 

This proof shows that for each a E L(G) there is a unique one-parameter 
subgroup with tangent vector a at the identity. Furthermore, every one- 
parameter subgroup (5.5) is of the form g ( t )  = exp at. Our notation suggests 
the relation 

(5.9) exp (act) = exp a(at) 

for a F, a t L(G), and sufficiently small values of 1 t I. That is, if g , ( t )  = 

exp at then (5.9) asserts go&) = g,(at). The reader can check this equality by 
verifying that both sides of (5.9) are one-parameter subgroups of G with 
tangent vector aa at e .  

It follows that we can extend the definition of exp at to all a E L(G) 
and f E F i n  such a way that 
(5.10) (exp as)(exp at)  -= exp a(s $- t ) .  

Indeed exp at is originally defined for 1 t 1 < E and all a. I f  1 t 1 2 E we define 
exp at = exp aa(t/a), where a is any constant such that I ?/a I < E .  The 
reader can verify that this definition is independent of a and leads to an entire 
function o f t  satisfying the group property (5.10). 

For fixed t ,  g ( t )  = exp at is an entire function of a , ,  . , . , a,. To see this 
we expand g ( f )  in a Taylor series about t = 0: 

Now gk(0) = ak, and in general gL””(0) is a homogeneous polynomial of 
order m in  a , ,  . . . , a,. [This follows from (5.6),  the chain rule, and a simple 
induction argument.] Since for suitably small fixed f f 0 the Taylor series 
converges for all a , ,  . . . , a, it follows that g ( t )  is an entire function of these 
variables. 

Now set t = 1 and consider the exponential map a - exp a ( ] )  = exp a. 
If  G IS a global Lie group then exp a maps all of L(C) into G. If G is only 
local then exp a maps a neighborhood of 0 in L(G) into C. The n coordinates 
a, of a can be used to parametrize a neighborhood of e in G. Indeed, by (5. I ), 
F,j(e)  = a,,. i t  follows from (5.6) that 

(d/da,)(exP a), I- 0 ~ dt,, 

so the Jacobian of the transformation a exp a = g is nonzero in a neigh- 
borhood of 6 F L(G). Therefore, by the inverse function theorem the ex- 
ponential map defines an analytic coordinate transformation on some 
neighborhood of e. We can use a neighborhood of the zero vector in L(C) 
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to parametrize the local Lie group G. The coordinates a are called canonical 
coordinates of the first kind or just canonical coordinates (Pontrjagin [I]). 
In canonical coordinates the one-parameter subgroups are the straight lines 
at through 8. Group multiplication in a one-parameter subgroup is given 
by at + as = a(t + s), i.e., by vector addition. Note, however, that it is 
in general not true that (exp a)(exp /3) = exp(a + 8) if a and /3 are linearly 
independent vectors. 

In the special case where G is a local linear Lie group of m x m matrices 
the above analysis becomes much more transparent, From (5.5) a one- 
parameter subgroup of G is an analytic curve A( t )  such that 
(5.11) A(s)A(t) = A(s + t )  

for sufficiently small values of I s 1, 1 t 1. Differentiating this expression with 
respect to s and setting s = 0, we obtain the matrix equation 
(5.12) dA(t)/dt = @A(t) ,  A(0) = Em, 

where @ E L(G) is the tangent matrix to A(t )  at the identity. Clearly, (5.12) 
is the analogy of (5.6) for matrix groups. It is a consequence of our general 
theory that the solutions of (5.12) define the exponential mapping of L(G) 
into G,  as @ ranges over L(G). We have already seen that (5.6) always has 
a unique solution exp at for each a E L(G). However, since we did not know 
the functions Fij(g) explicitly we were not able to write down the general 
form of the solution. In the special case where G is a linear group, however, 
this difficulty vanishes. Indeed from the remarks following (1.14), (5.12) 
has the unique solution 

A ( t )  = exp at = C aW/j!, (5.13) 

so the exponential map for linear Lie groups is the ordinary matrix expo- 
nential. Thus the transformation 

m 

j = O  

@ - exp a, @ E L(G), 
is a 1-1 analytic map of a neighborhood of Z in L(G) onto a neighborhood 
of Em in G. We can introduce canonical coordinates in G by choosing a basis 
{&,I for L(G). If a E L(G), a = C a ja j ,  then the transformation a - 
exp(C aja j )  defines canonical coordinates in G .  Every one-parameter sub- 
group in G is of the form exp at, @ E L(G). 

5.6 Local Homomorphisms and Isomorphisms 

In Section 5.3 we defined local analytic homomorphisms of Lie groups 
and homomorphisms of Lie algebras. Here we study the relationship between 
these two concepts. 
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Let G, G‘ be local Lie groups of dimensions n and n’, respectively, with 
corresponding Lie algebras L(G), L(G’). Suppose p is an analytic homomor- 
phism of G into G’. We will show that p induces a homomorphism p* of 
L(G) into L(G’). 

Theorem 5.17. An analytic homomorphism p :  G - G’ induces a Lie 
algebra homomorphism p * :  L(G) - L(G’) defined by 

(6.11 p*(@ = (d/dt)p(g(t))I,=, 

where g ( t )  is an analytic curve in G with tangent vector a at e The p* is an 
isomorphism (automorphism) if p is an isomorphism (automorphism). 

Proof. First, we show that the right-hand side of (6.1) is well-defined, Le., 
that it depends only on a E L(G), not on the particular curve g(t) .  Since 
p(g) = (PI@), . . . , pu..(g)) is analytic with p(e) = e’, we have the Taylor 
series expansion 

where only the first-order term in g j  has been given explicitly. Now g(0) = e 
and g(0) = a, so (6.1) yields 

where p*(a) = ( p l * ( a ) ,  . . . , &(a)) and the constants p , ~  are determined 
completely by p. Thus (6.1) is well-defined. I t  is clear from (6.2) that p* is 
linear, i.e., 

p*(aa -I 6p) = up*(&) -t bp*(p), a, /? E L(G), a, b t F. 

If a E L(G) then by (6.1) and the definition of p, ,u(exp at) is the one-param- 
eter subgroup of G‘ with tangent vector ,u*(a). Thus, 

(6.3) p(exp at) = exp(p*(a)t). 

Suppose p is an isomorphism of G onto G‘. If a f 0 then p(exp at) will be a 
nontrivial one-parameter subgroup of G’, i.e., p(exp at) $ e’. If p*(a) = 8’ 
then by (6.3) we would have p(exp at) = e‘, a contradiction. Therefore 
p* is 1-1. Furthermore, p* is onto because for each a’ E L(G’) there is a 
unique one-parameter subgroup exp at in G such that p(exp at) = exp aft. 
According to (6.3), a’ = p*(a). 

Now assume only that p is a homomorphism. Let g ( t )  = exp(as) exp(8.r) 
exp(-az) exp(-Pt), t = T ~ ,  with a, 8 E L(G). Then 

(6.4) p(g(t)> = exp(p*(a).r> exp(p*(P).r) exp( - ,u*(a)r> exp( - p*(P)z), 

where we have used (6.3) and the homomorphism property of p. According 
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to (3.6) the tangent vector to g ( f )  at e is [a, PI. Thus, differentiating both sides 
of (6.4) with respect to f and setting t = 0, we obtain 

,u*([a, PI) = [,u*(a), ,u*(8>1’ 
where the primed commutator refers to L(G’). Q.E.D. 

We now prove the converse of this theorem for local linear Lie groups. 

Theorem 5.18. Let G, G’ be local linear Lie groups and p :  L(G) --t L(G’) 
a Lie algebra homomorphism. There exists a unique local analytic homomor- 
phism ,u of G into G’ such that ,u* = p .  If p is an isomorphism (automor- 
phism) then ,u is an isomorphism (automorphism). 

Proof. By the preceding theorem, if ,u exists then 

(6.5) Aexp a> = exp p(a), a E U G ) ,  

where exp is the matrix exponential. Since a --t exp a is a 1-1 analytic map- 
ping of a neighborhood of 2 in L(G) onto a neighborhood of Em in G, expres- 
sion (6.5) uniquely determines p. Just as in the computation of (6.2), we can 
show that ,u* as defined by 

,u*(a) = (d/dt),u(A(t)) I I - o ,  4 0 )  = a, 
depends only on a, not on the particular analytic curve A(r).  Then, a direct 
computation with A ( t )  = exp ta yields 

so ,u* = p. 
We now show that ,u is a local homomorphism. From Theorem 5.5, 

for a, 63 E L(G) sufficiently close t o Z  we have (exp a)(exp 63) = exp e, where 

(6.6) e(a, 63) = 63 + J 1  g(exp(t Ad a)  exp(Ad @))a dt. 

Since the integral on the right-hand side of (6.6) is a convergent sum of 
commutators of elements in L(G) and L(G) is finite-dimensional, it follows 
that C! E L(G). (Prove it !) Furthermore C? is an analytic function of the coordi- 
nates of a and 63. By definition, (Ad a)@ = [a, 631 = a63 - 63a. Now p 
is a homomorphism, so 

0 

p ( W  a)@) = P ( P ,  @I) = Ma), A6311 = (Ad p(a))p(@>. 

Applying p to both sides of (6.6) and expanding the integral in a power 
series, we find p(C?(a, 63)) = e(p(a), ~(63)) E L(G’). (Note that p can be 
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applied term-by-term in the infinite series.) Thus, 

P(exP a)p(exP (€3) = exp P ( 8 )  exp P ( W  = exp e(P(a), P(@N 
= exp p(e(ct, (€3)) = p(exp e) = p(exp ct exp a), 

so p is a local homomorphism. 

Corollary 5.4. 
morphic to L(G') if and only if G is locally isomorphic to G'. 

Q.E.D. 

Let G and G' be local Linear Lie groups. Then L(G) is iso- 

Even though the above results were proved only for linear groups they 
are actually true for any local Lie groups G and G'. One can show that the 
Campbell-Baker-Hausdorff formula (1.19) is valid for any local Lie group, 
not just for matrix groups (see Hausner and Schwartz [I]). Once this formula 
is established, the proof of Theorem 5.18 for general Lie groups follows 
almost exactly as we have given it .  

We know that every local Lie group uniquely defines a Lie algebra. Now 
suppose is an abstract Lie algebra. Does there exist a local Lie group G 
such that L(G) = 9 [or such that L(G) is isomorphic to 9]? We establish the 
affirmative answer to this question in two steps. First we show rigorously 
that every matrix Lie algebra 5 is the Lie algebra L(G) of a local linear Lie 
group. Then we note by Ado's theorem that any abstract Lie algebra 9 is 
isomorphic to a matrix Lie algebra s. Thus, 9 is isomorphic to the Lie 
algebra 9 = L(C) of the local Lie group C. 

Theorem 5.19. Let 
Lie group G such that L(G) = 5. 
Proof. The obvious candidate for G is the set of matrices expct, where 
ct runs over 5. Let the matrices {aj : j  = 1, . . . , n)  form a basis for 5. We 
introduce coordinates a , ,  . . . , tl, in G by writing A(a)  = exp(C and 
letting a run over a sufficiently small neighborhood of 0 such that the mapping 
a --t A(a) is 1-1. From the Campbell-Baker-Hausdorff formula ( I .  19), 

be a matrix Lie algebra. There exists a local linear 

exp(C ajaj) exp(C Bk%) = exp(C Y 1 W  

where the 
Thus G is a local linear Lie group. I t  is easy to verify that L(G) = 5. 

are analytic functions of a j ,  pk for a, /3 sufficiently close to 8. 
Q.E.D. 

Let H be a local Lie group with Lie algebra L(H) .  By Ado's theorem, 
L ( H )  is isomorphic to a matrix Lie algebra 9. By Theorem 5.18, 9 = L(G), 
where G is a local linear Lie group. Finally, by the extension of Theorem 
5.18 to all local Lie groups, we see that H is isomorphic to G. Thus, every 
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local Lie group is isomorphic to a local linear Lie group! (There do exist 
global Lie groups which are not globally isomorphic to linear groups.) In the 
remainder of this book we study only local linear Lie groups, but this restric- 
tion leads to no loss of generality. 

Theorem 5.18 is valid only for local groups. For example, the one-dimen- 
sional real Lie groups 

have isomorphic Lie algebras, so they are locally isomorphic. Indeed the 
isomorphism is given by x -, e'". However, this isomorphism cannot be 
extended to a global isomorphism since the distinct elements x and x + 2n 
of R are mapped into the same element of U(1). Note that R is isomorphic 
to the linear Lie group of matrices 

R = (x: --oo < x < +m), U(I) = (e'": x E R }  

Since every local Lie group is uniquely determined by its corresponding 
Lie algebra, to compute all local Lie groups up to isomorphism one need only 
compute all Lie algebras up to isomorphism. This latter problem is purely 
algebraic and for low-dimensional Lie algebras at  least, it can be solved 
explicitly (see Jacobson [I]). In general, any problem concerning the structure 
of a local group G can be reduced to a purely algebraic problem concerning 
the structure of L(G). 

As an example of this relationship recall that if G is commutative then 
[a, 631 = 2 for all a,@ E L(C), i.e., the Lie algebra L(G) is commutative. 
Conversely, ifL(G) is commutative it follows immediately from the Campbell- 
Baker-Hausdorff formula that 

exp(a + 63) = exp a exp 63 = exp 63 exp a 
for all a, 63 E L(G), i.e., G is commutative. Thus G is commutative if and 
only if L(G) is commutative. An n-dimensional commutative local Lie group 
is locally isomorphic to F., 

We now examine some special automorphisms of a local linear Lie 
group G of m x m matrices. [Since any local linear Lie group can be uniquely 
extended to a global group, one can assume without loss of generality that 
G is a (global) Lie group.] For fixed B E G, the map ,uE, 

is clearly an automorphism of G, an inner automorphism. The set G of all 
inner automorphisms of G is itself a group since 

Moreover, G is a linear group, the adjoint group of G. Indeed we can think 
of the elements of G as m2 x m2 matrices acting on an m2-dimensional vector 

pE(A)  = B A B - ' ,  A t G, 

(6.7) P B , B ~ ( A )  = B , ( B , A B i ' ) B , '  = PB,cIB,(A), P E , ( A )  = A. 
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space. The map p :  G - G given by A --j p A  defines an analytic homomor- 
phism from G onto G. 

By Theorem 5.17, for fixed B E G the inner automorphism p B  of G 
induces an automorphism pB* of L(G):  

Thus, 
(6.8) pB*(a) = (d/dt)[B(exp ta>B-l] = BaB-l .  

It  is easy to check that pZIBZ = p;,pSI and p:., = (pB*1-l, so the operators 
pB* form a linear group, also called the adjoint group G. (This makes sense 
because the two adjoint groups introduced above are locally isomorphic.) 
We will show that G is a local linear Lie group by explicitly introducing 
canonical coordinates. Think of L(G) as an n-dimensional vector space on 
which the n2 x n2 matrices pA* are acting. Let B(t) be an analytic curve 
in G with tangent matrix 63 at the identity. We define the linear operator 
Ad 63: L(G) - L(G) as follows: 

pB*(a> = (d/dt)pu,(exp I*= 0. 

hi 
The operators {Ad 63: 63 t L(G)} form a Lie algebra L(G), the adjoint Lie 
algebra, and the map Ad: @ ----f Ad 63 is a homomorphism of L(G) onto 
L(G). Indeed 
(6.10) 

The kernel of the map Ad, i.e., the set of 63 E L(G) such that [@,a] = Z 
for all a E L(G) is called the center of L(G). Clearly, the center is a commu- 
tative Lie algebra. 

For any  63 t L(G) we can consider Ad 63 as an n x n matrix acting on 
the n-dimensional space L(G). Then by Lemma 5.3 we have 
(6.1 I )  (exp(Ad @))a = (exp 63)a(exp @ ) - I  = BaB-I,  

where B = e x p a  E G, so we can identify G with expL(G) in a neighbor- 
hood of the identity matrix E n .  This shows that G is a local linear Lie group 
with Lie algebra L(G). If the center of L(G)  has dimension n' then dim L(G)  
= n - n' and 

hi 

Ad(aa -t b63) = a Ad a - 1  b Ad 63, Ad([a, 6331) = [Ad a, Ad 6331. 

hi 

N - 
is an (n - n')-dimensional Lie group. 

5.7 Subgroups and Subalgebras 

Let G be an n-dimensional local Lie group with elements g = (8, , . . . , 
8,) defined in some connected neighborhood V E F, of e = (0 , .  . . , O ) .  
Suppose H is an rn-dimensional local Lie group over F with elements h = 

( h , ,  . . . , I?,,,) and identity e' = (0, . . . , 0). 
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Definition. H is a local Lie subgroup of G if there is an analytic homomor- 
phism p :  H -+ G such that ( 1 )  p(h) is locally 1-1 ; (2) the vectors {dp(h)/ 
dh, I h r L e , ,  1 < j  < m] are linearly independent. 

We can consider the subgroup H as embedded in G. Indeed the image 
p ( H )  G G is itself a local Lie group which is isomorphic to H.  I t  is clear that 
the tangent vectors at the identity of analytic curves in p ( H )  are contained 
in L(G). Every such analytic curve with tangent vector p is of the form p(h( t ) ) ,  
where h(t) is an analytic curve through e' in H. Furthermore, if h(r) has tan- 
gent vector a at e' then p = p*(a) by (6.1). Since p* is a homomorphism, 
for every p = p*(a), p' = p*(a'), we have 

[ p ,  P'I = [p*(a), p*(E')I = p*t[a, a'],. 
Thus the tangent vectors at e to analytic curves in p ( H )  form a Lie algebra 
L ( p ( H ) )  contained in L(G). Furthermore, L ( p ( H ) )  is isomorphic to L ( H )  
since p* is 1-1. 

Definition. Let 6 be a Lie algebra and X a subset of S. We say X is a subal- 
gebra of $j if X is itself a Lie algebra under the operations in S, i.e., if X is 
a vector subspace which is closed under the commutator operation. 

Since L ( H )  is isomorphic to the subalgebra L ( p ( H ) ) ,  we can consider 
L ( H )  as a subalgebra of L(G). 

Theorem 5.20. If H is a Lie subgroup of the local Lie group G then L ( H )  
is a Lie subalgebra of L(C). 

Theorem 5.21. Let G be a local linear Lie group and let X be a subalgebra 
of L(G). There exists a unique local Lie subgroup H of G such that L ( H )  = 

X. 

Proof. Let {aj}, 1 < j  
is a basis for X. (Note that m 

n, be a basis for L(G) such that (aj] ,  1 i j  I m, 
n. )  By Theorem 5.18 the map 

(a , ,  . . . , a,) --f exp(C a ja j )  E G 

defines canonical coordinates on G. Furthermore, by Theorem 5.19 the map 
, = 1  

(7.1) 

defines coordinates in a local linear Lie group (which we call H )  as ( a , ,  . . . , 
a,) ranges over a suitably small neighborhood of 13 in  F, ,  Clearly, L ( H )  = X 
and H is a local Lie subgroup of G. (Here we are considering H as embedded 
in G). Indeed, in the canonical coordinate system we have chosen, the ele- 
ments of G that lie in H are just those with coordinates (a , ,  . . . , a,, 0,. . . , 
0). 
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If  H' is a Lie subgroup of G with L ( H ' )  = X, then H' can be described 
locally by the exponential mapping (7.2). Thus H' = H. Q.E.D. 

Even though we have proved the above result only for local linear Lie 
groups it is valid for all local Lie groups. The preceding theorems establish 
a 1-1 correspondence between Lie subgroups of G and Lie subalgebras of 
L(G). Any question involving the structure of local Lie subgroups can be 
reduced to a purely algebraic problem concerning Lie subalgebras. 

As an example we work out the relationship between normal subgroups 
of G and ideals in L(G). 

Definition. A local Lie subgroup H of G is a normal subgroup if there exists 
a neighborhood Vof the identity in G such that ghg-' E H for all h E H n 
Vandg  E G n  V. 

This definition of normal subgroup agrees with that given in Chapter I ,  
except that here the normality property is only local. 

Definition. A subalgebra X of the Lie algebra $j is an ideal if [a, /3] E X 
for all a E B, /3 E X. We write [S, XI s X. 

Theorem 5.22. 
G. Then H is normal if and only if L ( H )  is an ideal. 

Let H be a local Lie subgroup of the local linear Lie group 

Proof. Suppose H is a normal subgroup. Given 63 E L(H) ,  we have 
A(expt63)A-' E H for all A E G sufficiently close to the identity and all 
t E F sufficiently close to zero. Since 

(d/dt)A(exp 63)A-l = AG3A-' 

it follows that A63A-I E L(H) .  Given a E L(G), let A(s)  = expsa.  Since 
A(s)63A-'(s) is an analytic curve in L ( H )  and L ( H )  is finite-dimensional we 
have 

[a, 631 = (d/ds)(exp(sa)-63*eexp(-sCt)) I s = o  E L ( H ) ,  

so L ( H )  is an ideal. 
Conversely, if L ( H )  is an ideal and G3 E L(H) ,  a E L(G) are chosen in 

suitably small neighborhoods of 2 then B(t)  = exp a exp 163 exp(-a) is a 
one-parameter subgroup of G with tangent matrix (exp a)63(exp -a) at the 
identity. However, from Lemma 5.3, 

(exp a)63(exp -a) = 2 (Ad a)B/ j !  E L ( H )  
j = O  

since L ( H )  is an ideal. Thus B(t )  E H for sufficiently small t and H is normal. 
Q.E.D. 
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As usual, the above result holds for all local Lie groups, not just linear 
groups. 

5.8 Representations of Lie Groups 

We have seen that any local linear Lie group can be uniquely extended 
to a connected (global) linear Lie group. Here we assume this has been done, 
so G is not only a local linear Lie group, but also a matrix group in the 
abstract sense. 

Let V be a finite-dimensional vector space over F and let GL(V)  be the 
group of all nonsingular linear transformations of V onto V.  

Definition. A representation of a linear Lie group G with representation 
space Y is an analytic homomorphism T: A - T(A) of G into GL( V ) .  

By an analytic homomorphism we mean a homomorphism such that the 
matrix elements T,,(A) with respect to any basis in V are analytic functions 
of the local coordinates of A in G. (If the matrix elements are analytic with 
respect to one basis then they will be analytic with respect to every basis.) 
This definition agrees with that of Section 3.1 except for the analyticity re- 
quirement, which is added so that we can take advantage of the Lie structure 
of G. Note that GL( V )  is isomorphic to GL(m, F )  where m = dim V and an 
isomorphism is defined by choosing a basis for V.  

For every a E L(G) we define the infinitesimal operator a on V by 

(8.1) a = (d/dt)T(A(t)) Ir=o 9 

where A(t)  is an analytic curve in G with tangent matrix a at the identity. 
Since T is an analytic homomorphism, a depends on a alone, not on the 
particular curve A([) .  Furthermore, the operators a form a Lie algebra which 
is a homomorphic image of L(G). 

Definition. A representation of a Lie algebra 9 with representation space 
V is a map p from $j to the space of all linear operators on V such that 
(a,b E F a n d a , B  E 9): 

(1) p(aa + bP) = d a )  + bP(P). 

(2) PI) = P(dP(P> - p(P)p(a) = [P(& P(Pl1. 
The operators a = p(a) define a rep of L(G) on V, so every rep of G 

induces a rep of L(G). Conversely, suppose p is a rep of L(G) on V. Set 
p(a) = a and define the map T by 

(8.2) T(exp a) = exp C3, a E L(G), 

where a ranges over a suitably small neighborhood 'u of 2. By Theorem 
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5.18, T is a local analytic homomorphism of G into GL( V ) .  We refer to T 
as a local rep of G since it is defined only in some neighborhood of the identity 
element. If p is the Lie algebra rep induced from a (global) rep T’ of G it 
follows from Theorem 5.18 and (8.2) that T(A) = T’(A) for all A in a suitably 
small neighborhood of the identity. Furthermore, if G is connected then any 
A E G can be written as a finite chain 

A = exp a,  exp a,  . . . exp ak, a, E U, 

so 
T’(A) = T’(exp a , )  . . . T’(exp a,) = exp a, + . . exp a, 

and T’ is uniquely determined by p. Thus, any rep of a connected linear Lie 
group is uniquely determined by its associated Lie algebra rep. If G is not 
connected, e.g., G = O(m, R), then only the action of the rep in the connected 
component containing the identity is determined by the Lie algebra rep. 

Warning. If p is an arbitrary Lie algebra rep it may not be possible to ex- 
tend the local rep (8.2) of G to a global rep. For example, let {a,}  be a basis 
for the one-dimensional Lie algebra of U(1) = { e ix } .  The choice p(a,) = 1 
defines a one-dimensional rep of L(U(I) ) .  From (8.2) we get T(eix) = e*. 
Since exp i(x + 2n) = exp ix this local rep does not extend globally. 

Thus the correspondence between (global) group reps and Lie algebra 
reps is not 1-1. It is possible to make the correspondence 1-1 by considering 
only simply connected Lie groups. However, the study of such groups leads 
to topological complications beyond the scope of this book. The interested 
reader can find relevant material in the work of Pontrjagin [ I ]  or Hausner 
and Schwartz [l]. 

The definitions of invariant and irred subspaces as well as the Schur lem- 
mas given in Sections 3.1-3.3 carry over immediately to reps of Lie groups 
and algebras. 

Theorem 5.23. Let T be a rep of the connected linear Lie group G on the 
vector space V and let p be the associated rep of L(G). Suppose W is a sub- 
space of V.  Then, (1) W is T-invariant if and only if it is p-invariant; (2) 
W is T-irred if and only if it is p-irred. 

Proof. A straightforward exercise for the reader. 

Thus, the problem of computing all reps (irred reps) T of G is equivalent 
to the purely algebraic problem of computing all reps (irred reps) p of L(G) 
except that we must check every algebra rep p to  see that it actually deter- 
mines a global group rep. In the following chapters we shall usually deter- 
mine the reps p first and then obtain the group reps T by exponentiation. 
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5.9 Local Transformation Groups 

A knowledge of abstract group theory is not sufficient for the application 
of group-theoretic methods to physics. In physical problems the groups usual- 
ly occur as transformation groups acting on some mathematical structure. 
Here we study the important case of a local Lie group acting on a coordinate 
manifold. The following definitions and theorems will be stated for complex 
groups acting on complex manifolds, but the results for real groups acting 
on real or complex manifolds are completely analogous. 

Let U be an open connected set in Q,. Any x E U can be designated by 
its coordinates x = (x, , . . . . , xm), xi E 6. Let G be an n-dimensional local 
Lie group defined in some connected neighborhood of e = (0,. . . ,0) in 
6,. Finally let Q be a mapping which associates to each pair ( x ,  g), x E U, 
g t G, an element Q(x, g) in E m .  We write Q(x, g) = xg E 6,. 

Definition. 
if Q satisfies the following properties: 

(1) xg is analytic in the n + m coordinates of x and g ;  
(2) xe = x, all x E U ;  
(3) if xg E U then (xg)h = x(gh),  g, h, g/i E G. 

G acts on the manifold U as a local Lie transformation group 

With the exception of the identity e the elements of G are printed in 
lightface type to distinguish them from elements of U. Conditions ( 2 )  and (3) 
express the transformation group property of G. Condition (1) is necessary 
if we are to make use of the analyticity of G. Note that the group operates 
on the right (xgj rather than the left (gx) as in Chapter 1. The reason for this 
notational change will become apparent later. 

If x E U and g is in a sufficiently small neighborhood of e, properties 
(2) and (3 )  imply (xg)g-' = xe = x. Thus the map x --* xg is locally analytic 
and 1-1 for fixed g, and the inverse mapping is also analytic. 

Let expat, a E L(G), be a one-parameter subgroup of G. For fixed 
xo E U we call the curve x(t) = xo exp at E U the trajectory of xo under 
exp at. [Clearly, x(t) is defined for sufficiently small values of I t I.] The vector- 
valued function ~ ( t )  can be expanded in a Taylor series in t about t = 0: 

x , ( t )  = xio + r(dQi/dt)(xo, exp at) I,=,, + . . . 
or 

xi( t j  = x i o  + t C Pij(xo)aj + . . . , 1 I i I m, 
j =  I 



5.9 Local Transformation Groups 189 

and Q = ( Q , ,  . . . , 0,) Thus, x(0) is tangent to the trajectory of exp at 
through x 0 .  

Iff(x) is analytic in a neighborhood of x o  we can define analytic functions 
[(exp at) . f ] (x)  = f ( x  exp at) for a t L(G) and suitably small values of I t  I. 
More generally, let a,, be the space of all functions f analytic in a neighbor- 
hood of x o ,  where the neighborhood is allowed to vary with the function. 
We define operators T(g): a,, - a,, by 

(9.3) [ T ( g ) f l ( x >  = f ( x g ) ,  x E u, g E G. 
For a given f E a,, the right-hand side will be well-defined for x suitably 
close to xo and g suitably close to e. We say that (9.3) holds locally. Since G 
is a local transformation group, we have 

(9.4) [T(g,g,)fl(x) = f ( x ( g , g , ) )  = IT(g,  ) [ T ( g , ) f l l ( x ) ,  

so T ( g , g , )  = T ( g , ) T ( g , )  for g ,  , g ,  E G. Again the homomorphism property 
(9.4) holds locally. (If we let G act on U to the left, x --* g x ,  then to obtain 
the homomorphism property for T-operators we have to set [ T ( g ) f ] ( x )  = 

f ( g - ' x ) .  To avoid the inverse we have written x - *  xg. )  
The operators T ( g )  define a local rep of G on the infinite-dimensional 

vector space a+. In analogy with (8.1) we can define infinitesimal operators 
corresponding to this rep. 

Definition. The Lie derivative L,fof an analytic functionf E a,, is 

where g ( t )  is an analytic curve in 

A direct computation yields 

L , f ( x )  = 2 
i - 1  

where Pi j (x)  is given by (9.2). In other words, we have 

It is clear from this expression that L,  depends only on a, not on the particular 
analytic curve g ( t ) .  

Example 1. Let G be the real line R ,  a one-dimensional real Lie group. 
For a E R the mapping x ----t x + a for all x E R defines an action of R 
as a transformation group on itself. Then [ T ( a ) f ] ( x )  = f ( x  + a).  The constant 
1 forms a basis for the one-dimensional Lie algebra L(R). Since g ( t )  = t 
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is an analytic curve in R with tangent vector 1 we have 

L , f ( x >  = ( d / d r ) f ( x  + t )  Lo = df(x)!dx,  

or L ,  = dldx. If a = a. 1 E L(R) for a E R then L, = a dldx. 

Example 2. The proper Euclidean group in the plane E’(2) has the matrix 
realization 

(9.6) 

cosp  -s inp x,  

g ( x ,  , x 2 ,  p) = 

where p is determined up to a multiple of 2n. The group multiplication rule 
is 

I ,  

(9.7) g ( x ,  x 2 ,  p>g(x ,  , x 2  , p’) = g ( x , ’  cos p - x2’sin p + x , ,  
xl’sin p + x2’  cos p + x 2 ,  p + p’). 

Thus a = ( x , ,  xz) and 

i cosp  -sinp 
s inp cosp 

o = (  

where a and 0 are analogous to  (2.4), Section 2.2. We can consider E + ( 2 )  
as a transformation group in the plane R,, where the group action is 

(9.8) ( Y ,  5 Y z )  - ( ( Y ,  ~ X I )  cos p + ( v 2  - x2) sin p3 

-0, - X I )  sin p + ( Y z  - X Z )  cos p), 

Y = ( Y , , Y z )  E Rz.  

In terms of the action of E + ( 2 )  as a transformation group defined as in 
Section 2.2,  this reads 

y + {a, Oj-ly = {-O-Ia, 0 - l ) ~ .  

It follows that E+(2)  is a two-dimensional real Lie group which acts as a Lie 
transformation group on R , .  As the reader can check, L(E+(2)) is the Lie 
algebra of all matrices 

-C 

(9.9) $(a, 6, c )  = f 0 ;Ii. a, b,c  E R. 

A basis is provided by the matrices $( 1,0,0) = 3 , ,  3(0, 1,O) = g,, $(0, 0, I )  
= $,, with commutation relations 

0 0 0  

[$ , ,dzI-z ,  [ $ 3 , 3 1 1 = $ 2 -  [33,32IX-31. 
Note that exp 3,t = g ( t ,  0, 0), exp 3,t = g(0 ,  t ,  0) ,  exp g 3 f  = g(0, 0, t ) .  
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The Lie derivatives are 

Lkf(Y) = (d/dt)f (Y exP $ k f )  I r = o  9 k = 1 7  2, 3, 
or 

(9.10) L ,  = -d/dy, 7 Lz = -d/dy,, L3 = yz(d/dy,) - yl(d/dyZ). 
The Lie derivative corresponding to the Lie algebra element 3(a, b, c )  ,is 
just aL, + bL, + cL,. Note that 

[ L ,  9 L l f ( Y )  = 0, [ L ,  9 L , l f ( Y )  = L, f (Y) ,  [ L ,  3 &If ( Y )  = - - L , f ( Y ) ,  

where [L,, ,L,]  = L,L, - L,L, is the commutator of the Lie derivatives 
L,, L,. Thus the Lk satisfy the same commutations relations as the generators 
of L(E+(2)) .  In particular the Lie derivatives themselves form a Lie algebra. 

Returning to the study of a general transformation group G, we let xo E 

(1. Then for a E L(G) and sufficiently small values of It 1, IsI, x(t + s) = 

xo.exp a(t + s) = (xo exp at) exp as = Q(x( t ) ,  exp as). Differentiating this 
expression with respect to s and setting s = 0, we find 

(9.1 I )  (d/dt)x,(t) = 2 Pij(x(t))aj, 1 i In, ~ ( 0 )  = xo, 

where we have used (9.1) and (9.2). From (9.5) this system can be rewritten as 
i i ( t )  = Lux,, or 

j :  I 

(9.12) dx/dt = Lux, ~ ( 0 )  = x'. 

According to the fundamental existence and uniqueness theorem for differ- 
ential equations, system (9.12) has a unique solution x(t). Clearly, this solu- 
tion is x ( t )  = xo exp at. Since every g E G sufficiently close to e lies on a 
one-parameter subgroup exp ar, the action of G on (I is uniquely determined 
by the solutions of (9.12). Thus a knowledge of the Lie derivatives L, deter- 
mines the action of G. 

Theorem 5.24. The unique solution of (9.12) is the trajectory x(t) = 

XO-expar. The Lie derivatives L, uniquely determine the local Lie trans- 
formation group G. 

I f f  t a,, and ~ ( t )  = xo exp at then,f(x(t)) satisfies the differential equa- 
tion 

or  
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Again we conclude from the existence and uniqueness theorem that (9.13) 
has a unique solution f ( x ( t ) )  - f ( x o  exp at) analytic in t. Since L, f (x ( t ) )  is 
itself an analytic function of ~ ( t )  it follows that (d/dt)(L,f(x(t)))  = 

La(Laf (x ( t ) ) )  = La2f(x(t)) .  Similarly 

(d/dt)'f(x(t)) = L,jf(x(t)) ,  j = 1,2 , .  . , . 
Nowf(x(t)) has a Taylor series expansion in t about t = 0: 

= (exp tL , ) f (xo ) ,  

where exp tLa is defined by its formal power series expansion. 

Theorem 5.25. f(x exp at) = (exp tL , ) f (x )  = x7=o ( t j / j ! )La j f (x ) .  

Corollary 5.5. x exp at = (exp tLa)x. 

We apply these results to the Lie derivative L ,  = d/dx of Example 1. 
Equation (9.12) becomes 

dx/dt = I ,  x(0) = x0, 

or x(t)  = xo + t ,  so the action of R as a transformation group on itself is 
just x - x + 1. Furthermore, by Theorem 5.25, iff is analytic near x then 

which is the usual Taylor series expansion. 
In Examples 1 and 2 the Lie derivatives themselves form a Lie algebra. 

In particular the commutator [ L a ,  L,] is again a Lie derivative. We show that 
this is true in general. 

Theorem 5.26. The set of all Lie derivatives of a local Lie transformation 
group G forms a Lie algebra which is a homomorphic image of L(G). In fact, 
(1) Lcna+bB) = aLa + bL,; (2) L,,,,, = LaL, - L,La = [ L a ,  L,] for all a, b 
E B and a, p E L(C). 

Proof. Property (1) follows from expression (9.5) for L a .  Property (2) is a 
little more complicated. Using Corollary 5.5 we can copy the proof of the 
analogous result for local linear Lie groups. Let g ( t )  = (exp az)(exp 87) 
(exp -m)(exp -p7), where t = 7*. Then g(t) is a curve in G with tangent 
vector [a, p] at e. Thus, for any f E a, we have 

(9.14) Ll.,,lf(X> = (d /d t ) f (xg ( t ) )  L o .  
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The reader should verify explicitly from (9.5) that [L,, L,] is a first-order 
differential operator even though L,L, and L,L, are second-order operators. 

Two differential operators L , ,  L, are equal on U, L ,  = L,, if L ,  f = L,f 
for all analytic functionsfon U .  A set { L l ,  . . . , Lk} of differential operators 
is linearly dependent on U if there exist constants aj  E & not all zero such 
that c ajLj f = 0 for all analytic functionsfon U. If the set {Lj) is not linearly 
dependent then it is linearly independent. 

With these definitions, we can discuss the structure of the Lie algebra 
C(G) formed by the Lie derivatives {LJ. The map a - L, is a homomor- 
phism of L(G) onto C(G). If this mapping is an isomorphism, i.e., if dim 
L(G) = dim C(G), we say G acts effectively as a transformation group. 

Every local Lie group G acts effectively as a transformation group on 
itself: g + g,g, go ,  g E G. Indeed it follows from Section 5.2 that the Lie 
derivatives corresponding to this action are 

Since R,,(e) = S i j  the map a - La is an isomorphism. We can now use Theo- 
rem 5.25 to gain some insight into the exponential mapping: 

(9.16) g exp at = (exp tL,)g = C (tj/j!)Lajg, g E G. 
j - 0  

Suppose G is a local Lie transformation group which does not act effec- 
tively, i.e., the map a + L, is not 1-1. Let 

L' = { ~ l  E L(G): L, = 0). 

Then L' is a nontrivial subspace of L(G). Furthermore, if a E L' and p E 

L(G), then 

Lca,fi1 = [Lu 9 Lpl = 10, LFI = 0, 

so [a, p] E L'. This shows that L' is an ideal in L(G). Thus if G does not act 
effectively then L(G) contains a proper ideal. If a local Lie group G has a 
Lie algebra L(G) with no proper ideals then G must always act effectively. 

The following result is of basic importance for applications of Lie theory. 
It states that any Lie algebra of differential operators is the algebra of Lie 
derivatives of a local Lie transformation group. 
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Theorem 5.27. Let 

(9.17) 

be n linearly independent differential operators defined and analytic in a 
connected open set U c &,. If there exist constants Cilr such that 

" 
(9.18) [L j ,  Lkl = LjLk - L k L j  = j% c;kLi, 1 < j ,  k 2 n, 

then the n-dimensional Lie algebra S generated by the L, is the algebra of 
Lie derivatives of a local Lie transformation group G acting effectively on 
U. The action of G on xo E U is obtained by solving the equations 

(9.19) 
n 

j =  1 
dx/dt = (C a,Lj)x,  ~ ( 0 )  = x O .  

Indeed the unique solution of these equations is x o  exp at = Q(xo ,  exp at). 

Proof. By (9.18), the L, form a basis for an n-dimensional Lie algebra 6. 
Any element a in 9 can be written uniquely as L, = C a j L j ,  where a = (a,,  
. . . , an). (Note: The Jacobi equality is automatically satisfied by any set of 
linear operators, so 9 is indeed a Lie algebra.) By Theorems 5.9 and 5.19, 
9 is the Lie algebra of some local Lie group G, unique up to isomorphism. 
We label the elements of G by means of the exponential mapping: g = exp a, 
a E 9, i.e., we use canonical coordinates in G. 

By Theorem 5.24, the action x(g)= x exp a = Q(x, exp a) of G on U must 
be given by the solutions of (9.19). We need only verify that G is a transfor- 
mation group on U, i.e., that (xg)h = x(gh), where g = exp a and h = exp 8. 

Let 
~ ( t )  = (xg)h(t) = Q(xg, W t ) )  = ~ X P  tL,4xg) 

z(t> = x ( M t ) )  = Q(xi gh(t)), 
(9.20) 

where h(t) = exp P t  and (xk), = Q , ( x , ,  . . . , x,; k,, . . . , kn.) We will show 
that y(t) G z(t). The proof of this fact is not trivial and will be accomplished 
through a chain of lemmas. 

Lemma 5.5. Let G be an n-dimensional local Lie transformation group 
acting on U. Denote the action of G on U by xg = Q(x, g). Then the function 
Q(x, g )  satisfies the identity 

(9.21) 2 Rj,(g) = Pis(xg) = Pi,(Q), 1 5 i < m, 1 < s 5 n,  
i = 1  dgj 

where 
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Proof. This result follows from the identity Q,(x,  g exp at) = Q,(xg,  
exp at) by differentiating with respect to t and setting t = 0 exactly as in the 
derivation of (5.4) and (5.6). Q.E.D. 

Since R,,(e) = S i s ,  the matrix ( R j s ( g ) )  is invertible for all g in a suitably 
small neighborhood of e.  Denoting the inverse matrix by S(g) ,  we can write 
(9.21) in the form 

(9.22) dQ,(x, g ) /dgj  = 2 pfk(Q)Skj (g) ,  1 I i I m, 1 I j < n. 
k =  1 

Lemma 5.6. 
R- ' (g )  an analytic n x n matrix with the properties S(e) = En and 
(9.23) 

Let P ( x )  be an analytic m x n matrix of rank n and S(g)  = 

where the C I k  are constants. Then (9.22), regarded as a system of equations for 
Q I ( x ,  g ) ,  has a unique solution satisfying the initial condition Q ( x ,  e)  = x .  

Proof. According to the fundamental existence and uniqueness theorem 
for first-order systems of partial differential equations, the system (9.22) 
has a unique solution Q such that Q ( x ,  e )  = x provided the integrability 
conditions d, ,  d, ,  Q i  = d,,  d,, Qi, or 

are satisfied (Cohen [l], Pontrjagin [I]). It follows from (9.23) and the assump- 
tion rank P = n that the integrability conditions become 

(9.26) 

Now RS = En (matrix multiplication), so 
d S  - - - R  - R .  d R  d S  d R  - S + R - = Z  or - 

dg,  dg, dgj dgj 

Substituting this identity into (9.24), we find (9.24) is equivalent to (9.26). 
Therefore, the integrability conditions (9.25) are satisfied. Q.E.D. 

Now we return to the proof of the theorem. If the function Q ( x ,  g )  defines 
the action of a local transformation group on U then it satisfies the system 
(9.22). Thus, we will construct Q(x, g )  by requiring that it be a solution of 
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(9.22) satisfying the initial condition Q(x, e) = x. The matrix functions P 
and S = R-l are already determined since P is given by (9.17) and R is obtain- 
ed from G. Furthermore, it follows from (9.15) and (9.18) that P and R 
satisfy conditions (9.23) and (9.24), where the c;k are the structure constants 
of G. By Lemma 5.6 there is a unique solution Q(x, g) of (9.22). This is the 
same solution we would get by solving (9.19), Indeed x(t) = Q(xo, exp at) 
satisfies the conditions x(0) = xo and 

i , ( t )  = C a Rjl(exp at)&, = C Pi,(x(t))S,j(exp at)Rjl(exp at)a, 
j l  dgj s j l  

= 2 Pil(x(t)>cx,, 1 I i I m. 
I =  1 

At this point we can verify the equality y(t) = z ( t )  in (9.20). Indeed 

and y(0) = z(0) = xo exp a. [We have used the identity 

whose derivation is analogous to  (5.4).] Since y ( t )  and z(t )  satisfy the same 
system of equations and the same initial conditions, we have y(t) = z(t).  
Setting f = 1 we conclude that xO(exp 05 exp p )  = (x" exp 05) exp p .  Finally 
the reader can verify from Theorem 5.25 that Q(x, g) is analytic in its m + n 
arguments. Q.E.D. 

Thus, the study of local Lie transformation groups is completely equiva- 
lent to the study of Lie algebras of differential operators. We shall need a 
slight extension of the above result: the equivalence of local multiplier reps 
and Lie algebras of generalized Lie derivatives. 

j 2 n, be linearly independent differential operators defined 
on the neighborhood U c a,,, and such that [Lj ,  Lk] = C cikLl for i, k = 
1, . . . , n, where the cik are constants, Suppose a h  that 

[d/dx,+,,Lj]=O, 1 I j i n ,  

Let L,, 1 

i.e., (d/dxm+,)(Pjj(x)) = 0 for 1 < j  n, 1 5 i I m + 1, where 
m+ 1 

i= I 
Lj = C Pij(x)(d/dxi). 

We emphasize the distinction between x,+, and the remaining coefficients of 
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x by writing x = (x‘ ,  w), where x’ = (x,, . . . , x”), w = x,+~.  Theorem 5.27 
states that the L j  generate a Lie algebra which is the algebra of Lie derivatives 
of a local group G acting on U. The action of G is given by integration of the 
differential system 
(9.27) 

ai(r) = 2 P i j ( x ’ ( f ) ) a j ,  q t )  = 2 P m + l , j ( x ’ ( t ) ) a j ,  x ( 0 )  = x. 
j =  1 j =  I 

We write P,,(x) = Pij(x’)  since the Pi j  are independent of w. The right-hand 
sides of Eq. (9.27) are independent of w, so the solution takes the form x ( t )  = 

x exp a t  = (x’ exp at ,  q(x’ ,  exp ar) + w), where q is an analytic scalar-valued 
function of its rn + n arguments. The action of G on U is completely deter- 
mined by the one-parameter subgroups 
(9.28) x g  = (x’g,  q(x’ ,  g )  t -  w), 

If x g ,  E U and g ,  E G, then ( x g , ) g ,  = x(g ,g , ) ,  which leads to 

g E G. 

(x’g,>gz = x’(g ,gz) ,  d x ‘ ,  g , g , )  = d x ’ ,  g , )  + d x ’ g ,  9 g, ) ,  

or 
(9.29) v(x’ ,  g , g J  = V ( X ’ 9  g , ) v ( x ’ g ,  7 gz), 

where v(x’ ,  g )  = expq(x, g ) .  If g = e then q(x’, e) = 0 and v ( x ’ ,  e) = 1 
for all x E U. 

Let a, be the set of all functionsf(x) on 6,+, , analytic in a neighborhood 
of x o  E U and such that f(x) = e”/t(x’), i.e., e - ” f ( x )  is independent of w. 
Without loss of generality we can assume x” = 8. Given g E G, we define 
operators TW8 on a, by 

TW8f(X) = fm), f E 8,. 

By (9.28), T,8f E a, and these operators define a local rep of G on a,. 
Let a be the set of all functionsf(x’) on Q, analytic in some neighborhood 

of 8’ = (0, . . . , 0). There is a 1-1 mapping p of onto a, given by p : f ( x ‘ )  
+ ewf(x’) .  Since this mapping is invertible, the operators T,C on a, induce 
operators T g  = p - ’ T , f p  on a with the properties 

( 1 )  [T8fl(x’) = V ( X ’ 9  g ) f ( x ‘ g )  

(9.30) (2) [T’fl(X’> = f (x ‘ )  
(3) [T818Sf](x’) = [Tgl(T8Sf)](~’)  

valid for all f E a, x‘ E Om, and g,, g ,  E G such that both sides of expres- 
sions (9.30) make sense. The T 8  define a local rep of G on a. 

Definition. Let G be a local Lie transformation group acting on a neighbor- 
hood U c CS,, x” E U,  and let a be the set of all functions analytic in a 
neighborhood of x o .  A (local) multiplier representation T of G on a with 
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multiplier v consists of a mapping T(g) of a onto a defined for g E G and 
f E a b Y  

[T(g)f I(X1 = v(x,  g)f (xg). 

v(x,  el = 1 and (2) 4x3 g1gJ = v(x,  g,)v(xg, 3 gz). 
Here v(x,g) is a scalar-valued function analytic in x and g such that ( 1 )  

Property (2) is equivalent to (3) of expressions (9.30). The mappings (9.30) 
define a multiplier rep and every multiplier rep can be so obtained. Indeed, 
if T is a multiplier rep of G on U c Q, we can define an action of G as a 
transformation group on a neighborhood of am+] by (x, w) + (xg, w + 
ln[v(x,g)]), where x E U and w E Q. The mapping TB, (9.30), induced by 
this action is just T(g). 

Let T be a multiplier rep of G, f E a, and a E L(G). 

Definition. 
group exp at is the analytic function 

The generalized Lie derivative D,  f o f f  under the one-parameter 

(9.31) Daf(x )  = (d/dt)"IIex~ at)f I ( x >  IL=o * 

For Y = 1 the generalized Lie derivative becomes the ordinary Lie deriva- 
tive L,. 

Direct computation from (9.31) yields 

(9.32) 

where the analytic functions Pij(x) are defined by (9.2) and 

& a j p j ( x )  = (d/dt)v(x, exp at) l l z 0 .  

Multiplier reps are a particular type of ordinary local reps, so Theorems 5.24- 
5.27 have immediate analogies for multiplier reps and generalized Lie deriva- 
tives. The elementary proofs of the following results are left to the reader. 

Theorem 5.28. The generalized Lie derivatives of a local multiplier rep form 
a Lie algebra under the operations of addition of derivatives and Lie bracket 

I =  I 

[Du 7 D j l =  DaDp - DBDa * 

This algebra is a homomorphic image of L(G) : 

Doa+t,B = aDu + bD, Dra,B1 = [Du 9 D,I. 

Definition. A Lie group G acts effectively in a local multiplier rep T if L(G) 
is isomorphic to the algebra of generalized Lie derivatives. 

Theorem 5.29. A local multiplier rep is completely determined by its 
generalized Lie derivatives. 
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Theorem 5.30. [T(exp a t ) f ] ( x )  = ( t j / j ! )D=jf (x)  = exp(tD,)f(x). 

Theorem 5.31. Let 

be n linearly independent differential operators defined and analytic in an 
open set U c Q,. If there exist constants c ; ~  such that 

then the D j  form a basis for a Lie algebra which is the algebra of generalized 
Lie derivatives of an effective local multiplier rep T. The action of the group 
G is obtained by integration of the equations 

5.10 Examples of Transformation Groups 

Consider the group SL(2) = SL(2 ,O)  of all 2 x 2 complex matrices 

(10.1) 

with det g = 1 .  As we showed i n  Section 5.4, the Lie algebra s f (2)  of SL(2) 
is the three-dimensional space of all 2 x 2 complex matrices a with tr CI = 0: 

(10.2) 

The elements 

define a basis for s f (2 )  with commutation relations 

(10.4) [33,3+1 = w, Id+, 3-1 = 233. 

An explicit computation shows that 3', d 3  generate one-parameter subgroups 
(10.5) 

In terms of canonical coordinates we can write every g E SL(2) uniquely 
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in the form 
g = exp(ag3 + b$+ -1 c$-) 

forg sufficiently close to the identity. However, we shall adopt another meth- 
od of parametrizing SL(2). Note that 
(10.6) 

(exp 47')( 1 + b'c') - b' exp -47' 

-c' exp 37' exp 4 7 '  
(exp b'g+)(exp c 'g - )  exp 7'd3 = 

Thus, if g E SL(2), (lO.l), is sufficiently close to the identity we can write 
i t  uniquely in the form 
(10.7) g = (exp b'g+)(exp c'g-)  exp r'd3, 

where exp fr' = d - I ,  b' = -b/d, and c' = -cd 
Consider the differential operators 

(10.8) Jf = - ~ U Z  + z2(d/dz), J -  = -d/dz, .I3 = -U + z ( d / d ~ )  

acting on a neighborhood of 0 E 6. Here 224 is a complex number. These 
operators satisfy the commutation relations 
(10.9) 1.13, ~7 = +.I?, [.I+, J - 1  = 253. 

Comparing these relations with (10.4), we see that the J-operators generate 
a Lie algebra isomorphic to d(2). Hence the J-operators are generalized 
Lie derivatives corresponding to a local multiplier rep of SL(2) on 6. We will 
use Theorem 5.31 to compute this multiplier rep. 

According to (9.33) the action of the one-parameter subgroup exp 73' 
on Q is obtained by integration of the equations 
(10.10) 

d a2 _ _  - -1n v(z", exp733) = -u,  z(0) = z", v(zo, e) = 1. d7 '' d7 

The solution is 
z(r) = z0e7, 

so iffis anaIytic in a neighborhood of zo E (l then 
(10.11) [T(exp qJ)f](z0) = e-urf(zoer). 

v(z", exp 7g3) = e-ur,  

To compute the action of exp b$+ we must integrate the equations 

d dz  _ _  - z2, -1n v(zo, exp bg') = -2uz, 
db db 

The solution is 

(10.12) 

z(0) = zo, v(zo, e) = 1.  

z(b) = z"(1 - bz0)- ' ,  v(zo, exp b$+) = (1 - bz0)2u, Ibzo(  < 1. 
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Thus, 

[T(exp b$+)fl(zo) = ( l  - lbZOl< 1. 

A similar computation yields 
(10.14) [T(exp c 3 - ) j ] ( z o )  = f ( z o  - c). 

Note. This action of SL(2) is purely local. Unless 2u is a nonnegative integer, 
it is not possible to extend our local multiplier rep to a global rep of SL(2). 
To give a precise meaning to Eqs. ( l O . l l ) ,  (10.13), and (10.14) it would be 
necessary to state explicitly the values of T ,  b, c, and zo and the functionsf 
for which the equations are defined. However, these values are easily deter- 
mined by inspection once the domain off is given, so ordinarily we will not 
bother to list them. Similar remarks hold for all computations in this book 
involving local transformation groups. 

We can now determine the local multiplier rep T(g) defined by the gener- 
alized Lie derivatives (10.8). Expressing g by (10.7) we have 

[TWf l(z> = m e x p  b'$+)T(exp c'$-)T(exp 7 ' g 3 > f  Kz) 
z(exp z')(l + c'b') - c' expz' 

= (exp - ~ T ' ) ( I  ~ b'r)z'tf( 
1 - b'z 

Thus, if g E SL(2), ( l O . l ) ,  then zg = (az + c)/(bz + d) ,  v(z, g) = (bz + d)2u, 
and 

(10.15) 

for g in a sufficiently small neighborhood of e. The operators (10.8) are the 
generalized Lie derivatives of (10.15). For example, by (10.5), 

(10.16) 

Our general theory shows that the operators (10.15) define a local multiplier 
rep of SL(2):  T(g,)T(g,) = T(g,g,) for g ,  , g, in a sufficiently small neighbor- 
hood of e, a fact which the reader can also verify directly. 

There is one case in which this local rep can actually be extended to a 
global group rep of SL(2). Suppose 2u is a nonnegative integer and let 'U'"' 
be the (224 + 1)-dimensional vector space consisting of all polynomials 
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Now CU'") is invariant under the operators T ( g )  for all g E SL(2) since by 
(10.15) each such operator maps a polynomial of order 2u into a polynomial 
of order 2u. Furthermore, it is easy to check that on the group property 
is valid for all g E SL(2). Indeed, if g ,  g' E SL(2) then 

(10.17) T(g)[T(g' ) f l ( z )  = [T(gg' ) f l ( z )  
(a'a + c'b)z + (a'c + c'd) , 
(b'a + d'b)z -I- (b'c 4 d'd) 1 = [(b'a + bd')z -1- (b'c + dd')JZ"f( 

where 

b a' b' aa' + bc', ab' + bd') 

gg' = (: d ) (  c' d') = (ca' + dc', cb' + dd' . 

Thus, we have obtained a class of finite-dimensional reps D(u), 2u = 0, 1, 2, 
. . . , of the global group SL(2), i.e., reps in the sense of Section 5.8. 

Let us show that the reps D'") are irred. By Theorem 5.23 it is enough to 
show that the induced Lie algebra reps (which we also denote D'"') are irred. 
Choose the natural basis hj (z )  = zj ,  j = 0, 1, . . . , 2u ,  for 'u'"'. The action 
of the generalized Lie derivatives on this basis is 
(10.18) 

J3hj = - ( u)hj ,  J-h, = - 
dz j 
dz ~ 

_ -  -jh,- ,, 

This action defines the Lie algebra rep DIU) of sl(2). We will use one of the 
Schur lemmas to prove that D'"' is irred. (Note the remarks at the end of 
Section 5.8). Let A be a linear operator on Vu) which commutes with J' ,  
J 3 .  Then A must commute with all of the J-operators in the rep D'"'. Now 
J3Ahj = AJ3hj = ( j  - u)Ah,, so Ah, is a multiple of hi: Ah, = a,h,, 
a, E 6. (Each eigenvalue u - j  of J 3  has multiplicity one.) Furthermore, 

J'Ah, = ( j  -- 2u)ajhj+ ,  , AJ+h, = ( j -  2 u ) ~ , + ~ h ~ + ~ ,  

so aj  = aj+,  , 0 5 j 2u - 1 .  Setting a, = a we obtain Ah, = ah, or A = 
aE, where E is the identity operator. Therefore, D(") is irred. We will see later 
that the ID'")} constitute a complete set of nonequivalent irred reps of the 
complex Lie group SL(2). 

Now that we have constructed the reps D'K' let us examine their relation- 
ship to special function theory. The matrix elements D,,(g) of T ( g )  with 
respect to the basis {hi}  are defined by 
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or explicitly, 

(10.20) (ar  + c)k(bz I d)2u-k  = 2 D,,(g)z'. 

Since T ( g , g 2 )  = T(g, )T(g , )  the matrix elements satisfy the addition theorems 
I - 0  

2" 

,'O 
(l0.21) D/k(g,g2) D/j(gl)Djk(gZ), [, k = 0, 1 9 .  . . 9 224. 

Formula (10.20) is a generating function for the matrix elements. Using 
the binomial theorem to expand the left-hand side of this expression we 
find that the matrix elements are given by 

(10.22) 

-1, - 2 ~  - k ;  k - I + 
l ! (k  -- I ) !  I 

I 2u 2 12 k 2 0 ,  

where the z F ,  are hypergeometric polynomials. (See the Symbol Index.) 
Relations (10.21) yield addition theorems for the 2 F ,  which are not easy to 
prove directly. We shall show that this relation between group reps and spe- 
cial functions occurs frequently : Many special functions appear as matrix 
elements of Lie group reps and the group property leads to  addition theorems 
obeyed by the functions. 

We return to  the case where 2u is an arbitrary complex number, not a 
nonnegative integer. Then (10.15) and (10.17) make sense only for group 
elements in a small neighborhood of the identity and functions f analytic 
in a neighborhood of z = 0. Since 2u is not a nonnegative integer, the multi- 
plier v(z, g )  = (bz + d)2u is defined by its power series expansion in z about 
z = 0. This series converges only if 1 bz/d 1 < 1.  Furthermore iff is analytic 
near zero then f ( z g )  is analytic near zero only if (az + c)/(bz + d)  is in the 
domain off and I azjc 1 < 1 and 1 bzjd 1 < 1. Let a be the space of all functions 
f analytic in a neighborhood of zero. There is now no finite-dimensional 
subspace of a which is invariant under the operators T(g), (10.15). However, 
Q. itself is invariant since iff E Q. we have T(g) f  E Q. for g is sufficiently close 
to the identity. Since the elements of Q. are just those functions with conver- 
gent power series expansions about z = 0, the action of T ( g )  on Q. can be 
determined from a knowledge of T ( g )  on the basis functions h,(z) = zl, 

I = 0, I ,  2, . . . . We define the matrix elements B,,(g) by 
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or 

(10.24) 

Since T is a multiplier rep we have 

(10.25) B d g t g z )  = C Bij(gl)Bjkk,), k = 0,  1 , Z .  3 

for g,  , g ,  in a sufficiently small neighborhood of e. Thus, (10.24) is a generat- 
ing function and (10.25) is an addition theorem for the special functions 
B&). Computing the coefficient of z' in (10.24) we find 

(10.26) 

( a t  + C)k(bz + d)Zu-k = 5 Blk(g)Z'. 
I =O 

m 

, = 0  

ald2u-kCk-lk 1 

l ! (k  - I ) !  
. 2 F , ( - l , - 2 ~ +  k ; k - l +  l i bc lad ) ,  k 2 1 2 0 ,  

B ( ) = 
akd2u-l 1 k 

b -  r ( 2 u - k k 1 1 )  F ( - k , - 2 u + l ; l -  k +  1;bc /ad) ,  Ik I r(2~ - 1 + 1 ) ( 1 -  k ) !  
I 1 2 k 2 0 ,  

where r(z) is the gamma function (see the Symbol Index). Such local group 
reps are of importance in special function theory, as we shall see. 

There are exactly three local transformation groups on the line. The cor- 
responding algebras of differential operators are as follows: 

(10.27) 

(1) L ,  = d/dz ,  one-dimensional, 
(2 )  L ,  = d/dz ,  L ,  = z d /dz ,  [ L , ,  L,] = L , ,  two-dimensional 
(3) L -  = d /dz ,  L ,  = z d /dz ,  L ,  = zz d/dz ,  three-dimensional 

[L,,  L?] = k L , ,  [L,, L-1 = 2L,. 

Any local group on the (real or complex) line can be transformed to one 
of these three by an analytic change of variable. Note that the operators 
(3) define the action of SL(2) as a transformation group on the line. Any 
one-parameter group can always be expressed in the form (1)  by a change 
of variable. For a proof of this classification see Lie [ l ]  or Campbell [ l ] .  

The classification of local multiplier reps on the line is more complicated. 
Here it is necessary to classify the Lie algebras of generalized Lie derivatives 
in one complex variable, e.g., (10.8). There are an infinite number of such 
algebras. They are listed in the work of Miller [I]. 

Lie [ I ]  has classified all local transformation groups in the plane. Again 
there are an infinite number of such groups. Some results on multiplier reps in 
the plane are given by Miller [l]. 
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Problems 

5.1 Let B be an n x n matrix with distinct eigenvalues I , ,  . . . , I,. Show that Ad B 
acting on the space of all n x n complex matrices has the n2 eigenvalues ).i - l j ,  1 I i ,  
j l n .  

5.2 

5.3 

Verify directly that the matrix commutator satisfies the Jacobi identity. 
Verify that the set of all real matrices 

l a b  (; ; ;), c > o ,  

forms a Lie group, and compute the associated Lie algebra. In particular, determine the 
commutation relations. 
5.4 Show that the following spaces of m x m matrices form Lie algebras: (a) all upper 
triangular matrices; (b) all upper triangular matrices with trace zero; (c) all upper triangular 
matrices with diagonal elements zero. Determine the corresponding Lie groups. 
5.5 Compute all real Lie algebras of dimensions one and two (identifying isomorphic 
algebras). For each algebra compute the associated local linear Lie group. 
5.6 Repeat Problem 5.5 for all complex Lie algebras of dimension three (see Jacobson 
[ l ,  Chapter 11). 
5.7 Show that the element 

of GL(2, R )  cannot be expressed as exp a for any a E g42,  R). Thus the exponential 
mapping may not cover a Lie group. 
5.8 Let p :  G --f G’ be an  analytic homomorphism of local Lie groups. Show that, in 
terms of canonical coordinates in G and G’, p is a linear mapping. 
5.9 Let G be a linear Lie group with Lie algebra S. Let S’ be the subspace of $j spanned 
by all elements of the form [a, (81, a,  63 E 8. Show that S’ is a Lie algebra, the derived 
algebra of 9, and that 9’ = L(G,), where G, is the commutator subgroup of G. 
5.10 Verify that L1 = zd, 4- yd,, LZ = xd, + zd,, and L3 = yd, - xd,,x,y, z real, 
generate the algebra of Lie derivatives of a local Lie transformation group G. Compute the 
action of G on RJ . 
5.11 Forj  = 1,2 let Tj be an analytic rep of the Lie group G on the vector space V j  with 
associated Lie algebra rep p i .  Show that the Lie algebra rep corresponding to T I  @ TZ 
takes the form pl(a) @ Ez + El @ pz(a) on V I  @ V Z  where Ej is the identity operator 
on Vj and a E L(G). 
5.12 Let G be a local transformation group acting on a neighborhood of xo E F,. A 
functionfanalytic near xo is an invariant of G iff(xg) = f(x) for each x sufficiently close to 
xo and g E G. Prove: A function f i s  an invariant of G if and only if Lf(x) = 0 for all Lie 
derivatives L of G. 
5.13 Compute the invariants of E+(2) ,  (9.10), and of the group in Problem 5.10. 



Chapter 6 

Compact Lie Groups 

6.1 Invariant Measures on Lie Groups 

Let G be a real n-dimensional global Lie group of m x m matrices. A 
functionf(B) on G is continuous at B E G if it is a continuous function of 
the parameters (8, , . . . , g.) in a local coordinate system for G at B. Clearly 
iffis continuous with respect to one local coordinate system at Bit  is continu- 
ous with respect to all coordinate systems. Iffis  continuous at every B E G 
then it  is a continuous function on G. We shall show how to define an infinitesi- 
mal volume element dA in G with respect to which the associated integral 
over the group is left-invariant, i.e., 

(1.1) j f(BA)dA = j f(A)dA, B E G, 

where f is any continuous function on G such that either of the integrals 
converges. In terms of local coordinates g = (g , ,  . . . , gn) at A, 

(1.2) dA = W(g) dg, . * . dg, = W(g) dg, 

where the continuous function w is called a weight function. If k = 

( k , ,  . . . , k,) is another set of local coordinates at  A then, 

dA = E(k) d k ,  . a . dk,, E(k) = w(g(k)) I det(dg,/dk,) I ,  
where the determinant is the Jacobian of the coordinate transformation. 
(For a precise definition of integrals on manifolds see Spivak [I].) 

Two examples of such left-invariant measures are well known. We can 

206 
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identify R with the group of 2 x 2 matrices 

(1.3) 

The continuous functions on this group are just the continuous functions 
f(x) on the real line. Here, dx is a left-invariant measure. Indeed by a simple 
change of variable we have 

where f is any continuous function on R such that the integrals converge. 
Since R is abelian, dx is also right-invariant. 

Consider the group U(1) = {eg). The continuous functions on U ( l )  
can be written f(8), where f is continuous for 0 8 I 2n and periodic with 
period 2n. The measure d8 is left-invariant (right-invariant) since 

We now show how to construct a left-invariant measure for the n-dimen- 
sional real linear Lie group G. Let {el ,  1 5 j 5 n} be a basis for L(G). We can 
introduce an inner product on L(C) with respect to which this basis is ON. 
Associate the n-tuple a = ( a l , .  . . , a,) with C a,e, t L(G). Now n linearly 
independent vectors a" ' ,  . . . , a'"' in  L(G) generate a parallelepiped in L(G) 
with volume 

(1.4) V = I det(aj") 1 > 0. 
Expression (1.4) defines volume in the tangent space of the identity element. 

Let A(t )  be an analytic curve in G such that A(0)  = A. We call k(0) = 6 
the tangent matrix to A ( t )  at A .  The set of all matrices 6 as A ( t )  runs over 
all analytic curves through A forms a vector space TA called the tangent space 
at A .  If A ( t )  is an analytic curve through A then k 1 A ( t )  is an analytic curve 
through Em. Thus (d /dt ) [A- 'A( t ) ]  = a. Conversely, 
if a E L(G) then A ( t )  = A exp ta is an analytic curve through A with 
tangent matrix 6 = Aa at A .  Thus every tangent matrix 6 at A can be written 
uniquely as 

(1.51 a = Aa, Q. E L(G). 

= Q. E L(G), or 

I 

Let g = (gl ,  .,: . , g,) be local coordinates at A .  Without loss of generality 
we can assume A(e) = A .  The matrix functions A(0, .  . . ,0 ,  g l , .  . . ,0)  
are analytic curves through A ,  so dA/dg,(e) = 6, E T A .  We will define the 
volume V A  of the paratlelepiped in TA generated by the n tangent vectors 
6,. We do this by mapping TA back to TE,  = L(G). According to (1.5) there 
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exist matrices aj E L(G) such that - 
A-'aj = aj,  j = 1,. . . , n. 

Writing a, = C ap'e,, we define the volume of the parallelepiped in TA 
as the volume of its image in L(G): 

V,(g) = 1 det(aP) I > 0. 
By construction, our volume element is left-invariant. Indeed if B E G then 

(BA)-'(d/dg,)[BA(g)] l e = a  = A - ' B - ' B & ,  = A-Ia, = a .  I '  

so VEA = V,. We define the measure d,A on G by 

dfA  = V,(g) dg, . . . dg,. 

I - 

(1.6) 

Expression (1.6) is actually independent of local coordinates. If k = 

(k , ,  . . . , k,) is another local coordinate system a t  A then 

A- 

so 

VAk) = 

Thus, 

is well-defined provided it  converges. Furthermore, 

where the third equality follows from the fact that BA runs over G if A does. 
By an  analogous procedure one can also define a right-invariant measure 

in G. Indeed the tangent matrices at  A can be written uniquely as a = @ A ,  
63 E L(G). Writing 

we define 

(1.9) 
The reader can verify that d,A is a right-invariant measure on G. 

(dA/dg,)A-' = aj = C Pv'e,, 

WA(g) = I det(pp) 1, d,A = WA(g) dg, . - . dg,. 
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Since A(A-ldA/dg,)A-I  = ( d A / d g , ) A - ' ,  we have 
(1.10) W,(g> = I det A" I * V,(g), 

where A" is the automorphism a - A a A - '  of L(G). Thus, if det A" = 1 
for all A E G then d,A = d,A and there exists a two-sided invariant measure 
on G. In the next section we find sufficient conditions for the existence of a 
two-sided invariant measure. 

It can be shown that a much larger class of groups (the locally compact 
topological groups) possesses left-invariant (right-invariant) measures. Fur- 
thermore, the left-invariant (right-invariant) measure of a group is unique 
up to a constant factor. That is, if dA and 6 A  are left-invariant measures on 
G then there exists a constant c > 0 such that dA = c 6 A  (Naimark [I], 
Pontrjagin [l]). 

To illustrate our construction, consider the matrix group (1.3). The 
matrix A ,  - E ,  is a basis for the one-dimensional Lie algebra. Let A ,  t R .  
Then 

d A , -  1 --X 0 1  

d x  

and V,(x) = 1. Thus, d,A = d x .  Similarly d,A = dx. 
Now consider GL(m, R).  We can choose as parameters for A the m2 

matrix elements A j j .  The  matrix d A / d A , ,  has a one in the ith row and j t h  
column, and zeros every place else. A straightforward computation shows 
that the m2 x m2 matrix looks like 

(als)) = 
A - '  

z z l  A - '  

if we suitably rearrange rows and columns. (This rearrangement does not 
affect the value of 1 det(aj") I.) Thus, 

V,  = Idet(uj"')I = ldet A I - m  
and 

( 1 . 1 1 )  d,A = ldet Al-" rl[ dAj ,  

It is obvious from the symmetrical form of ( 1 . 1  1 )  that d,A = d,A. 

m 

j ,  k 1 

As a final example consider the real group 

G = [ A =  (r; Y ) ,  a , b  E R }  
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Clearly, G acts as a transformation group on the real line: x + e"x + b. 
The matrices 

form a basis for L(G). Now 

Thus, 

1 0  
(1.12) vA(a, b) = I det(o e - u )  I = e-O, d,A = e-" da db. 

On the other hand 

dA -A-I = (: ,l) = e,  db = e,  - be, ,  @A-1 = 
da 

so 
1 -b  

(1.13) wa(a ,  6) = 1 det(O I )  1 = 1, d,A = da db. 

The right and left-invariant measures of G are distinct. 

6.2 Compact Linear Lie Groups 

In Section 5.1 we defined the norm 1 1  A ) I  of an m x m matrix A and saw 
that every Cauchy sequence in the norm {A'''] converges to a unique matrix 
A.  Furthermore, A,, = 1imj+- AjC, where A = ( A i k ) .  Indeed {A(')]  is a Cauchy 
sequence of matrices if and only if each of the sequences of matrix elements 
{AX)}, 1 I i, k < m, is Cauchy. 

The following result is easy to  prove from these remarks. 

Lemma 6.1. Let {A' j ' )  and { P I  be Cauchy sequences of m x m matrices 
with limits A and B. Then {A'j'B'j'] is a Cauchy sequence with limj-- A'j'B'j) 
= AB. Furthermore, if A'] )  is nonsingular for a l l j  and A is nonsingular then 
{A'j'-'} is a Cauchy sequence with limit A - I .  

In particular, multiplication and inversion in a linear Lie group are contin- 
uous with respect to the norm. 
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A set of m x ni matrices U is bounded if there exists a constant M > 0 
such that 1 1  A 1 1  5 M for all A E U .  Thus, U is bounded if and only if there 
exists a constant K > 0 such that I Aik I < K for 1 m and all A E U. 
(Prove it.) The set U is closed provided every Cauchy sequence in U converges 
to an element of U. 

A subset S of the real line is compact if each countable sequence {aj) ,  
ai E S, contains a subsequence converging to a point in S.  Here, S is compact 
if and only if it is a closed, bounded subset of R (Rudin [l]). 

i, k 

Definition. A (global) group of m x m matrices is compact if it is a bounded, 
closed subset of the set L, of all m x m matrices. 

A group G is closed provided every Cauchy sequence {A‘” )  in G converges 
to an element of G. 

The classical groups O(m, R),  SO(m, R),  U(m), SU(m), and USp(m) are 
compact. We verify this fact only for O(m, R )  since the other proofs are 
similar. 

If A E O(m, R)  then A‘A = Em, or 
m 

C AirAik = d,, 
i= I 

Setting I = k ,  we obtain xi (Aik)2 = 1, so I Aik 1 I 1 for all i, k.  Thus, the 
matrix elements of A are bounded. Let { A ( j ) }  be a Cauchy sequence in 
O(m, R )  with limit A.  Then 

Em = lim (A(j))’A(jl  = A t A ,  
j m  

So A E O(m, R) and O(m, R )  is compact. 
Suppose G is a real, compact, linear Lie group of dimension n. It  follows 

from the Heine-Bore1 Theorem (Rudin [l]) that the group manifold of G can 
be covered by a finite number of bounded coordinate patches. Thus, for any 
continuous functionf(A) on G, the integral 

will converge (since the domain of integration is bounded.) In particular the 
integral 

(2.2) 

called the volume of G, converges. If G is not compact the integrals (2.1) and 
(2.2) may not converge. Indeed, if G = R, the real line, then (2.2) diverges. 

The above remarks also hold for the right-invariant measure d,A.  More- 
over, we can show d,A = d,A for compact groups. 

Theorem 6.1. If G is a compact linear Lie group then d,A = d,A. 
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Proof. By (l.lO), d,A = I det 21 d,A, where A' is the inner automorphism 
a - A a A - '  of L(G). We can think of A" as an m2 x m2 matrix rep of G. 
Since G is compact the matrices A ,  A-I E G are uniformly bounded. 
Thus the matrices 2 are bounded and there exists a constant M > 0 such 
that I det 21 M for all A E G. Now fix A and suppose I det 21 = s > 1. 
Then 

ldet A'][ = ldet 2lj = s', j = 1,2, .  . . . 
Choosingj sufficiently large we get sj > M ,  which is impossible. Thus s 5 1. 
If s < 1 then 

Ide tA ' - ' I= Ide tAl I - '=s - '> l  
which is impossible. Therefore s = 1 for all A E G and d,A = d,A.  Q.E.D. 

For G compact we write d A  = d,A = d,A,  where the measure dA is both 
left- and right-invariant. 

Using the invariant measure for compact groups, we can mimic the proofs 
of most of the results for finite groups obtained in Sections 3.1-3.3. In  
particular, we will show that any finite-dimensional rep of a compact group 
can be decomposed into a direct sum of irred reps and we will obtain orthogo- 
nality relations for the matrix elements and characters of irred reps. 

For finite groups K these results were proved using the average of a func- 
tion over K. Iff is a function on K then the'average off over K is 

av(f(kN = [I/n(K)l c f(k). 

a w ( h k ) )  = avv(f(kh1) = W f ( k > > .  

k E K  
(2.3) 

(2.4) 
Furthermore, 

(2.5) W a , f , ( k )  + az f* (k ) )  = a,av(fl(k>) + aZav(f,(k)), WI> = 1. 
Properties (2.4) and (2.5) are sufficient to prove most of the fundamental 
results on the reps of finite groups. Now let G be a compact linear Lie group 
and letf be a continuous function on G. We define 

If 11 E Kthen 

where d A  is the invariant measure on G, VG = 

and 6 A  = V,' d A  is the normalized invariant measure. Then 
1 dA is the volume of G, 

a v ( f ( A B ) )  = av(f(A)), av(1) = I SA = 1,  B E G, 
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since 6 A  is both left- and right-invariant. Thus, &vl ( f (A) )  also satisfies prop- 
erties (2.4) and (2.5). 

We now study the continuous reps of G, i.e., reps T such that the operators 
T(A) are continuous functions of the group parameters of A E G. 

Theorem 6.2. Let T be a continuous rep of the compact linear Lie group G 
on the finite-dimensional inner product space V. Then T is equivalent to a 
unitary rep on V .  

Proof. 
(-, -) on Vwith respect to which T is unitary. For u, v E Vdefine 

(2.8) (u, V) = J (T(A)u, T(A)v) 6 A  = ae/[<T(A)u, T(A)v)]. 

(The integral converges since the integrand is continuous and the domain 
of integration is finite.) It is straightforward to check that (-, -) is an inner 
product. In particular the positive-definite property follows from the fact 
that the weight function is strictly positive. Now 

Let (-, -) be the inner product on V. We define an inner product 

G 

(T(B)u, T(B)v) = ~v[(T(AB)u, T(AB)V)] 

= av[(T(A)u, T(A)v)I = (u, v), 

so T is unitary with respect to (-, -). The remainder of the proof is identical 
with that of Theorem 3.1. Q.E.D. 

The theorem shows that we can restrict ourselves to the study of unitary 
reps T with no loss of generality. 

Theorem 6.3. If T is a unitary rep of G on V and W is an invariant subspace 
of V then W is also an invariant subspace under T. 

Theorem 6.4. Every finite-dimensional, continuous, unitary rep of a compact 
linear Lie group can be decomposed into a direct sum of irred unitary reps. 

The proofs of these theorems are identical with the corresponding proofs 
for finite groups. 

Let {T‘ul] be a complete set of nonequivalent unitary irred reps of G, 
labeled by the parameter p. (Here we consider only reps of G on complex 
vector spaces.) Initially we have no way of telling how many distinct values 
p can take. (It  will turn out that p takes on a countably infinite number of 
values, so that we can choose p = I ,  2, . . . .) We introduce an ON basis 
in  each rep space V‘p’ to obtain a unitary n, x n, matrix rep T‘”’ of G. 

Now we mimic the construction of the orthogonality relations for finite 
groups. Given the matrix reps T‘”’, TI”’, choose an arbitrary n,, x n, matrix 
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C and form the n, x n, matrix 

(2.9) D = ao/[T'"'(A)CT'"'(A-l)] = I T(')(A)CT(")(A-l)  6 A .  

Just as in the corresponding construction for finite groups, one can easily 
verify that 

G 

(2.10) T"'(B)D = DTL"'(B)  

for all B E G. Recall that the Schur lemmas are valid for finite-dimensional 
reps of all groups, not just finite groups. Thus if p # v, i.e., P) not equiva- 
lent to T(") ,  then D = Z. If p = v then D = AE,, for some A E 6 .  

D(C, P ,  v) = C )  S,"E", . 
Letting C run over all n, x n, matrices, we obtain the independent identities 

for the matrix elements TIf)(A).  To evaluate A we set v = p and s = i and 
sum on i: 

Therefore A = dk,/n,. Since the matrices T'"'(A) are unitary, (2.1 1) becomes 
(2.12) 

jG TP(A)TS"~(A)  6~ = (Si,/n,> 6,k d,,, 1 I i, I I n,, 1 s, k 5 n,. 

These are the orthogonality relations for matrix elements of irred reps of G. 
In the case of finite groups K we were able to relate the orthogonality 

relations to an inner product on the group ring R,. We can consider R, as 
the space of all functionsf(k) on K.  Then 

defines an inner product on R, with respect to which the functions{nt,2Tlr'(k)) 
form an ON basis. We extend this idea to compact linear Lie groups G as 
follows: Let L,(G) be the space of all functions on G which are (Lebesgue) 
square-integrable : 

(2.13) 

With respect to the inner product 

(2.14) 

L,(G) is a Hilbert space (see the Appendix). Note that every continuous func- 
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tion on G belongs to L,(G). Let 
(2.15) &’(A) = n ; : 2 T y ( A ) .  

I t  follows from (2.12) and (2.14) that {p$)), where 1 nu and p ranges 
over all equivalence classes of irred reps, forms an ON set in L,(G). 

For finite groups we know that the set {rp$)] is an ON basis for the group 
ring and every functionfon the group can be written as a unique linearcom- 
bination of these basis functions. Similarly one can show that for G compact 
the set (pip)) is an ON basis for L,(G). Thus, everyf t L,(G) can be expanded 
uniquely in the (generalized) Fourier series 

i, j 

(2.16) f ( A )  @ = I  2 i . k - 1  5 C f k p j i ) ( A ) ,  

where 
(2.17) C f k  = (f, p y > .  

Furthermore, we have the Parseval equality 

( f , f > =  c E lc$12. 
n = l  i , k = l  

[We use - rather than = in (2.16) to denote thatfand C c$p,!p) are the same 
Hilbert space vector. We do not claim that the two sides of the equality are 
necessarily pointwise equal.] 

We illustrate this result, the celebrated Peter-Weyl theorem, for an impor- 
tant example, the circle group U (  I ) .  

Lemma 6.2. Let G be an abelian group (not necessarily a Lie group) and let 
T be a finite-dimensional irred rep of G on a complex vector space V .  Then 
T is one-dimensional. 

Proof. Suppose T is irred on V and dim Y > I .  There must exist a g E G 
such that T(g) is not a multiple of the identity operator on V ,  for otherwise 
V would be reducible. Let 1 be a eigenvalue of T(g) and let C, be the eigen- 
space 

C, = {V E V :  T(g)v = 1 ~ ) .  

Clearly C, is a proper subspace of V. If h t G and w E C, then 

T(g)(T(h)w) T(h)(T(g)w) = J(T(h)w) 

since G is abelian, so C, is invariant under the operator T(h). Therefore, T 
is reducible. Impossible! Q.E.D. 

Although all complex irred reps of an abelian group are one-dimensional, 
the lemma is false for real reps (see Problem 6.8). 
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The circle group U(1) = leis) is compact and abelian. Hence its irred 
matrix reps are continuous functions x(0) such that 

(2.18) x(0 ,  + 0,) = x(e,>x(e,>, 0,,0,  t R ,  
and x(0 + 2a) = x(e). The functional equation (2.18) has only the solutions 
x(0) = eas and the periodicity of x implies a = im, where m is an integer. 
Therefore, there are an infinite number of irreducible unitary representations 
of U(1): 

x,(0) = elme, m = 0, & I ,  L-2,. . . . 
The invariant measure on U(1)  is do. The space L,(U(l)) is just the space 
L,[O, 2x1 consisting of all functionsf(0) with period 2a such that J 2 =  1 f(0) de  

< 00. By the Peter-Weyl theorem the functions {eims] form an ON basis for 
LJO, 2x1. Everyf E L,[O, 2a] can be expressed uniquely in the form 

Furthermore, 

(2.20) 

Here (2.19) is the well-known Fourier series expansion of a periodic function 
and (2.20) is Parseval’s equality. It is clear from this example that the Peter- 
Weyl theorem is a group-theoretic generalization of classical Fourier series 
analysis. Furthermore, we see that the classical theory has a group-theoretic 
structure. 

Theorem 6.5 (Peter-Weyl). If G is a compact linear Lie group, the set {&)} 
;s an ON basis for L,(G). 

The proof of this theorem depends heavily on facts about symmetric 
completely continuous operators in Hilbert space and will not be given here. 
For the details see Chevalley [ I ]  or Naimark [I]. 

Corollary 6.1. A compact linear Lie group G has a countably infinite (not 
finite) number of equivalence classes of irred reps IT‘@]. Thus, we can label 
the reps so that p = 1,2,. . . . 

Proof. The functions {&)} form an ON basis for L,(G). Since L,(G) is a 
separable, infinite-dimensional Hilbert space there are a countably infinite 
number of basis vectors (Helwig [l]). Q.E.D. 

Corollary 6.2. Let G, H be compact linear Lie groups with equivalence 
classes of irred reps {T‘p)], {U(.)), respectively, Then {T‘fl) 0 U(”)] is the com- 
plete set of equivalence classes of irred reps for the compact group G x H. 
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The proof, which is left to the reader, consists in showing that the func- 
tions (npnV)' 2Tj,")(A)Ub'(B) form an ON basis for L,(G x H ) .  

The Peter-Weyl theorem refers to continuous reps of the real compact 
Lie group G, while the Lie-theoretic methods of Chapter 5 apply only to 
analytic reps. The possibility arises that there may be continuous reps of G 
which are not analytic. For such reps, Lie-algebraic methods make no sense. 
Fortunately, the following result eliminates this possibility. 

Theorem 6.6. Let T be a finite-dimensional continuous rep of the real com- 
pact linear Lie group G on the inner product space V. Then T is analytic 
(with respect to suitable coordinates for C )  (see Naimark [ 2 ] ) .  

6.3 Group Characters and Representations 

The theory of characters for compact Lie groups is almost identical with 
the character theory for finite groups presented in Section 3.4. The principal 
difference is that the sum over a finite group is replaced by an integral. 

Let T be a rep of the compact linear Lie group G on the m-dimensional 
vector space V. With respect to a fixed basis in V the operators T(A) define 
a matrix rep T(A).  The character of T is the function 

x ( A )  = tr T(A) .  

Since tr(ST(A)S-') = tr T ( A )  the character is independent of basis in V and 
equivalent reps have the same character. The character of an irred rep is 
simple, while the character of a reducible rep is compound. If T is unitary 
then its corresponding character satisfies the relation x(A) = ,Y(A-').  How- 
ever, every rep is equivalent to a unitary rep, so the preceding identity is satis- 
fied by all characters. Every character is a continuous function on G. 

Let {T(plj be a complete set of nonequivalent unitary irred reps of G and 
let { f @ ]  be the corresponding simple characters. The orthogonality relations 
(2.12) for matrix elements imply the following orthogonality relations for 
characters : 

The proof is identical with that for finite groups. 

Theorem 6.4 we can decompose T into a direct sum of irred reps, 
Let T be a finite-dimensional unitary rep of G with character x. By 

T = @ a,T'P). 

Here the integer a, denotes the multiplicity of T'"' in T. Only a finite number 
of the {a,} are nonzero. We shall show that the multiplicities ap are uniquely 
determined by T, i.e., they are independent of the method by which T is 

p =  1 
(3.2) 
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decomposed into irred reps,, From (3.2), the character of T can be expressed 
in the form 

(3.3) 
m 

x = c a,xC,). 
, = 1  

According to the orthogonality relations 
- 

(x,  x("9 = c a/Ax(,), f " ' )  = a,, 
,= 1 

(3.4) 

Since (3.4) is independent of basis, the multil: 
determined. 

v = 1,2, . m . .  . 

icities a, must be uniquc Y 

Theorem 6.7. Let T be a rep of G with character x.  The multiplicity a, of 
T',) in T is given by ( x ,  ,(,I) = a,. Two reps with the same character are 
equivalent. 

Corollary 6.3. The rep T is irred if and only if (x ,  x )  = 1. 

Example. The simple characters of the circle group U (  1) are just f"(f3) = 

cine, n = 0, It 1 ,  . . . . (Here it is more convenient to let the index of the irred 
reps run over all integers rather than over the nonnegative integers.) The 
orthogonality relations are 

( X ( n ) ,  (1 /2n)  J2* e i ( n - m ) e  = 6 nm' 
0 

In Section 3.7 we used the method of projection operators to  explicitly 
decompose a rep into a direct sum of irred reps. These methods carry over to 
compact Lie groups virtually unchanged. Thus we present the results without 
detailed proof. 

Let T be a unitary rep of the compact linear Lie group G on the inner 
product space V .  Corresponding to the decomposition 

of T there is a decomposition 

V =  5 @ PJ, V',) = c @ V y ,  
p= I i =  I 

(3.5) 

where TI V!,) is equivalent to T',). These spaces Vj,) are not uniquely deter- 
mined. Define the linear operators P, on V by 

(3.6) 

To make sense of (3.6) choose a basis (vj] for V with respect to which T ( A )  

P, = n, J', f " ( A ) T ( A )  6A,  p = I ,  2 , .  . . . 
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is the matrix of T(A). Then P, is the operator on V whose matrix is 

P, = n, 5, X ( , ) ( A ) T ( A )  6 ~ .  

It follows from (3.6) that T(B)P, = P,T(B) for all B E G .  Furthermore, 
Pe2 = P, and P,* = P,. Thus, P,, is a self-adjoint projection operator on V. 

Let IT(,)} be a complete set of nonequivalent irred unitary matrix reps of 
G and choose a basis {vj;)] in each subspace V/”)  such that 

nu 

& = I  
T(A)v$) = 2 Tp)(A)v:;), 1 < j < n,. (3.7) 

Then, just as in (7.12). Section 3.7, one can prove 

(3.8) 

Thus P, projects onto the invariant subspace V(,). Since the definition of 
P, is basis-independent, V ( @ )  is uniquely determined. To find the Via) we 
define operators 

(3.9) PLk = n, s, f$)(A)T(A) SA, 1 I ,  k < n,, 
which are easily shown to have the properties 

P,vj;) = 6 PV 11 2 p,u = I ,  2 , .  . . , I < i < a,, 1 < j  < n,. 

(3.10) PFv/f’ = 6,” d j k  v::) 9 

n r  
(3.11) PFP;?’ = S,,! S&,* P:”’, ( P y  = P?, P, = c p y .  

k = l  

Thus Pik is the self-adjoint projection operator on the a,,-dimensional space 
W L )  spanned by the ON basis vectors {v/$:  1 < i I a,]. The remaining 
details for the construction of the spaces are identical with those for 
finite groups. 

We now extend the concept of group rep from finite-dimensional inner 
product spaces to Hilbert spaces. Let X be a Hilbert space and G a (global) 
linear Lie group of m x m matrices. 

Definition. A (bounded) representation T of G on X is a correspondence 
which assigns to each A E G a bounded linear operator T(A) on X such that 
(3.12) T(A)T(B) = T(AB), T(E,) = E, 

where A ,  B E G and E is the identity operator on X. 

Note that T(A) is invertible and T(A)-’ = T(A-’). The rep T is irreducible 
if X contains no proper closed subspace (closed in the norm) which is invari- 
ant under T. Otherwise T is reducible. Every finite-dimensional subspace of 
a Hilbert space is closed. (Prove it.) Thus for finite-dimensional reps the above 
definition of irreducibility coincides with that given in Chapter 3. 
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Suppose Is, is an invariant subspace of X. Since T(A) is bounded, the 
closure is invariant under T(A) for all A E G. (Prove it.) Thus is also 
an invariant subspace of X. Since we can always close an invariant subspace, 
we restrict ourselves to closed invariant subspaces in the definition of'irreduci- 
bility. 

A rep T is unitary if each operator T(A) is unitary for all A ,  and contin- 
uous if <T(A)v, w) is a continuous function of A for each v, w E X. Here 
(-, -) is the inner product on X. Unless otherwise stated, we consider only 
continuous reps. 

For G compact we can carry over many of our results for finite-dimen- 
sional unitary reps to Hilbert space reps. Let T be a unitary rep of G on the 
separable Hilbert space X. We define operators P,, PLk on X by 

( 3 .  I 3) P, = n, J ~ ( A ) T ( A )  ~ ( A I ,  p;k  = n, J, F ~ ( A ) T ( A )  6 ~ .  
G 

To make sense of these expressions choose an ON basis {v,} for X and let 
T(A) be the (possibly infinite) matrix corresponding to T(A) : 

(3.14) 

Since T is continuous the matrix elements Tj,(A) are continuous functions 
on G. By P, we mean the linear operator on X whose matrix with respect 
to {v,] is 

m 

T(A)v, = C Tj,(A)vj,  i = 1 , 2 , .  . . . 
j =  I 

There is a similar definition for PF. It can be shown that the properties (3.1 I )  
which were valid for X finite-dimensional are true in general. In fact we have 
the following result. 

Theorem 6.8. A unitary rep T of a compact Lie group G on X can be decom- 
posed into a direct sum of unitary irred reps T'"' : T C;=, @ a,T(". Indeed 
there exist mutually orthogonal subspaces U,", rn = 1, . . . , a,, of X such 
that X = Cm,, @ U," and TI Urn z T(,). The U," are not unique but the 
multiplicity a, = 0, 1, 2, . . . , 00 is unique, as is the space X, = Ern @ U,". 
If dim X, = h, is finite then a, = h,/n, . 

The proof of this theorem makes use of the Peter-Weyl theorem (Nai- 
mark [2] or Talman [l]). The proof is constructive in the sense that one can 
use the method discussed following Eq. (7.18), Section 3.7, to explicitly 
decompose X. The only difference is that the multiplicity a, may be coun- 
tably infinite. 
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Problems 

6.1 

6.2 

Compute the invariant measure on U ( 2 ) .  

Compute the left- and right-invariant measures on SL(n, R) .  

6.3 Prove: If G is a compact linear Lie group then d(A-1) = dA, i.e., J , f ( A - ] )  dA = 

j G f ( E ) d E .  [Hint: Show that VA-c(g) : l de t ( - i ) ]  VA(g) ,  where A is the automorphisni 
a + AaA-I of L(G), and use the proof of Theorem 6.1.1 
6.4 Prove that the identity rep is contained in the tensor product T I  @ T I  of two irred 
reps of a compact Lie group G if and only if T I  Y TZ . 
6.5 Prove Corollary 6.3. 

6.6 Let G be a compact Lie group with simple characters [ ~ ( f i ) ( A ) ] .  Show that the 
{ ~ ( f i ) ( A ) ) ,  suitably renormalized, form an ON basis for the subspace of L z ( G )  consisting of 
all functions constant on conjugacy classes. 
6.7 Prove relations (3.1 1) directly from the definition (3.9) of the Py.  Do not use the 
auxiliary relations (3.10). 
6.8 Construct a real irred two-dimensional rep of the circle group U ( 1 ) .  

6.9 Show how to decompose any real finite-dimensional rep of U(l) as a direct sum of 
real irred reps. 



Chapter 7 

The Rotation Group and Its Representations 

7.1 The Groups SO(3) and SU(2) 

The rotation group SO(3) is of fundamental importance in modern 
physical theories. Many physical systems admit SO(3) as a symmetry group, 
a fact which is related to the conservation of angular momentum for such 
systems. Moreover, the theory of spin and isotopic spin of particles is inti- 
mately related to the rep theory of SO(3) and its locally isomorphic compan- 
ion SU(2). The theory of hypergeometric functions is associated with the 
study of the Lie algebra of SO(3). Finally, a knowledge of the rep theory of 
the rotation group and its Lie algebra is indispensible for an understanding 
of the more complicated rep theory of the classical groups. 

Recall that SO(3) = SO(3, R )  is the group of all 3 x 3 real matrices 
such that A'A = E, and det A : + I  (see Section 2.1). This is the natural 
realization of SO(3) as a transformation group on R ,  . We have shown that 
SO(3) is a three-parameter Lie group whose Lie algebra 4 3 )  consists of all 
3 x 3 real matrices Q. such that = -a. As a convenient basis for su(3) 
we choose three tangent matrices to the one-parameter groups of rotations 
about the x , y ,  and z axes, respectively. The rotations about the z axis are 

222 
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This is a one-parameter subgroup of SO(3) with tangent matrix 
0 -1 0 

g3 0 o) 
0 0 0  

at the identity. Similarly 
0 0  0 0 0 1  

(1 .3)  

are tangent matrices to one-parameter subgroups of rotations about the x 
and y axes, respectively. We have 

0 0 cos q 0 sin q 

(1.4) exp p2,  = 

Since these three tangent matrices are linearly independent, they form a 
basis for so(3). As the reader can easily verify, the commutation relations 
of the basis vectors are 

(1 3) [ g 1 , 2 2 1 = 2 3 ,  E g , , g i ] = g 2 ,  [gz,231=21. 

In Section 5.4 we showed that S U ( 2 )  was also a three-parameter real Lie 
group. As the reader can easily verify, every A E S U ( 2 )  can be written in the 
form 

where IuIz + IPIz  = 1. If A , A , ,  A ,  E SU(2)  then 

@,I&, - P I P 2 9  

The Lie algebra su(2) = L(SU(2))  consists of all 2 x 2 complex skew- 
Hermitian matrices a of trace zero: 

9 x i  E R .  
i x ,  , - x 2  + i x ,  

x ,  + i x , ,  - i x ,  (1.7) 

As a basis for su(2) we choose the elements 
0 i /2  0 

A direct computation shows that these matrices satisfy the commutation 
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relations (1.5). Thus so(3) and su(2) are isomorphic Lie algebras, so SO(3) 
and SU(2) are locally isomorphic Lie groups. However, this isomorphism is 
not global. 

To exhibit explicitly the relation between SO(3) and SU(2) ,  consider the 
adjoint rep of S U ( 2 )  on its Lie algebra : 

(1.9) a --f 63 = AaA- '  E S U ( ~ ) ,  a E S U ( ~ ) ,  A E SU(2) .  

(See Section 5.6.) 
Now det 63 = det ( A & - ' )  = det a. Therefore, writing 

(1.10) 
-yz + "'1 a=( iY33 

Y ,  -t- iY,  3 -iY, 
we find 
(1.11) 
According to (1.9) the y j  are linear combinations of the x k  : 

y12 i- y Z 2  + y,2 = det 63 = det a = x i 2  + xZ2 + x3'. 

(1.12) 
3 

k =  I 
yj = C R ( A ) j k ~ k ,  j = I ,  2 ,3 .  

Since ( I  .9) defines a rep of SU(2)  the 3 x 3 matrices R ( A )  satisfy R ( A B )  = 

R(A)R(B) for all A ,  B E SU(2) .  Moreover, from ( 1 . 1  1 )  and ( I .  I2), R(A)'R(A) 
= E , ,  i.e., R(A)  E O(3). The rep A - R ( A )  is continuous and SU(2) is con- 
nected. Thus det R ( A )  is a continuous function of A ,  and since R(E,)  = E , ,  
we conclude that det R(A)  = + I  for all A t S U ( 2 ) .  We have shown that 
R ( A )  E SO(3) and A - R ( A )  is a homomorphism of SU(2)  into SO(3). 

We now verify that this homomorphism covers SO(3). Let R E SO(3) 
and set y ,  = C R j k x k .  Defining a, 63 E $ 4 2 )  by (1 .7)  and (1.10) we find 
t r  a = tr 63 = 0, det a = det 63 = x i 2  + xZ2 + x , ,  = q2,  so the Hermitian 
matrices ia and i63 have the same eigenvalues, Aiq. Therefore, iQ, and i63 
are similar and there exists a unitary matrix B such that 63 = B a B - ' .  Now 
I det B I = I for B unitary, so B = eteA, where eZre = det B and A E SU(2). 
Thus 63 = A & - ' ,  so R = R ( A )  and the homomorphism A --t R ( A )  maps 
SU(2)  onto SO(3). Finally, the relation 

( -&(-A)-  = A a A  - ' 
shows that R ( A )  = R ( - A ) ,  so two elements of S U ( 2 )  map onto a single ele- 
ment of SO(3). Note: The matrix - A  E SU(2)  if A E SU(2) .  

The reader can check that R(A) = E,  if and only if A = i E 2 .  Thus, 
SO(3) is isomorphic to the factor groupSU(2)/(&E,j. Exactly two elementsof 
SU(2)  map onto one element of SO(3).  (Since - A  is far from E ,  when A is 
close to E ,  it is clear that this map is locally an isomorphism.) 

Writing a = a + i6, j3 = c + id, a,  b, c ,d  t R, in (1.6) we see that the 
only restriction on these four real parameters is a2 + bz + c2 + d Z  = 1 .  
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Topologically, SU(2)  is homeomorphic to the unit sphere S,  in four-dimen- 
sional space. If A E SU(2) is a point on this sphere then - A  is the point on 
the other end of the diameter of S ,  passing through A .  Topologically, SO(3) 
is homeomorphic to the projective space obtained by identifying opposite 
ends of each diameter in S,. We say that SU(2)  is a covering group of SO(3) 
and that it covers SO(3) twice. (For a more geometrical derivation of the 
relationship between SU(2) and SO(3) see Gel'fand et al, [I] .)  

The Euler angles (p, 0, y) form a convenient coordinate system for 
SU(2).  Consider the product 

(1.13) A ( V ,  0, w )  = (~XP V ~ , ) ( ~ X P  m,)(exp ~ 3 , )  

f 0 ) .  
e l ( p + w ) / z  cos p i e t ( p - w )  2 sin 

i e l ( V - p )  2 sin 40 e-l(Q+'+') 2 cos 10 
2 

It follows that any A t SU(2)  is determined by Euler angles (p,0, w),  where 

(1.14) l a (  = cos$0, a rga  = f ( u ,  + w ) ,  
(1.15) cosf0 = ( a ( ,  sin$0 = [ P I ,  p = arga  + a r g p  - in, 

a r g p  = $(a, - w + n), 

y~ = arga  - a r g p  + $R, lap1 # 0. 

If we restrict the Euler angles to the domain 

(1.16) o<q<22K, O<e<n,  -2R<l l<22n,  

then for I ap 1 # 0, (p, 0, w )  are uniquely determined. (Recall that the argu- 
ment of a complex number is determined only up to an integer multiple of 
2n.) However, if I ap 1 = 0, an infinite number of Euler angles describe the 
same group element. The Euler angles are coordinates on the sphere S, 
somewhat analogous to the coordinates latitude and longitude on the sphere 
S,  in three-space. All points on S ,  have unique values of latitude and longi- 
tude except the poles, where the longitude becomes indeterminant. The 
Euler angles are still very useful despite this drawback because the set on 
which they are indeterminant has lower dimension than three. Thus, if we 
integrate a function over SU(2)  using the invariant measure, the behavior of 
the function on this set will have no effect on the integral. 

Clearly, the Euler angles of the product of two group elements can be 
expressed as analytic functions of the Euler angles of the factors. The results 
are given by expressions (2.16). 
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The invariant measure on SU(2) can be computed directly from the for- 
mulas of Section 6.1. Let A(p, e, ty) E SU(2) .  Then 

Thus 

sin y sin 8 cos ty sin 0 cos 0 

0 

and 

( I  .17) dA = sin 8 dp d e  dty, 0 5 p < 2 ~ ,  0 < 0 2 II, - 2 ~  ty < 2 ~ .  

Since S U ( 2 )  is compact, dA is both left- and right-invariant. The volume of 
the group is 

(1.18) 
V = 1 d A  = 1" dty J z n  dp J n  sin Ode = 1 6 ~ ~ .  

S U ( 2 )  - 2 n  0 

Note that the Euler angles q, ty are indeterminant only for 0 = 0, K and these 
points make no contribution to the integral. 

Now that we have successfully parameterized SU(2) we use the homo- 
morphism A - R ( A )  to parametrize SO(3). The one-parameter group 
exp t3, in SU(2) maps onto the one-parameter group R(exp t 3 , )  in SO(3). 
Thus R induces a Lie algebra isomorphism which maps 3,  to 2,' = 

(d/dt)R(exp r3,) By direct computation from (1.9) and (1.12) we see that 
2,' = C ,  . Similarly, 3, maps to C ,  and 3, maps to 2,. 

(1.19) 

Thus 

R(A) = Nexp p3,)R(exp &J,)R(exp w3,) 
-= (exp qCl)(exP e6 :JexP WCJ, 

or from ( 1 . 1 )  and (l .4)% 

(1.20) 
cos p cos y - sin p sin cos 0, -cos 9 sin y - sin y, cos y cos 0, sin 9 sin 0 
sin 9 cos w - t -  cos 9 sin y cos 0, -sin 9 sin y + cos p cos w cos 0, -cos y, sin 0 

sin y sin 0, cos y sin 0, cos 0 



7.1 The Groups SO(3) and SCJ(2) 227 

Since R(A) = R ( - A ) ,  two different sets of Euler angles determine the same 
rotation matrix. Indeed it is easy to check from (1.20) that R ( A ( q , 8 ,  tp)) = 

R(A(q ,  0, tp 272)). Thus, to uniquely associate a rotation matrix R(q,  8, tp) 
with each set of Euler angles it is enough to restrict the angles to the domain 
(1.21) 0 < ~ < 2 ~ ,  o g e i n ,  01 tp<2~ ,  

i.e., tp now runs over a domain of 2n rather than 4n radians. In the cases 
0 = 0, n only the sum q + tp is determined by R, but this exceptional set is 
of lower dimension than three. 

Since SO(3) and SU(2) are locally isomorphic, the invariant measure on 
SO(3) must be given by (1.17), again except that the domain of the variables 
p, 8, tp is given by (1.21) rather than by (1.16). Thus the volume of SO(3) 
is 8nZ, half that of SU(2).  

Let T be a rep of SO(3) by operators T(R). Then the operators T’(A) = 

T(R(A)) ,  A E SU(2), define a rep of SU(2) such that T’(-A) = T’(A). 
Conversely, if S is a rep of SU(2) such that S ( - A )  = S ( A )  for all A E SCr(2) 
then the operators S’(R(A)) = S(A)  define a rep of SO(3). Thus, there is a 
1-1 relationship between reps of SO(3) and those reps S of SU(2) such that 
S ( - A )  = S ( A ) ,  i.e., such that S ( - E , )  is the identity operator. 

Since SU(2) and SO(3) are compact groups, the problem of constructing 
all reps of these groups reduces to the problem of constructing all finite- 
dimensional unitary irred reps. Suppose S is a unitary irred rep of SU(2) 
on an rn-dimensional vector space. Now -E, E SU(2) commutes with all 
A F SU(2), so S( -E , )  commutes with all operators S ( A ) .  But S is irred, so 
by the Schur lemmas, S ( - E , )  = aE, where E is the identity operator. Since 
( -  E,), = E, we have az = 1 ,  or  a = & I .  Thus, S( -EJ  = &E. If the plus 
sign occurs then S is called integral and it defines an irred rep of SO(3). 
However, if the minus sign occurs then S does not define a single-valued rep 
of SO(3). [It is frequently stated that S defines a double-valued rep of SO(3), 
i.e., two operators are associated with a single group element.] We shall call 
these reps half-integral. 

In quantum mechanics the half-integral reps of SU(2) appear even though 
one is initially concerned only with the rotation group SO(3). The reason for 
this is that the states of a quantum mechanical system are given by rays in 
Hilbert space rather than by vectors. Thus the vectors e‘yv, 0 y < 2n, 
all correspond to the same state for fixed v in the Hilbert space X. A rotation 
R of 272 radians about the z axis will transform this state into itself. However, 
Rv need not be v. In fact if Rv = r’)v then the state will be mapped into itself. 
I t  is possible to show that for any action of SO(3) as a continuous transforma- 
tion group on the states of X we can always choose the state vectors v so y 
I S  either 0 or n (Wigner [l]). The case y = n actually occurs, e.g., the electron 
wave functions, so we are led to consider double-valued reps of SO(3). 
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Let g be a real n-dimensional matrix Lie algebra. The complexification 
g, of 6 is the complex n-dimensional Lie algebra consisting of all complex 
linear combinations of elements in the real algebra 8. It is easy to check that 
isomorphic real Lie algebras have isomorphic complexifications. Let X be 
a complex n-dimensional matrix Lie algebra. A subset X, is a real form of 
X if X, is a real n-dimensional Lie algebra. A given complex Lie algebra may 
have several nonisomorphic real forms. If X, is a real form of X, then (X,), 
is an n-dimensional complex Lie algebra and (X,), G X. Since X is n-dimen- 
sional, (Xr)= = X. Conversely, if 9, is the complexification of 9 it is obvious 
that $j is a real form of 6,. 

Now sl(2) = s l ( 2 , a )  is the complexification of su(2). Indeed, if we set 
(1.22) 3' = 13, + idr, 3' = - i d 3 ,  

where i = f i  and the gk are given by (1.8), we find that g', 3' form a 
basis for a three-dimensional complex Lie algebra with commutation 
relations 
(1.23) [g3, 3'1 = It$*, Id+, 3-1 = 2g3 .  

Comparing these relations with (10.9), Section 5.10, we see sl(2) Z (su(2)),. 
Furthermore, 4 2 )  is a real form of sZ(2). 

It is clear from these remarks that any rep T of $ 4 2 )  on a complex vector 
space V induces a rep of sl(2). Indeed, T(g') = &T(g2) + iT($,), T(g3) = 

--iT(g3). Conversely, any rep of sZ(2) on V induces a rep of 4 2 )  by restric- 
tion. One of these reps is irred if and only if the other is irred. 

Thus, to find the finite-dimensional irred reps of su(2) it is enough to 
compute the finite-dimensional irred reps of sl(2) and restrict these reps to 
842) .  Then the results can be exponentiated to obtain irred reps of SU(2) .  

7.2 Irreducible Representations of SU(2) 

In Section 5.10 we constructed a family of finite-dimensional irred reps of 
SL(2). The rep D("), 2u = 0, 1,2,. . . , is defined by operators 

A = (; ;) E SL(2), j -  E cu("J, 

acting on the (224 + 1)-dimensional space of polynomials of order 2u. The 
corresponding rep of sl(2) is given by 
(2.2) J3hj = ( j  - u)h,, J+h, = ( j  - 2u)h,+,, J -h ,  = - jh , - ] ,  

where h,(z) = zi, 0 < j  5 2 4  is a basis for By the remarks at  the end 
of the preceding section, (2.2) also defines an irred rep of su(2). We need only 
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express the Lie derivatives J k ,  k = I ,  2 ,  3, corresponding to J ,  in terms of 
J ' ,  J 3  and use (2.2) to compute the action of J ,  on a basis for TI'"'. In partic- 
ular, 
( 2 . 3 )  J' = & J ,  -1 i J , ,  J 3  = - iJ , .  

We now exponentiate each rep of su(2) to see if it defines a global irred 
rep of SU(2) .  

If we consider SL(2) as a real Lie group of dimension six then SU(2)  is 
a connected Lie subgroup. Thus, to obtain the group reps of SU(2) induced 
by the reps ofsu(2) we restrict the operators T(A), (2.1), to A E SU(2),  (1.6): 

(2.4) f E TI'"'. 

We shall again denote these (224 + I)-dimensional reps of SU(2)  by the sym- 
bol D'"'. The D'U1 are irred because their associated Lie algebra reps are irred. 

Note that 

(2 .5)  [T(--E,)flG) = (- 1 )*"f(Z>, 

or T(-E,) = (- 1)2uE. Thus, for u = 0, 1, 2, . . . the reps are integral 
and define irred reps of SO(3). On the other hand, for u = i, 5 , .  . . the 
D'"' are half-integral and yield double-valued reps of SO(3). We shall show 
later that the D'"' constitute all the irred reps of SU(2)  and the D'"' for u an 
integer constitute all the irred reps of SO(3).  

Since SU(2)  is compact there must exist an inner product (-, -) on TI'"' 
with respect to which D'") is unitary. Thus, 

(2.6) (T(Alf, T(A)h) = (f, h), A E SU(2)  

for allf ,  h E TI'"'. Let exp t J k  = T(exp ?ak), where the J k  form a basis for 
su(2). Substituting into (2.6), differentiating with respect to t ,  and setting 
r = 0, we find 

(2.7) ( J k f 3  h) = -(f? Jkh)? k = 1, 2, 37 

i.e., Jk* = -Jk. Thus the operators Jk are skew-Hermitian. Stated another 
way, the operators iJk are Hermitian, i = m. It follows from (2.3) that 
(J+)*  = J - ,  ( J - ) *  = J',  and ( J 3 ) *  = J 3 .  

The relations 

( J 3 h j ,  hk)  = (h i ,  J 3h,), ( J + h j >  h k )  = ( h j ,  J - h k )  

together with (2.2) imply 

(2.8) (A], I l k )  = 0, j f k ,  

(2.9) ( 2 ~ - j j ) l l h ~ + ~ l l ~ = ( j +  I ) ] lh j1I2 ,  j = O , l ,  . . . ,  2u-  1. 

Thus the basis vectors hj(z) = z j  are mutually orthogonal. Expression (2.9) 
shows the relationship between the norms of the basis vectors. We can 
normalize the inner product by choosing 1 )  h,  I (  arbitrarily. Then (2.9) will 
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fix the remaining norms. We now choose an  ON basis {f,] for '0'"). The basis 
vectors will be labeled by the eigenvalue m = j  - u of fm, with respect to 
.I3, rather then the parameter j .  Normalizing h,(z)  = 1 by I I h,  1 1 2  = (2u)! 
we obtain the relation 1 1  hi (Iz = (2u - j ) !  j ! .  Therefore, the vectors 

m = -u , - u + l ,  . . . )  u - l , u ,  

form a n  ON basis for 7J('). It follows from (2.2) that 

(2.11) ~'f, = mf,, 

are 

J'f, = [(u rt m + I)(u T m ) 1 1 ' 2 f , ~ l .  

The matrix elements of the rep D'") with respect to the O N  basis If,) 

T ; m ( A )  = (T(A) fm 9 f n )  

or 

[ T ( A ) ~ , I ( z )  = 2 T;rn(A)fm(Z), --u i m I U. 
n = - "  

Thus, 
(2.12) 

Equating powers of z on both sides of this expression, we obtain 

x , ~ , ( - u - n , m - u ; m - n +  1 ;  -1:12) 
In terms of the Euler angles (1.13) this reads 
(2.14) 

u -1- m)!  (u  - n)!  112 ei(np+mv)(sin O)m-n( 1 + cos t9>.+n-m 
1 I u  + n> ! ( u  - m)! 1 2 T ( m  - n i -  1) T:,((p, 0, y )  = i"-" 

- u - n , m - u u ; m - n + f ,  

(see the Symbol Index). By suitably manipulating these formulas we could 
obtain many other expressions for the matrix elements. Note the simple 
dependence of T:, on (p and v / .  The group property 

(2.15) T:m(AlA,)  = i: ' : , ( ~ 1 ) ~ 7 r n ( ~ 2 )  
I - - "  
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defines an addition theorem obeyed by the matrix elements. To apply the 
addition theorem when the c , ( A )  are parametrized by the Euler angles 
i t  is necessary to compute the Euler angles (p, 8, w )  of a product A(p, 8, ty) = 

A,(p , ,  O , ,  w,)A,(p,, 8,, w,) .  A straightforward though tedious computation 
yields 

cos 8 = cos 8, cos 8, - sin 8, sin 8, cos(p, + wl),  
e'p = (e8"/sin B)(sin 8, cos 8, + cos 8 ,  sin 8, cos(p, + i y l )  

(2.16) + i sin 8, sin(p, t i y , ) ) ,  

er(57+v) 2 = ( e l ( P , + * l )  2/cos p)(cos 48, cos p, e l ( v s L v l )  

1, - sin &el sin 48, e-t(p' + V ? )  2 

and the addition theorems are obtained by substituting (2.14) and (2.16) into 
(2.15). The unitary property of the operators T(A) implies 

(2.17) T;rn(A = TkAA), 

or in Euler angles, 

Also, I T: , (A)  I I 1 or 

We can obtain an integral expression for the matrix elements by setting 
z = e'y in (2.12), multiplying by e-i(u'"'v,  and integrating both sides of the 
resulting expression from 0 to 2n: 

The matrix elements Tb,(p, 8, w ) ,  I, m, integers, are proportional to the 
spherical harmonics Ylm(8,  iy) .  Indeed 
(2.19) 

where the P,"(cos 8) are the associated Legendre functions. Moreover, 

(2.20) ~;,(p, 8, w )  = P,W e), 
where P,(cos 8) is the Ith Legendre polynomial. 
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According to the general theory of Section 6.2, the matrix elements 
T;,,,(A) satisfy the orthogonality relations 

The y~ and p integrations are trivial, while the 8 integration gives 
2 ( u  - n)!  (u - m)! J: p:.m(cos e)p:m(cos e) sin e dB = - 

224 + 1 ( u  + n)!  (u + m)! 6 u v *  

For n = m = 0 these are the orthogonality relations for the Legendre poly- 
nomials. Note: By definition, 
(2.22) P:-(COS e) = P,,~(COS el, P,o~o(COS e) = P,,(COS e), 
where P,", P,, are Legendre functions. At this point we know only that the 
functions ((224 + 1)1'2T:,(A)} form an ON set in L2(SU(2)),  but later we will 
show that they form a basis, i.e., the D(") constitute a complete set of irred 
reps of SU(2). 

We now compute the character f " ' ( A )  of D'"). By definition, 

(2.23) X'"'(A) = 2 T",(A). 
m = - u  

This expression is too complicated to compute easily. On the other hand we 
know T("'(BAB-l) = T(")(A) for all A,  B E SU(2).  From elementary 
matrix theory, every A E SU(2) can be diagonalized by a unitary similarity 
transformation. Indeed, there exists a number T ,  -272 5 T < 2n, and a 
B E SU(2) such that 

Therefore, the conjugacy classes in SU(2)  are labeled by the parameter T .  

Passing from SU(2)  to SO(3) by the usual homomorphism we see that A 
represents a rotation through angle T about a fixed axis. [In SO(3), two rota- 
tions about distinct axes are conjugate if and only if they have the same 
rotation angle.] 

We have shown that A is conjugate to the group element C with Euler 
parameters (0, 0, z), or a = eiri2, p = 0. By (2.12), Tmm(C) = eimr. Thus, 
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where we have used the formula for the ~ . i m  of a geometric series. It is not 
difficult to express f " ' ( A )  directly in terms of the parameters of A ,  but the 
expression is not very enlightening. For u = I = 0, 1,2,  . . . the formula 
f l ' ( R ( A ) )  = sin[(/ + $)z]/sin(z/2) gives the character of the rep D"' of 
SO(3) where R(A)  is a rotation through the angle z about a fixed axis. In this 
case z 5 27~ yield the same value as z. 

Let D("', D(vJ be irred reps of SU(2)  and consider the tensor product 
D'"' @ D'"'. This rep is (2u + 1)(2v + 1)-dimensional and its character is 
f " )  @ z(")(A) = x'"'(A)x("'(A). We can determine the decomposition of 
D(YJ @ D(u) into a direct sum of irred reps of SU(2)  by expressing x ( " )  @ f l ' '  

as a sum of simple characters. Now 

where we have assumed u 2 v. [Note: The term eikr occurs min(u + v + 1 
- I k I, 2v + 1) times in the above expansion.] In general 

(2.25) 

Therefore, 

This expression is known as the Clebsch-Gordan series. Note that each 
irred rep which occurs on the right-hand side of (2.26) has multiplicity one. 
Thus, the decomposition of the rep space into irred subspaces is unique and 
independent of basis. In Section 7.7 we discuss this decomposition in detail. 

(2.26) D(u1 @ Dlul - D(u+vI @ D(u+u-lJ @ . , . @ D ( l u - v l J .  

7.3 Irreducible Representations of s l ( 2 )  

In Section 7.1, we showed that d(2) is the complexification of the real Lie 
algebra su(2) z so(3). Therefore, there is a 1-1 relationship between irred 
reps of d(2) and irred reps of 3 4 2 ) .  To determine all finite-dimensional irred 
reps p of these Lie algebras it is enough to classify (up to isomorphism) all 
finite-dimensional complex vector spaces Vand operators J',  J 3  on Vsatisfy- 
ing the commutation relations 
(3.1) [53,5+1 = + J ' ,  [ J + , J - I  = 253, 
such that V is irred under the J-operators. Here J 3  = - i J 3 ,  J' = i J ,  + 
iJ,, and Jk = p ( 3 k ) .  The operators (3.1) will prove to be much more conveni- 
ent for computations than the J k .  

The following computation should be familiar to those readers who have 
studied quantum mechanics. A good understanding of this procedure is es- 
sential since similar methods will be used to construct the irred reps of all 
the classical groups. 
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Let p be a finite-dimensional irred rep of sZ(2) on V.  As the reader can 
verify, the Casimir operator 

(3.2) c = -(5,)2 - (5J2 - (J3)2 = J + J -  + 5353 - 53 

commutes with J" ,  J 3 .  By the Schur lemmas, C must be a multiple of the 
identity operator on V, C = 1E. 

Let h, E V be an eigenvector of J 3  with eigenvalue q :  J3h, = qh,. Now 
[ J 3 ,  J+]h, = J+h,, or J3(J+h,) = ( q  + l)J+h,. Thus, eitherJ+h, = 8 orJ+h, 
is an eigenvector of J 3  with eigenvalue q + 1. Similarly the commutation 
relation [ J 3 ,  2-1 = - 5-  implies that J-h, = 6 or  J-h, is an eigenvector of J 3  
with eigenvalue q - 1. By a simple induction argument 

J3(J+)khq = (4 + k)(J+)kh,, 53(5-)kh, = (4 - k)(J-)kh,, k = 0, 1,. . . . 
Since Vis  finite-dimensional there exists an integer r 2 0 such that (J+)'h, # 
8 and (J+)r+lhq = 8. Set (J+)'h, = f,,, where u = q + r .  Then J3fU = uf,. 
Similarly there is an integer s 2 0 such that (J-)"" # 8, (J-)S+lf, = 8. We 
will show that the eigenvectors f,, m = u, u - 1, . . . , u - s, where f, = 

(J-)"-"f, form a basis for V. 
Now Cf, = If,. On the other hand, by (3.1) and (3.2), 

Cf, = (5-J+ + J 3 J 3  + J"f, = J-J+f, + u(u + I)f,. 

Cf,,-, = u(u + l)fu-s = ( J + J -  + 5353 - J3)fu-* = (u - s)(u - s - l)f.-,, 

Since J+fu  = 8 we obtain 1 = u(u + 1). Applying C to fU-$ we find 

sinceJ-f,-, = 8. Thus, u(u + 1) = (u - s)(u - s - 1) or s = 2u. It follows 
that 2u is a nonnegative integer. Since J 3 f m  = mf,, -u < m < u, we obtain 

Cf, = u(u + l)fm = ( J + J -  + J 3 J 3  - J3)f, = J+f,-, + m(m - I)f,, 

orJ+f,,, = (u - m)(u + m + l)f,+,, u - 1 2 m 2 -u. We have shown that 
the (2u + 1)-dimensional subspace of V spanned by the If,,,] is invariant and 
irred under p .  Since p is irred, this subspace must be V itself. The rep p is 
now completely determined : 
(3.3) J3fm = mf,, J'f,,, = (u - m)(u + m + l)f,+,, 

-u < m 5 u. 

(On the right-hand sides of these expressions we adopt the convention: 
f, = 8 if m is not an eigenvalue of 53.) Conversely, if 2u is a nonnegative 
integer then the operators J ' , J 3  defined by (3.3) determine an irred rep 
D(") of sZ(2). If u # v then D',) is not equivalent to DCL') since the two reps have 
different dimensions. 

The rep D'"' uniquely determines and is determined by the eigenvalues 
-u, . . . , +u of J 3 .  However, the basis vectors are not uniquely determined. 

J-f, = f,-,, 
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If {y,: - u  I m I u )  is a set of nonzero complex constants then the eigenvec- 
tors {f,' = ymf,] also form a basis for V.  If the constants are chosen such 
that y,, I/y, = [(u + m + I)(u - m)]'  2 ,  -u  I m 5 u - I ,  then relations 
(3.3) become 

(3.4) 

where we have omitted the prime on f,'. Note that expressions (3.4) and 
(2.1 I )  are identical. Thus the reps D("), 2u = 0, I ,  2, . . . , of SV(2) con- 
structed in the preceding section constitute all the bounded irred reps of 
S U ( 2 ) ,  up to equivalence. [Furthermore, the reps of S L ( 2 )  constructed 
in Section 5.10 constitute all finite-dimensional irred reps of SL(2) as a com- 
plex Lie group.] 

Another useful basis for V is obtained by setting y m + , / y m  = - (u + m + 
1 ) .  Relations (3.3) become 

(3.5) J3f, = mf,, J'f, = ( - u  & m)f,+, , Cf, : u(u + l)f,. 

J3fm = mf,, J'f, = [(u f m)(u & m + I)]' 2f ,r , ,  

Cf, = u(u + l)fm, 

Although we have confined ourselves to a search for finite-dimensional 
reps, expressions (3.5) can also be used to construct infinite-dimensional 
irred reps of sf(2). (Here we mean V is infinite-dimensional in the algebraic 
sense. We do not consider V as a Hilbert space.) Indeed if 2u is a complex 
number, not a nonnegative integer, and V is a vector space generated by the 
vectors If,], m = -u, -u  + I ,  -u  + 2 , .  . . , then expressions (3.5) define 
an irred rep t,, of d ( 2 )  on V,  as the reader can verify. Since J-f- ,  = 8 the oper- 
ator J 3  has a lowest eigenvalue - u ,  i.e., an eigenvalue whose real part is 
least. However, J 3  has no highest eigenvalue. The rep r, is said to be bounded 
below. The reps D'"' are bounded both below and above. Using similar tech- 
niques one can use expressions (3.5) to construct infinite-dimensional reps 
which are bounded above but not below or which are bounded neither above 
nor below. A systematic study of such reps is undertaken by Miller [I]. 

We have already seen the infinite-dimensional reps t,. In Section 5.10 
we constructed the local multiplier rep 

[T(A)f](z) = (bz 4- d ) 2 u f ( p ) t  A E SL(2) z + d  (3.6) 

of SL(2) on the space a of all functions analytic in a neighborhood of z = 0. 
Here 2u is not a nonnegative integer. As a basis for a we choose the functions 
/ i j (z )  = z',J = 0, 1, . . . . The Lie derivatives associated with (3.6) are easily 
computed to be 

(3.7) J' = - 2 u ~  + Z2(d/dz), J -  = -d/dz, J 3  = -U + z(d/dz). 
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Setting f,(z) = hj(z) = zj ,  where rn + u =j, we find 

J'f, = ( - ~ U Z  4- Z' d/dZ)Zm+" = (m - ~)f,+~, 

(3.8) J-f, = -dZ"'+u /dz = -(m + u)fm-,, 

J'f, = ( - u  + zd/dz)zm+" = mf,, 

J-f-, = 0, 

m = -24, -u + 1 ,  -24 + 2  , . . .  . 
Thus the local multiplier rep (3.6) induces the irred rep 7 ,  of d ( 2 ) .  Conversely, 
the infinite-dimensional rep 7 ,  induces the local multiplier rep (3.6), which we 
will also call 7. .  Note that the group rep is purely local. 

7.4 Expansion Theorems for Functions on SU(2) 

We have shown that the (224 + I)-dimensional reps D("), 2u = 0, 1, 2, 
. . . , constitute a complete set of nonequivalent irred unitary reps of 
SU(2).  Thus, by the Peter-Weyl theorem, the functions q:,(bp, 8, y )  = 

(2u + l)*'zT:m(q, 8, y), -u 5 m, n I u, 2u = 0, 1, . . . , constitute an ON 
basis for L,(SU(2)). [Here we use Euler coordinates on SU(2)  for the matrix 
elements (2.14).] The matrix elements satisfy orthogonality relations (2.21). 
Furthermore, i f f  E Lz(SU(2)) then 

where 

(4.2) 

The Parseval equality reads 

(f ,f)  z= C 2 Ia:rnI2. 
Z u = O  m,n:--u 

(4.3) 

With simple modifications these results apply to functions in Lz(SO(3)). 
The modifications are ( 1 )  u takes only integral values, (2) the volume of 
SO(3) is 8nZ rather than 16nZ, and ( 3 )  the variable y runs over the range 
0 

Some particular cases of (4.1) are of special interest. Suppose f(8, y) t 
L,(SO(3)) is independent of the variable bp. If we think of (8, y) as latitude 
and longtitude, we can considerfas a function on the unit sphere S,,  square- 
integrable with respect to the area measure on s,. Since the p-depen- 
dence of q;,(bp, 8, v)  is e'"', it follows from (4.2) that a:, = 0 unless n = 0. 
The only possible nonzero coefficients are a;,, where u = I = 0, 1 ,2 ,  . . . . 

y < 2n rather than -2n 5 v/ < 2n, 
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By (2.19) 

(4.4) A A ~ ,  8, w )  = ( 4 w  y f m ( e ,  Y), 

f(4 w )  - 2 i c,ly,m(e, w),  

where Yfm is a spherical harmonic. Thus, 

I = O  m = - f  
(4.5) 

where 

(4.6) 

This is the expansion of a function on the sphere as a linear combination of 
spherical harmonics. As usual, (4.5) converges in the norm of L,(S0(3) ) ,  
not necessarily pointwise. 

Iff(6) E L2(S0(3))  is a function of 8 alone then the coefficients a:,,, are 
zero unless n = m = 0. From (2.20), 

2n 

c,I = j dv/ jn dOf(0, y ) m )  sin 8, (Yfm, YF’) = 6rr d m m , *  

(4.7) qbo(V, e, v )  = (21 + I)*/~P,(CO~ el, I = 0, I ,  2 , .  . . , 
where 

(4.8) 
P,(x) = 2 F ,  I + 1, -1; 1, b) = 2-‘(l 4. x)‘,F,( -1, - I ;  1;  x - I  -) 

( 2 x f l  

is a Legendre polynomial of order l. The coefficient of x‘ in the expansion of 
P f ( x )  is nonzero and P,( 1) = I .  The expansion off(@ becomes 

J n  P,(COS e)Pk(cos e) sin e dB = 26,,/(21+ I 1. 
0 

Expressions (4.9) can be simplified by introduction of the new variable 

The reader can construct some examples of the above expansions by 
considering the generating function (2.12) and the addition theorem (2.15). 
Other examples can be obtained by manipulation of the integral expression 
(2.18) for the matrix elements. If 17 = m = 0, u = I, (2. IS) becomes 

= cos e, o < e I a. 

Setting z = e i y ,  we can write this last equation as a contour integral 

where the contour is a simple closed curve surrounding the origin. The change 
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of variable z = [ r  - cos 8 + ( tZ  - 22 cos 8 + 1)' "/(i sin 8) transforms 
(4.1 1) into 

where the contour can be chosen as the circle It 1 = r > 1. Setting s = t - l ,  

we find 

The analytic function (s2 - 2s cos 8 + I ) - l  = C c,sn possesses a power 
series expansion convergent for Is[ < 1. It follows from (4.12) and the 
Cauchy integral theorem that c, = P,(cos 8): 

(4.13) h(s, X )  1 (s' ~ ~ S X  + l ) - '  1 C s"P,(x), -1 x 5 1. 
" = O  

One can check that h(s, cos 8) E L2(S0(3))  for 1s I < 1, so this is an example 
of the expansion (4.9). This generating function is often used to  define the 
Legendre polynomials. Let P,'(x) = (d/dx)P,(x).  

Proof. These results follow from (4.13). (a) h(s, 1 )  = ( 1  - s)-I = C s". 

Now compare coefficients of s" on both sides of this equality. (d) Follows from 
the identity ( 1  - xz ) (dh /dx)  + xs(dh/ds)  = s z (dh /ds )  + sh. (e) Follows from 
the identity ( I  - xz ) (dh /dx)  - xs(dh/ds)  - xh = -dh/ds .  (f) An easy 
consequence of (d) and (e). 

(b) h(s, - I )  = ( 1  + s ) - '  = C (-s)". (c) (s' - 2 s ~  + I )  dh/ds = (S  - x)h.  

Q.E.D. 

Any identity we can obtain for the generating function implies an  identity 
for the Legendre polynomials. Thus, the identity s dh/ds = ( x  - s) dh/dx  
implies 
(4.14) nP,(x) = xP,'(x)  ~ PL. , (x ) .  

Identities such as (c)-(e) which relate different Legendre polynomials 
are called recurrence formulas. The differential equation (f) is the Legendre 
equation. Here we have derived these results by manipulation of the generat- 
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ing function h(s, x), but we shall see that all these identities, including the 
generating function, have a simple group-theoretic interpretation. 

7.5 New Realizations of the Irreducible Representations 

From an abstract point of view we have completely classified the irred 
reps of S U ( 2 )  and SO(3). We have obtained simple realizations or models 
of these reps in which the underlying vector spaces consist of polynomials 
in one complex variable. In actual physical or geometrical systems, however, 
the group action may appear far different from that in our models. In other 
words, even though two group reps are abstractly equivalent they may appear 
physically or geometrically quite different. For this reason it is useful to 
survey some of the distinct realizations of the reps D(') which appear in 
mathematical physics. 

For our first model we consider the natural action of SO(3) as a trans- 
formation group on R,  : 

(5.1) x + A - ~ x ,  A E S0(3) ,  x = (x ,  y ,  Z )  E R , .  

(The inverse is necessary to conform to the definition of a Lie transformation 
group as given in Section 5.9.) Using the basis 6,, C,, S3 for so(3) as defined 
by (1.1)-(1.3) and computing the corresponding Lie derivatives we find 

d d L l x - - z - - '  a d L 3 = y - - x -  a d (5.2) L I - '6- y s '  
dz dx dx dv 

As guaranteed by the general theory, these Lie derivatives satisfy the com- 
mutation relations 

(5.3) [ L , ,  L,1= L , ,  [L, ,  L,1 L , ,  [L , ,L , I  = L,  

and generate a Lie algebra isomorphic to so(3). The Lie derivatives (5.2) 
are essentially the angular momentum operators of quantum mechanics. 
We shall construct models of the reps D'"' where the action of the group and 
Lie algebra is given by (5.1) and (5 .2 ) ,  and the underlying vector space 
consists of functions on R, .  

(5.4) L' = Y L ,  -1 i L , ,  L 3  = iL,, 

which satisfy the commutation relations ( I  .23) and form a basis for the com- 
plex Lie algebra $42). [Note: These operators are not identical with (2.3). 
Nevertheless they satisfy the same commutation relations: 

First of all we define operators 

[ ~ 3 ,  L'I =: ~ L L ,  [ L + ,  L - 1  = 2 ~ 3 .  

The choice (5.4) is more convenient for the computation to follow.] The 
action (5.1) of SO(3)  on R 3  is not transitive. In particular xz + y 2  + z 2  is 
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invariant under the group. Any sphere of radius r and center at 0 is mapped 
into itself. To exploit this property we introduce spherical coordinates 

(5.5) 

Then the L-operators become 

r, e, q :  

x = r sin 8 cos Q,, y = r sin 8 sin Q,, z = r cos 8,  

r > O ,  0 1 8 1 n ,  O s p < 2 n .  

independent of r .  We now look for realizations of D(*) such that the basis 
space V'") is a space of analytic functions of 8, Q, and the operators L', L3 
are given by (5.6). According to expressions (3.4) we must find basis functions 
jm(& Q,) = yum(B, Q,) for '0'") such that 

(5.7) 

Since L3 = -ia/ap we have 

where Qum(0) is yet to be determined. The equation L'Y," = 0 becomes 

L3Yum = mYum, L*Yxm = [(u 7 m)(u k m + 1)]'/2Y;", 
c Y , m  = (L+L- + L3L3 - L3)Yu" = u(u + 1 ) Y " m .  

--i aYum/dp = mr,m, Y,,m(e,  9) = QUm(B)eim~, 

(d/de)Q," - u cot 8 Q," = 0, 

whose solution is 
Q," = C, sin" 8 = c,( 1 - C O S ~  & I 2 ,  

where c, is an arbitrary nonzero constant. We can now use the "lowering 
operator" L- to obtain the functions QUm recursively from Q,": 

(5.8) -(d/de)Q;+l - ( m  + l)(cot e)Q:+' = [(u + m + I)(u - m)]1'2Q,m. 
A straightforward induction argument and (5.8) yield the explicit expressions 

-u i m < u. 

The equation L- Y;" = 0 applied to (5.9) yields the condition 

This condition can be satisfied only if u = 1 is an integer. For u = $,%, . . . , 
our construction fails. This is not surprising since the angular momentum 
operators (5.2) were obtained from an action of SO(3) as a transformation 
group. For u = 1, however, we have found a highest weight vector Y; and a 
lowest weight vector Y.?. By copying the construction of the reps D"' in 
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Section 7.3, the reader can check that the functions Ylm satisfy all the relations 
(5.7): 

d -QIm - m cot 8 9'" = [(/ T m)(l 
d8 

m -1 I)]"2Q;1", 
(5.10) 

--(sin8-Qlm)+[/(I-t- I d  d I)-7]Q,m=0, m2 - I l m l I ,  
sin 8 d8 de sin2 8 

where the last expression is obtained by writing CY,m = /(/ + l)Ylm in terms 
of differential operators. 

The constant cI is usually fixed by the requirement 

or 

(5.1 1) 

where the phase factor (- 1)' is introduced to conform to  convention. 
The basis functions Yfm(8, p) are just the spherical harmonics. To show 

this explicitly we obtain some new expressions for the matrix elements 
T:,(A) derived in Section 7.2. From (2.12). T:,(A) is, to within a constant 
factor, the coefficient of z"+" in the Taylor series expansion of g ( A ,  z ) .  Thus, 

In terms of the functions P:"(cos O), (2.14), this reads 
(5.12) 

e 2 ; Y+mlz=o- x [( iz sin e + cos - z cos - + i sin - 2 
Setting y = (iz sin 8 + cos 8 - 1)/2, we find dy = $i sin 8 dz and 

& + y ( i  - cos e ) u + m ( i  + cos ey-q 
d(cos 8>,+" X 

In particular, from (2.1 4), (2.16), (2.19). and (2.22) we obtain the expressions 

for the associated Legendre functions and 
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for the spherical harmonics. This last expression agrees with (5.9) and (5.1 l), 
so the basis functions for the realization (5.7) are just spherical harmonics. 

We have already seen that special functions appear in Lie theory as 
matrix elements of group reps. The above example shows that they also 
appear as basis functions in  the underlying vector space of a group rep. 

Now that we have found realizations for the reps D'l' of su(3) we can 
determine the action of SO(3) on these realizations. Indeed SO(3) acts on 
R ,  according to (5.1).  It is not difficult to show that the resulting identity is 

(5.16) 

a special case of (2.15). Recall that 

I 

m=- l  
T',,(AB) = c TI,,(B)Tb,(A), 

Since r2 = xz + y 2  + zZ is invariant under the action of SO(3) the set 
{f(r)Ylm(O, p): --I I m I 13 forms a basis for a realization of the irred rep 
D'". Heref(r) is an arbitrary nonzero function. It follows that L,(R,),  the 
Hilbert space of all Lebesgue square-integrable functions on R , ,  decom- 
poses into a direct sum of irred reps D"', each D") with infinite multiplicity. 

An important special case of these considerations is the space W' of all 
homogeneous polynomials u(x, y ,  z )  with degree I in x ,  y ,  z which satisfy 
Laplace's equation : 

(5.17) d 2 u  dzu dzu  
d x z  dy2 d z z  - 

v2u = - + - + - - 0. 

It is easy to show that under the action (5.1) of SO(3) any solution of La- 
place's equation is mapped into another solution. Furthermore, any homo- 
geneous polynomial of degree I is mapped into another homogeneous 
polynomial of degree 1. Thus, W' is a finite-dimensional space invariant 
under the action of SO(3). We shall decompose W' into a direct sum of irred 
subspaces. Introducing the change of variable 5 = x + iy, q = x - iy, we 
see that every u t W' can be written uniquely in the form 

u = C a,,5nqmzt-n-m, 
where 

4(d2u /d t  dq) + (dzu/dzz)  = 0 

and n, m run over all nonnegative integers such that 0 n + m 1. Thus 

C a , , [ 4 n m ~ - 1 q m - 1 ~ I - n - m  + ( I  - n ~ m)(l - n - m - I ) ~ q m ~ I - n - m - 2  1 = 0, 
n, m 

or 
(5.18) 4(n + I)(m + l )a ,+, , ,+ ,  + (I - m ~ n>(l - m - n ~ ])a,,, = 0. 
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It follows from this expression that once values are prescribed for the 21 + 1 
independent constants a,,,, 0 m 2 I ,  and a , , ,  1 I n < I, the remaining 
constants are uniquely determined. Thus W' is (21 + 1)-dimensional. It is 
clear that the polynomial 

belongs to W. Now 191' is invariant under the operators L', L3 ,  expressions 
(5.6). From (5.7) we see that the 21 + 1 linearly independent functions 
r'Ylm(O, 9),  -1 < m < I, all lie in W'. Since W' is (21 + 1)-dimensional it 
transforms irreducibly under the rep D"'. 

A well-known model of the rep D'"' of SL(2)  is defined on the (2u + 1)- 
dimensional space 6" of homogeneous polynomials of degree 224 in  the 
complex variables zl, z 2 .  The group action is 

Thus, 
(5.20) 
To see the connection between this expression and our previous models, set 
w = z,/z2. Then anyp E @"can be written uniquely asp(z, ,  z2) = ztup(w, I ) ,  
where p ( w ,  1) = h(w) is a polynomial in w of order a.t most 2u. We can 
factor 22,. from both sides of (5.20) to obtain the result 

" U & l ( z , ,  z2) = p(azI  + y z z ,  B z ,  + 6z2) ,  p E (P'. 

(5.21) 

This expression is identical with the model (2.1) of D'"'. Restricting (5.20) 
to the subgroup SU(2) ,  we get a model of the rep D'"' for this subgroup. 

We have seen (5.20) before. Indeed, if we let V be the two-dimensional 
space V = { a z ,  + bz,: a, b E (I} then (P" can be identified with the (224 i- I ) -  
dimensional subspace of completely symmetric tensors in Voz". This subspace 
is determined by the Young frame [2u], i.e., the frame with one row and 2u 
columns. The action (5.20) of SL(2)  on this subspace is induced by the action 
(5.19) of SL(2) on V. In Section 4.3 we showed that [2u] determined an irred 
rep of GL(2). Now we see that the restriction of this rep to SL(2)  and then to 
SU(2)  remains irred. The other irred reps [ f ,  , f 2 ] ,  f ,  > f 2 ,  o f  GL(2) also 
restrict to irred reps of SL(2) .  However, as we shall show later, on restriction 
to SL(2)  we have the equivalences [ f ,  , I2 ]  z [ f ,  ~ f , ,  01, so the frames 
[ f , ]  = [f,, 01, f ,  = 0, 1 ,  2 , .  . . , exhaust the irred reps of SL(2). In Chapter 
9 we will study the irred reps of SL(n) and SU(n),  and demonstrate the 
relationship between these reps and Young diagrams. 
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For our next example we construct a model of the infinite-dimensional 
local rep t- 1,'2 of SL(2). Consider the operators 

acting on a space of analytic functions of x and t. These operators satisfy the 
commutation relations 

[53, 521 = & J * ,  [ J + ,  5 - 1  = 253 

of d ( 2 ) .  In order to construct a model of T-1,2 we must find functionsf,(x, r) 
= gk(X)tk+"'2', k = 0 , 1 , 2 , . . . , such that 

(5.23) 5% = ( k  $- #f,, J'f, = (k  + l> f ,+~ ,  J - f k  = -kfk-,, 
[see (3.6) and (3.8)]. It follows that the functions gk(x) satisfy the recurrence 
relations 

(5.24) 

Furthermore the relation ( J + J -  + J 3 J 3  - J3)fk = - i f k  implies that the 
gk(x) satisfy the second-order differential equation 

(5.25) [(x' - l)(d2/dx2) + 2 x ( d / d ~ )  - k(k + l)]g,(~) 1 0 ,  
k = 0 , 1 , 2  , . . . .  

Expressions (5.24) determine the g,(x) up to a multiplicative constant. Indeed 
the relation 5 - f ,  = 0 implies go'(-.) = 0, or g,(x) = c. If we set t = 1 we can 
uniquely determine the remaining g,(x) from the first of the recurrence for- 
mulas (5.24). The second recurrence formula and the differential equation 
(5.25) are consequences of the commutation relations and do not have to be 
verified explicitly for the g,(x). Rather then determine the gk(x) recursively 
we compare our recurrence formulas with Theorem 7.1 to obtain 
(5.26) g,(x) = P,(X), f k ( X ,  t )  = P,(x)tk+("2'. 

Thus the Legendre polynomials define a model of T - , / 2 .  The operators 
(5.22) determine a local Lie multiplier rep T of SL(2). In pitrticular, 

T(exp a $ ) f ( x ,  t>  = f ( x ,  t ea )  

Q2 = j?2t+Z - 2pxt" 4- 1. 
Just as in (10.22), Section 5.10, we could use these results to compute T(A) 
for any A E SL(2). However, we shall not do this here. The matrix 
elements B,,(A), (10.26), of the operators T(A) with respect to the basis 
fk  are model-independent. That is, they are completely determined by the 
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relations (5.23) and are independent of our particular realization of this rep. 
We have 
(5.27) 

T(A)fk  = 2 B, , (A)h,  k = 0,  I , 2 ,  . . . , 

For certain group elements A the functions B,,(A) are very simple. For 
example, 

A = (l E SL(2). 

( - l ~ ) ' - ~ l ! / k !  ( I  - k ) ! ,  I >  k ,  
1 < k ,  

(5 .28)  Blk(exp(--bg+)) = 

Ck-'k! / l !  ( k  - l ) ! ,  k 2 I ,  
k < I .  (5.29) Blk(eXP(--C$-)) = 

[Note: The reader can obtain these results directly from relations (5.23).] 
Substituting (5.26) and (5.28) into (5.27) and simplifying, we obtain 
(5.30) 

( 1  4- b2 _. 26x) - (k+ l ) /2p  X - b  
4 ( 1  + b2 - 2bx)"Z I = O  

where 

is the binomial coefficient. This expression makes sense for I bl < Ix  & 
( x 2  - 1)' I. For k = 0, (5.30) reduces to  the standard generating function 

( 1  4- b2 ~ 2 6 ~ ) -  C b'P,(x). 
I = O  

Similarly, by substituting (5.26) and (5 .29 )  into (5.27) we obtain 

The point of this example is that identities such as (5.30) and (5.31) have a 
group-theoretic interpretation. Using the same operators (5.22) we could 
construct models of each of the irred reps T,. The basis functions are essential- 
ly the Gegenbauer polynomials C," (x )  and our method yields generating 
functions and relations for the C;" (x ) .  

Another interesting model of T,, is obtained from a consideration of the 
operators 
(5.32) 
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acting on a space of analytic functions of the complex variables z, t .  As the 
reader can easily verify, these operators satisfy the commutation relations of 
sf(2).  To construct a realization of 7 ,  we must find functions f, .,,(z, t )  = 

gk(z) truck such that 

(5.33) 
J ' f ,  = mf,, 

C f ,  = (J 'J -  + J 3 J 3  - J 3  If, = u(u i- I>f,. 
J'f,,, = ( -u  j, m>fmi , ,  

Thus the special functions g,(z) satisfy 
(5.34) Zg,' + ( k  - 2u ~ Z)gk = ( k  ~ 2u)gk+, , Zgk' - kg,  = -kgk- ,  , 

(5.35) zgy  - ( 2 ~  4- Z)g,' + kg,  = 0, k = 0, I ,  2 , .  . . . 
The functions gk(z)  are determined to within a multiplicative constant by 
these relations. Indeed the relation J - f u  = 0 implies go' = 0 or go(z)  = c. 
Setting c = 1 we can then uniquely determine all of the g,(z)  recursively 
from the first formula (5.34). The solutions are 

where Ljp)(z) is a generalized Laguerre polynomial of order k and T(z)  is the 
gamma function (see the Symbol Index). Recall that 2u # 0, I ,  . . . . The 
function Lk(zj = Li0)(zj is an (ordinary) Laguerre polynomial. The Li-zu- ')(z) 
satisfy the Laguerre differential equation (5.35). 

A direct computation shows that the operators (5.32) determine a local 
multiplier rep T of SL(2) given by 
(5.37) 

T(A)f(z, 1 )  = (d + btNa + c / tY  exp(&) 

zt at + c 
f ( ( a t  + c)(bt + d )  bt + d 

The matrix elements Blk(A)  of the T(A) with respect to the basis fk-u(z ,  t )  
are given by (10.26), Section 5.10. Substituting these expressions into 

and simplifying, we obtain identities for the Laguerre polynomials. For 
example, from (5.28) there follows 

(5.38) (1 - b)2u-k exp(-b')LI 1 - b  

For k = 0, Lp)(z )  = 1 and this 
161 < 1. 

expression simplifies to a well-known 
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generating function for the Laguerre polynomials : 

Similarly, the matrix elements (5.29) yield the identity 

I t  is shown by Vilenkin [ l ]  and Miller [ l ]  that all hypergeometric and 
confluent hypergeometric functions can be obtained as basis functions in 
models of irred reps of sf(2). Furthermore, in the work of Miller [ I ]  i t  is shown 
how to derive such models in a systematic fashion. 

7.6 Applications to Physics 

Here we present a few of the many applications of the rep theory of 
SO(3) and SU(2)  to problems in mathematical physics. In Section 3.8 we 
studied the relationship between symmetry and perturbation theory in quan- 
tum mechanics. Though our discussion was limited to finite symmetry groups 
it carries over without change to compact Lie symmetry groups. 

Recall that the Hamiltonian H of a nonrelativistic quantum mechanical 
system containing k particles with masses m , ,  . . . , m, is 

H = 5 (-1/2rnj)A, -t V ( x , , .  . .  , x k ) ,  

where V ( x , ,  . . . , x,) is the potential function and x j  E R, designates the 
coordinates of the j t h  particle. (We are using units in which h = I . )  The 
Hilbert space X consists of all Lebesgue square-integrable functions Y ( x  ,, 

J I  
(6.1) 

. . . > xk)3 

IlYl12 = [ " ( X , ,  . . . , x,)I2 dx < 00, dx = d : ,  . . .  d ; , .  
R,* 

The inner product on X is 
- 

(Y ,  CP)  = " ( x , ,  . . . , xr)CP(xl , .  . . , x k ) d x .  
RJ" 

We can define a unitary rep T of SO(3) on X by 

(6 .2)  
It is an elementary computation to verify T(AB) = T(A)T(B) and (T(A)Y, 
T(A)@) = (Y, 0) for all A ,  B E SO(3) and Y ,  CP E X. 

Now SO(3) is a symmetry group of H provided T(A)H = HT(A) for all 
A E S0(3), i.e., provided V ( A x , ,  . . . , Ax,)  = V ( x , ,  . . . , x,). If SU(3) 

[T(A)Y](x,,. . . , x k )  = Y ( A - ' x ~ , .  . . , A - ~ x , ) ,  A E S0(3), 



248 7 THE ROTATION GROUP AND ITS REPRESENTATIONS 

is a symmetry group and Iz  is an eigenvalue of H then the eigenspace 
(6.3) W , = { Y  E X : H Y = I ~ Y }  

is invariant under T. By the results of Section 3.7, we can decompose W, 
into a direct sum of subspaces irred under T: 

Here TI Wjl) is equivalent to the irred rep D"' and a, is the multiplicity of 
D"' in T. For simplicity we assume dim W ,  < 00, though this assumption 
could be removed with a little care. Then, only a finite number of the a, 
are nonzero. Furthermore, if SO(3) is a maximal symmetry group and there 
is no accidental degeneracy then only one of the a, is nonzero. 

The most important (and common) case in which SO(3) appears as a 
symmetry group is the one where the potential takes the form 

(6.4) 
That is, V depends only on the mutual distances between particles and/or 
their distances from a common point. A special case is V ( x )  = V(lI x [I), 
a single-particle, radially symmetric potential. These potentials admit the 
larger symmetry group O(3). Indeed Y ( A x , ,  . . . , A x , )  = Y ( x , ,  . . . , x k )  for 
all A E O(3). 

The irred reps of the compact group O(3) can easily be obtained from 
those of SO(3). Indeed SO(3) is a normal subgroup of index two in O(3). 
The left coset decomposition of O(3) is 

v = U I I  x, - x, I 1 9  II X I  I I). 

O(3) = {S0(3 ) ,  Z-S0(3)}, 

where the inversion I = -E, . Let D be an irred unitary rep of O(3). Since I 
commutes with all elements of O(3), D(I) must be a multiple aE of the 
identity operator. But D(Z)2 = D(12) = D(E,) = E, so a = & l .  Since D 
is irred and D(Z) = &E it follows that D I SO(3) is still irred. Therefore 
D 1 SO(3) D(", I = 0, 1,2, . . . . We conclude that there are two families 
D'f), D! of irred reps of O(3). Their definitions are 

(6.5) 
(6.6) D!!)(IA) = -D!!)(A) = -D"'(A), A t SO(3). 
The DY) are called positive reps and the DI" negative reps. Here dim D'$ = 

21+ 1. 
Returning to the study of a system with potential (6.4), we see that each 

irred subspace W!') of W, will transform according to D'f). In a one-particle 
system with central potential V(IIxlI) we can say more. The space W? 
consists of functions Y(x) = Y ( x ,  y ,  z )  transforming irreducibly under 
DY', hence under the rep D") of SO(3). Thus, we can find a basis for W!" 

DY)(ZA) = DY'(A) = D"'(A), 
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of the formfm(x) = j l ( r )  Ylm(8, p), - I  F. m I 1, where the Ylm are spherical 
harmonics and r ,  8, a, are spherical coordinates. The inversion I maps x to 
-x, or  in terms of spherical coordinates, ( r ,  8, p) to ( r ,  n - 8, n + p). In 
our study of Laplace's equation (5.17) we showed that r' Ylm(O, p) is a homo- 
geneous polynomial of degree I in x, y ,  and z. Thus, under inversion Ylm(8, q)  - Y,"'(n - 8, n + p) = (-l) lYlm(8, p). If I is even then WI') transforms 
under the representation DY) of O(3); if I is odd then Wj') transforms under 
D!!). The sign of (-I), is sometimes called the parity of the rep. In this 
example the symmetry of the Schrodinger equation under rotations has 
completely determined the angular dependence of the eigenfunctions. Only 
the radial dependence j , ( r )  remains to be determined from the dynamics 
of the problem. The well-known separation of variables method applied to 
the Schrodinger equation yields a second-order ordinary differential equation 
for j , ( r )  : 

The permissible solutions of this equation are those such that j , ( r )Yim(8,  p) t 

X, i.e., 1- I j , ( r )  l 2  r 2  dr < 00. Only for certain values of 1, the eigenvalues, 
d o  there exist solutions belonging to X. 

The characters of D'f) are easily obtained from the characters of the reps 
D"' of SO(3). If R is a rotation through the angle 7 about some axis then 

(6.8) xY)(R) = x("(R)  : (sin[(/ t $)z])/sin 37.  

In the limit as T - 0 we get xY)(E3) = 21 + 1 .  If S is a rotation through the 
angle 7 followed by an inversion, then 

(6.9) xy)(S) = -x!!)(S) = {sin(/ + $)z]}/sin i 7  
Suppose the k-particle system with Hamiltonian (6.1) is an atom or molecule. 
If this system is put into a crystal the new Hamiltonian is 

(6.10) HI = 

where V ,  is the potential due to the crystal. Let C be the maximal point sym- 
metry group of this crystal. Note that G is a finite subgroup of 013). Thus, 
the symmetry of the system is reduced from O(3) to G under the perturbing 
potential V ,  . If I is an eigenvalue of H whose eigenspace transforms accord- 
ing to the (21 + I)-dimensional rep DY) (or D!!)) then under the perturbing 
potential this degenerate energy level splits into energy levels whose eigen- 
spaces transform according to irred reps of C. We can determine this splitting 
directly from the simple characters of O(3) and G. 

Suppose the eigenspace W, of H transforms according to D(:). Then the 

k 

(-1/2m,) A] 1 v(Xl, . . . , x k )  -1- vl(X~,. . . , xk), 
I 
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restriction of DY) to the subgroup G splits into a direct sum of irred reps 
of G :  

The character yl(A) of DY) I G is obtained from xY)(A) by restricting A to G. 
Since G is a crystallographic point group it contains only rotations or 
rotation-inversions through the angles 0, &n/3, &n/2, & 2 ~ / 3 ,  and R .  Now 
from (6.8) 

For fixed n this expression is periodic in I with period n. Thus, to evaluate 
y l  for any G it is enough to compute (6.1 1) for 0 5 1 < n. 

For example, suppose G = 0, the octahedral group. The conjugacy 
classes are E, e42, C!, , e4, e3, so 0 contains only twofold, threefold, and four- 
fold rotation axes. We compute y r  on these conjugacy classes for 0 < I < 5 :  

1 E 3 8 4 2  6 8 2  684 883 

0 1  1 1 1 1 
1 3 - 1  - 1  1 0 
2 5  1 1 -1 - I  
3 7 -1 -1 - 1  1 
4 9  1 1 1 0 
5 11 - 1  - 1  1 -1 

Indeed, x"'(E,) = 21 + 1, ~"'(n) = (- l)/, and so on. Using the character 
table of 0, (6.22) of Section 3.6, we can write yr  = C a : ) ~ ' ~ )  and compute 
the multiplicity a:) of T"' in DY) 10. The results are 

(6.12) 
yo  == x" ' ,  
w 4  = x ( l l  + x ' 3 '  + f 4 '  + X r J ' ,  

The interpretation of the expansion for y4, for example, is that a ninefold 
degenerate energy level of H splits into four energy levels under the per- 
turbation, one of the split levels is nondegenerate, one is twofold degenerate, 
and two are threefold degenerate. We can continue in this fashion to compute 
the splitting of an arbitrary (21 + 1)-fold energy level under a perturbation 
with octahedral symmetry. Since 0 contains only proper rotations the split- 
ting for D? I 0 is exactly the same as the splitting for DY) 1 0. 

If G contains rotation-inversions the determination of the splitting of the 
energy levels is analogous to that given above except that the results for 
D!) 1 G differ from those for DY) I G. 

y, = x'4', yz = x ' 3 '  + X'S ' ,  y3 = f 2 '  + x ' 4 '  + p, 
y 5  = x ' 3 )  + 2x(4) + y s ) .  
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Some Lie subgroups of O(3) are of importance for perturbation theory 
calculations. Suppose we break the symmetry of a rotationally symmetric 
system by introducing a perturbing potential which transforms like the z 
component of an axial vector in xyz space. Then the symmetry group of the 
perturbed Hamiltonian will be C,,h = C, x ( E ,  I], where C,. z U(l) is the 
group of all rotations about the z axis and { E ,  I ]  consists of the identity ele- 
ment and the inversion I .  (The choice of the z axis is arbitrary. Any other axis 
of symmetry would do.) As an example of such a perturbation consider an 
electron in a spherically symmetric field. If a uniform magnetic field parallel 
to the z axis is applied to this system, the perturbed system has symmetry 
C,. (We are ignoring the spin of the electron. This complication will be 
considered in Section 7.8). 

Since C,, is abelian its irred reps are one-dimensional. Furthermore, since 
Iz = E and I commutes with all elements of c,,, it follows that T ( I )  = & I 
for any irred rep T. We already know the irred reps of C,, . They are denoted 
by the integer m :  x‘”’(C(8)) = eims, m = 0, & I ,  . . . , where C(8) is a rotation 
through the angle 8 about the z axis. It follows that the irred reps of C,, are 
vim’, where 
(6.13) w$m)(C(8)) = Po, v/;m)(C(B)Z) = +eime m = 0, I ,  . . . . 

Suppose the eigenspace W, of the unperturbed Hamiltonian transforms 
according to the irred rep D‘f) with character xy),  (6.8) and (6.9). Now 
DY) I C,, has character x‘:)(C(O)) = ,yY)(C(O)Z) = xi=-, eime = xi--, v!!)(O). 
Therefore, under the perturbing potential the degenerate energy level splits 
completely into 21 + 1 simple sublevels, each with parity 1- I .  Similarly 
D!) I Crnh has character x ! )  I Ca,h = c‘, -, v?), so the degenerate energy level 
splits into 21 + 1 simple sublevels with parity ~ 1. In  the case where the 
perturbing potential is a magnetic field this splitting of energy levels is called 
the Zeeman effect. 

It  was shown in Section 2.9 that a molecule whose atoms all lie on a single 
line L possesses the symmetry group I?.,,) consisting of all rotations about L 
and reflections in all planes in which L lies. Furthermore, if the molecule is 
also invariant with respect to the reflection a in a plane perpendicular to L 
then the symmetry group is D,,, . - C,,<, :< {E, a). This occurs if the molecule 
is symmetric about its center of mass. 

If L is the z axis then C..,, is generated by the rotations C(p) and the 
reflection 6, in the xz plane. It  is easy to verify that this group has a 2 :.: 2 
matrix realization 

Note that C(p)a, =o,;C(-p) and a,,z z E,.  The rotations C(1Lp) form a con- 
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A ,  

A2 

Em 

jugacy class and every reflection is conjugate to a,. Let T be a unitary irred 
rep of C,, on V. Then TI C., splits into a direct sum of irred reps ~ ' " ' ( y )  = 

eimp of C,. Suppose the nonzero vector f, in V transforms according to f m ) :  
T(C(y))f, = eimPfm. Then T(C(p))T(a,)f, = T(a,)T(C(-y))f, = e-'"pT(a,)f,. 
Thus T(a,)fm = f-, is a nonzero vector transforming according to f " '  and 
T(a,,)f-, = T2(a,)fm = f,. Since V is irred under C,, it follows that f,, 
generate V. If m f 0 then V is two-dimensional and with respect to the 
basis Ifim) we obtain the matrix reps Em: 

1 1 
1 - 1  

2cosmp 0 

The characters are ~ ' " ' ( y )  = 2 cos my, x(")(ou) = 0. If m = 0, then the 
irreducibility of T and the property TZ(o,) = E imply V is one-dimensional, 
T(C(y)) = 1 and T(o,) = 1 .  Thus, we get two one-dimensional reps 
(6.15) A , :  T(C(q)) = 1, T(0,) = 1, A , :  T(C(q)) = 1, T(0,) = - I .  
The E m ,  A , ,  A ,  are a complete set of irred reps of C,, . The character table is 

C-3" I 6, 
I 

(6.16) 

Now suppose the eigenspace W, of a Hamiltonian with spherical sym- 
metry transforms according to DY, and introduce a perturbing potential 
with symmetry CmU. Then the character of DYIC," becomes x(p) = 

sin(/ + #y/sin (@) and ~(a,) = x(n) = (- 1)'. Clearly, 

where k = 1 if I is even and k = 2 if I is odd. Thus, the (21 + 1)-degenerate 
eigenvalue I splits into I eigenvalues with multiplicity two and one single 
eigenvalue. Similarly if W, transforms according to D!!) a simple computation 
yields 

(6.17) D ! " I C , , = E ~ @ E ~ - ,  0 . * .  @ E l  @ A k ,  

(6.18) DC'IC,, = El @ El-1 @ . .  . @ E l  @ A , ,  

where j = 1 if 1 is odd and j = 2 if I is even. In the case where our system 
contains only one particle the parity is (- I)', so we always get the identity 
rep A ,  in (6.17) and (6.18). 

We can achieve C,, symmetry by introducing into a spherically symmetric 
system a perturbing potential which transforms like the z component of a 
polar vector in xyz space, e.g., an electron in a uniform electric field parallel 
to the z axis. The splitting of the energy levels due to this perturbation is called 
the Stark effect. 
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A,' 

A , -  

A2 - 

(6.19) A2+ 

Em+ 

Em- 

The group D,, can be written as the direct product D,, = C,, x {E ,  I } .  
Thus, the irred reps can be obtained almost immediately from (6.16). The 
conjugacy classes are determined by the elements C(&yl), ou, Z, C(*yl)I, 
a,Z. If T is an irred rep of D,, then T(Z) = &E. The character table is 

D-,  I C(yl) OL' I C(yl)Z 081 

1 1 1  1 1 
1 I -1 -1 -1 

1 -1  1 1 -1 
1 - 1  -1 -1 1 

2cosmyl 0 1 2cosmyl 0 
2cosmyl 0 - I  -2cosmyl 0 
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for the system. A state Yi)(f) which transforms like the mth basis vector in a 
realization of D"' at  one instant of time transforms like the mth basis vector 
in D"' at any time. Physicists refer to this as the conservation of angular 
momentum. Although this analysis applies only to S0(3), similar results can 
be easily obtained for any compact symmetry group of H. 

It is worthwhile t o  point ou t  the connection between the time-dependent 
and time-independent Schrodinger equations. Suppose Y E X is a nonzero 
solution of the Schrodinger equation HY = 1". (We assume H is indepen- 
dent oft .)  Then Y is an eigenvector of H with eigenvalue 1. Furthermore, the 
one-parameter family Y(t) = e-i*AY is the unique solution of the Schrodinger 
equation 

Y(0) = Y .  
Since the vectors e-jIAY belong to  the same ray in X for all t ,  it follows that 
any eigenstate of H remains fixed with passage of time. 

As a final application we investigate the quantum mechanical interpreta- 
tion of the Lie algebra 4 3 )  su(2). As usual we consider the unitary rep 
T, (6.2), of SO(3) on X. Then T induces a rep (also called T) of so@) on X: 
(6.21) T(a)  = (d/dt)T(exp fa)Ir=,,, a E so(3). 

In particular, the operators T(C,) = d:, are 

i dY ( t ) /d t  = HY(t), 

d a (6.22) 
c, = c yj-  - x .  - ) ?  xj = ( X , , Y j  z,), ,", d x j  ' d y j  

where the 2, are given by (1.2) and (1.3). As the reader can easily verify, the 
d:, satisfy the commutation relations ( I  .5) of so(3) and they form a basis for 
the Lie algebra of operators T(a).  Proceeding formally by differentiating the 
identity 

(T(exp ta)Y, T(exp fa)@) = (Y, a), Y ,  E X, 
with respect to t we obtain 
(6.23) (T(a)Y, a) + (Y,  T(a)D) = 0 
at  t = 0. Thus T*(a) - -T(Ct) and the operators iT($), i n, are 
symmetric. In particular the operators L, = i&, are symmetric and satisfy 
the commutation relations 
(6.24) [ L , ,  L,] = iL, ,  [L,, L,]  = iL , ,  [L,, L3] = i L , .  

The L, are called the angular momentum operators. If the Hamiltonian H 
commutes with the operators T(A), A t S0(3), then by differentiating the 
identity T(exp ta)H = HT(exp fa) at t - 0 we find T(&)H = HT(a)  for all 
a E 343). In particular the angular momentum operators commute with 
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H. Conversely, if the angular momentum operators commute with H then the 
operators T(A),  A E SO(3), commute with H. 

Unfortunately the above computations are merely formal. The operators 
Lj and H are not defined on all of X. For instance if H is given formally by 
(6.1) then HY(x) makes sense only if Y(x) can be differentiated twice in 
each variable. Furthermore the function HY(x) must belong to X, i.e., 
IIHY 1 1  < 00. Since many functions in X are no5 differentiable it is clear that 
D, cannot be all of X. The problem of defining explicitly the domain of H, 
or any unbounded operator in quantum mechanics, is outside the scope of 
this book (see Helwig [I]). It can be shown that each of these operators can 
be defined on a dense (not necessarily closed) subspace of X. However, the 
subspace varies with the operator. The angular momentum operators make 
sense only when applied to differentiable functions Y(x) such that L,Y(x) 
is square-integrable. Furthermore, the meaning of a commutation relation 
such as [L, , L,] = iL, is not completely clear since the domains of the left- 
and right-hand sides may not be the same. 

However, it can be shown (Helgason [ l ,  p. 4401) that there exists a dense 
subspace 9 of X which is contained in the domains of all the operators H 
and Lj. Furthermore 9 is invariant under the restrictions of H, Lj, T(A)  
to 9 and has the property that all of the above formal computations are 
rigorously correct for these restricted operators. Thus, the relation 

(6 .25)  Y - (asj>. T(exp a2,)Y = C - 
" = o  n !  

is valid for Y E 9. If we accept the fact that a> exists we can use Lie algebra 
computations to  derive results about infinite-dimensional Lie group reps. 
Note that the unitary operators T(A),  A E S0(3), are uniquely determined 
by the symmetric operators L,. Indeed T ( A )  is uniquely defined on 9 by 
(6.25). Since 9 is dense in X and T(A) is bounded it follows from a standard 
Hilbert-space argument that T ( A )  is uniquely determined on X (Naimark 
[2 ,  p. 1001). With these remarks in  mind we shall henceforth ignore problems 
concerning the domains of unbounded operators. 

The angular momentum operators can be used to compute the matrix 
elements of H with respect to an ON basis of X. Consider again the unitary 
rep T of SO(3) on X. From the results of Section 6.3 we know that T = 

C 0 a,D"', i.e., X can be decomposed into a direct sum of subspaces irred 
under T .  (In general the multiplicities a, will be infinite.) Thus, there is an 
ON basis {Yy,!,} for X such that T(A)YY?, = C D$!,(A)Y$ and 1 < j  < a,. 
We have shown in Section 6.3 how such a basis can be constructed without 
any knowledge of the Hamiltonian H. 

Since H commutes with the T ( A )  it also commutes with the operators 
L' = &S, + i&, and L3 = -is,. Here (L+)* = L- and (L3)* = L3. 
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The ON basis vectors YfA can be chosen such that 
(6.26) 

L3YyA = my:!!,, L'Y;!!, = [(I & m + 1)(I f m)]l'zYj'Ak, 
3 

L 9 LYYA = 1(1+ l)YYA, L L = L'L- + L3L3 - L3 = - c L,C,. 
j =  1 

Now 
(HL3Y"') l m y  YY),) ~m = (L3HY)!!,, YYA,) = (HYYA, L3y(.'" I'm' ) 9 

so (m - m')(HYyA, Yj!';.) = 0 and the matrix element is zero unless 
m = m'. Similarly the relation 

(HL LYfA,Yj!'A,) = (HYYA,L LYYA,) 

shows that the matrix element is zero unless I = 1'. The identity 
(HLiYyi, Y ~ ~ + l )  = (HYyA, L-Yy',+,) 

yields (HY:A+,, Y;!',,,) = (HYYA,, Yj!L), i.e., the matrix elements are 
independent of m. Thus 
(6.27) (HYyA, Y)!'A.) = all, a,,,,,,, l ( / , j ,  j ' ) ,  

where l ( l , j , j ' )  is independent of m and m'. In Section 7.8 this result will be 
generalized to obtain information about the matrix elements of operators 
which do not necessarily commute with the action of SO(3) on X. 

7.7 The Clebsch-Gordan Coefficients 

In Section 7.2 we derived the Clebsch-Gordan series 

w =  c u - V I  @ D'"' (7.1) D'"' 0 Dty! = 

for the tensor product of two irred reps of SU(2). Recall that we also used the 
symbol D'"' to denote the (2u + 1)-dimensional irred rep of SL(2). Since there 
is a 1-1 relationship between complex reps of sl(2) and su(2) it follows that 
expression (7.1) is also valid for SL(2). Furthermore, this same argument 
shows that any finite-dimensional analytic rep of SL(2) as a complex Lie 
group can be decomposed into a direct sum of irred reps. 

In the following we shall consider (7.1) as a rep of SL(2), but all our 
results will remain valid on restriction to SU(2). If D'"), D'"' are defined on 
inner product spaces V L u ) ,  V'") then D'") 0 D(*) is defined on the (2u f 1)(2v 
+ 1)-dimensional space V'y! @ As a convenient ON basis for the rep 
space we choose {fk) @ fp) :  -u  < m < u, -v < n 5 w}, where if;)} is a 
basis for such that 
(7.2) J3fk) = mfk), J'fk) = [(u f m - t  1)(u F rn)]"'fk: I ,  
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and (fp)) is defined similarly. [In the future we will call any ON basis {fm} 
satisfying (7.2) a canonical basis.] Though {fg) @ fp)} is well adapted to show 
the tensor product character of our rep, it does not clearly exhibit the 
decomposition of D'"' @ D(u) into irred reps. From the right-hand side of 
(7.1) it follows that Y'")  @ VY) contains an ON basis of the form 

{hp':w = u + W , U  + v - 1,. . . , I U  - 0 1 ,  --w < k  5 W }  

such that 

(7.3) J'hp' = khp', J'hp' = [(w & k + I)(w k) ]"zhp~l ,  

where the J-operators are now those determined by the action of SL(2) 
on Yew) @ P). For fixed w the vectors {h/;"'] are determined up to a phase 
factor by (7.3). They form an ON basis for the invariant subspace which 
transforms according to D'wJ. The two sets of basis vectors are related by the 
Clebsch-Gordan (CG) coefficients : 

hp) = C C(u, m ;  v, n I w, k)fk)  @ fp), (7.4) 
m, n 

I u - v I w < u + V ,  -W 5 k < W ,  

(7.5) C(U, m; v, n I w, k )  = (hp), fk) @ fp'), 
where (-, -) is the inner product on V c u J  @ Y c u ) .  Since {hp)) and {fg) @ fp)} 
are ON, the matrix formed by the CG coefficients is unitary. Indeed from 

fg) @ fp) = C C(w, k I u, m ;  v, n)hp), 

(7.5) 

(7.6) 
w, k 

where 

(7.7) C ( w , k J u , m ;  w, n) = C(u,m; 'u, n l w , k ) .  

Later we shall see that it is possible to choose {hp)} such that the CG coeffi- 
cients are real. 

The matrix elements of D(IO @ D'O) with respect to the {fk) @ fp))  basis 
are Pmmr(A)T:n,(A), where A E SL(2)  and the TU,,,(A) are the matrix elements 
of D'") with respect to If:)]. On the other hand, the matrix elements with 
respect to the {hp)] basis are T I ~ , ( A ) .  The matrix of T'"' @ T'")(A) in one basis 
is unitary equivalent to the matrix in the other basis. A straightforward 
computation yields the identity 

(7.8) T",,.(A)T;,(A) = C C(U, m ;  v, n I w, k)C(u, m'; w, n'l w, k')TIk,(A),  

expressing the product of two matrix elements as a sum of matrix elements. 
Since in appropriate parameters T",,.(A) is essentially a Jacobi polynomial, 
(7.8) can be viewed as an identity expanding the product of two Jacobi poly- 
nomials as a sum of Jacobi polynomials. If we restrict A to the subgroup 

w ,  k, k' 
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SU(2) then the matrix elements are given by (2.13) and (2.14). Applying the 
orthogonality relations (2.21), we find 

(7.9) 

= C(u, m ;  v, n I w, k)C(u, m'; v, n' I w, k') 

This expression can be used to explicitly compute the CG coefficients (Wigner 
121). However, we shall adopt another approach which leads to a generating 
function for the coefficients and yields an independent proof of (7.1). 

Consider the model of D'") on the vector space IYu) with ON basis 

[see (2.10)]. The action of SL(2) on V'") is 

[T(A)f](z)  = (bz + d)2"f (m) ,  uz + c f E U'"), A E SL(2). 

The matrix elements of T(A) with respect to this basis are 

or 

where DIk(A) is given by (10.22) of Section 5.10. The matrix elements have 
the symmetric generating function 

(7.1 1) (1/[2uI!)[(bz + d )  + Y ( ~ Z  + c>lZ" = 9 f m ( . Y ) Q ~ m ( ~ ) f , d z > *  
m,p=- -u  

In this model the action of the generalized Lie derivatives J', J 3  on the basis 
is described by (7.2). 

We can realize D'"' @ D'") on the (224 + 1)(2v + 1)-dimensional space 
V'") @ V(") with ON basis 

- u ( m I u ,  - v < n < v .  

The action of SL(2) is defined by operators S ( A )  such that 

LIZ + c ,  uy + c 

for f E '0'") @ W". 
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The generalized Lie derivatives J', J 3  corresponding to (7.13) are easily 
computed to be 

We will decompose 'u'"' @ 'u'"' into irred subspaces by explicitly computing 
the ON bases { h p ) } ,  (7.3), of these subspaces. The lowest weight vectors 
h?; satisfy J-hl',,! = 0, J3hlw,,! = -wh(_W. We will use this property to compute 
the h?, ,  explicitly and then use relations (7.3) to obtain a set of vectors 
{ h p ) } ,  - w I k I w, I u - v I I w I u + v. By showing that these vectors 
form an ON basis in 'u'"' @ 'u'v' we can verify (7.1) independently. More- 
over, our explicit expressions for the hp) ( z ,  y )  will enable us to compute the 
CG coefficients. 

The general solution of J - f  = - (d /dz  + d / d y ) f ( z ,  y )  = 0 is f ( z ,  y )  = 

ctZo a,(z - y)", where the a, are arbitrary constants and q = min(u, v). 
A basis for the q-dimensional solution space is given by the vectors. 

hl';(z, y )  = N,(z  - ,),+"-, , l u - v l I w < u $ - v ,  
where the N ,  are nonzero constants. Indeed 

(7.15) J3hlWd = --whl'', J-h'_"? = 0. 

Let (-, -) be the inner product on I Y u )  @ l Y U 1  with respect to which the 
basis { f k ) @ f p ) }  is ON. It is easy to check that (.I3)* = J 3  and (J+)*  = J -  
for this inner product. We will choose the constants N ,  such that 1 1  h'r;? 1 1  = 1. 
Thus, 

Making use of the identity 
(7.16) 

- i; ( m  + k - j ) ! ( n  + j ) !  - 
j = O  j !  ( k  - j ) !  

2 F , ( - k ,  n + 1; -m  - k ;  I )  ( m  + k ) !  n !  
k !  

m ! n ! ( m  + n + k + l)!  
k ! ( n  + m + l)! 

(see Lebedev [ I ,  p. 2431 for a proof), we obtain 

N ,  = (- 1)2v [( 
where the phase factor has been added to conform to convention. 

(2w + l ) !  
u + D- w)!(u - v + w)!(v- u + w)!(u + v  + w + 1) 
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Now we define vectors 

(7.17) 

where J +  is given by (7.14). It follows immediately that J + h p )  = 

[(w + k + l)(w - k)]1’2hpil  in agreement with (7.3). Also, from the proof of 
relations (3.3) we see that (J+)2w+1h!wd = J’hp) = 0. Each Iip)(z, y )  is a 
homogeneous polynomial of order u + w + k in z and y ,  and there are a 
total of (2u + 1)(2v + 1) such polynomials. We will show that the { h p ) }  
form a n  ON basis for VU) 6 TI(”). 

Lemma 7.1. (a) J+hP1 = [(w + k + I)(w - k)]l’zhpil; (b) J - h p )  = 
[ (w - k + I)(w + k)]1’2hp!1 ; (c) J3hp’ = khp’. 

Proof. Identity (a) follows directly from (7.17). Identity (c) follows from 
J3hlw; = -wk‘_w?, and the fact that J 3 ( J + f )  = (k + I)(J+f) if J 3 f  = kJ We 
prove (b) by induction on k.  Since J-h!”; = 0 the equation holds for k = -MI. 

Assume (b) is valid for k I where - w I 5 w .  Then 

J-hj:’, = [ (w -1- I + I ) (w - I)]-’,,ZJ-J+hj“’ 

from (a). Since J-J’  = J + J -  - 2 J 3  we have 

j - ~ + h j w )  == ( J + J -  - 2 ~ 3 p )  1 = ( w  + 1 + l)(w - I)hj”’ 

by the induction hypotheses. Therefore, (b) follows for k = I + 1. Q.E.D. 

Thus, for fixed w the vectors {hj”)} form a basis for a subspace of 7YU’ 0 
which transforms irreducibly under the rep D‘“’. Furthermore, by com- 

putations analogous to (2.7)-(2.10) we see that the {hj ” ) )  are ON. The Casimir 
operator C = J + J -  + J 3 J 3  - J 3  is symmetric since 53 is symmetric and 
(J’J-f, g) = ( J - f ,  J-g) = (f, J ’ J  8) .  Since Chp) = w(w + I )hp)  we obtain 

w ( w  + l)(hp), h y )  = (ChP’, hE”) = ( h p ,  CAE”) = w‘(w’ t I)(/$), h y ) ,  

so (&I, hp’)) = 6ww, B k k r ,  i.e., the {/7p)} form an O N  set. Since the cardinality 
of this set is equal to the dimension of V‘”) 0 V(”’ we conclude that i h p ) )  
is an ON basis. This proves the validity of the Clebsch-Gordan series (7.1) 
from a Lie-algebraic viewpoint. 

We can use our model to obtain an explicit expression for the coefficients. 
Since the {hy’} for fixed w form a basis for D‘”) we have the identity 

(7.18) T ( A ) h k )  = 5 Qzm(A)h:), A t SL(2), 

where the matrix elements are given by (7.1 I). In the case where A = 

exp(--bg+) and m = - w, (7.18) is especially easy to evaluate. Indeed hl”;(z, y )  

P - w  
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= N,(z  and Q;,-w(,4) = (-b)p+"{(2w)!/[(w + p)!(w - p)!])1/2. Thus 

(7.19) 
NJbZ + I)"+"-yby + I ) W + U - U ( z  - y y - ,  

(2w)! I ! ,  
- pZw 

x C(u ,m;v ,n \w ,p )  x (-z>U+"(-y>"'"(-b)"+P, 
[(w + p ) !  ( w  ~ p ) !  (u -1- m) !  (u - m) !  (v i- n)! (w - n)!1 

where we have used (7.4) and (7.10). Since hy)(z, y )  is homogeneous of order 
u + v + p in z and y it follows that C(u, m ;  v, n I w ,  p )  is nonzero only if 
m + n = p .  

Expression (7.19) is a generating function for the CG coefficients. We can 
write this expression in a more symmetric form by choosing b = x;I and 
introducing the 3-j coefficients 

x [ ( j l  + m , ) ! ( j 2  + m z ) ! ( i  -i m 3 ) !  
x ( j ,  - m , ) !  ( j ,  - m,)! ( j ,  - m 3 ) ! ] - 1 ; z j  

(We have set z = -x ,  , y = -x, in this expression.) Since the left-hand side 
is homogeneous of degree j ,  + j ,  -t j ,  in x,, x,, x,, so is the right-hand 
side. Thus, the 3-j coefficients are zero unless m ,  + m, + rn, = 0. Further- 
more, it follows from the CG series (7.1) that these coefficients are zero unless 
j ,  + j ,  + j ,  and j i  + mi are integers, and - j i  I mi I j i r  i = 1,  2, 3. The 
3 - j  coefficients have a high degree of symmetry, as is evident from (7.21). 
Indeed the left-hand side of (7.21) is fixed under an even permutation of the 
integers I ,  2, 3. As a consequence 

(7.22) 

The left-hand side changes by a phase factor under an odd permutation: 

j ,  i, j ~ ( j ,  j ,  j 2  ) = ( j ,  (L, m, m,  r n 3  m ,  m, m2 m3 m ,  

(iz rn ,  m, 
(7.23) (', t, j3) = ( . . - 1 ) j t f j x * j >  

1 1 1  1 j ,  = ( -~. 1 
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If we make the substitution x, --f xy' and multiply by x ~ j i x p x ~ j ~  the 
generating function changes by the factor (- l ) j i + j 2 t j 3 .  There follows the 
identity 

If we multiply both sides of (7.21) by 
( j ,  + j ,  + j ,  + l ) l / z a - i l + J a + j s g j , - i I + j ,  j ~ + j s - j s  Y 

K-jl + jz + A ) !  ( j ,  - j 2  + j 3 ) !  ( j ,  + j 2  - j3)!11'2 

and sum over allj, for which (7.21) makes sense, we obtain the new generat- 
ing function 
(7.25) 

exp[@, - x3) + K x ,  - X I )  + Y ( X ,  - 4 1  
= 5 c ( ( j ,  + j ,  + j 3  + 1 ) 1 / 2 ~ - j l + j z + j 3 g i l - i , + i J ~ j l + j a - j 3  

j t  + j ,  + j3=  0 mi= -18 

x x j l + m , x j , + m , x j , + m 3  

j 2  j 3  ) 2 3 itl 
mz m3 

x K - j l  + j z  + j 3 Y  ( j ,  - j z  + 
x ( j ,  + m2)!  ( j ,  + m,) !  ( j ,  - m l ) !  ( j ,  - mz)!  ( j ,  - m3)!l-1'2). 

(jl + A  - j 3 Y  ( j ,  + m , ) !  

A still higher degree of symmetry can be obtained by making the replacements 
xi ---4 x,/y,, a -+ y 2 y 3 a ,  p - y3ylp, y - y l y z y  in (7.25). Then this expres- 
sion takes the form 

(7.26) exp(det B )  = 2, , b ( j i ,  m i ) ~ - j , + ~ z + i 3 g i ~ - ~ n t ~ ~ y j , + j , - j ~  
j , t j , + ] s = O  m r = - l ,  

where b( j i ,  mi) is completely symmetric under a permutation of the integers 
1, 2, 3. Here B is the matrix 

It is now evident that the symmetries (7.22) and (7.23) correspond to per- 
mutations of the columns of B. Under an even permutation det B remains 
invariant, while under an odd permutation it changes sign. The identity 
(7.24) follows from the fact that det B changes sign under a transposition 
of the second and third rows of B. Note that a change in sign of det B is 
equivalent to multiplication of the right-hand side of (7.26) by (- 1 ) j i + j g + j 3 .  
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In addition to these symmetries we see that arbitrary permutations of 
the rows of B lead to new symmetries. Furthermore, since det B' = det B 
we can obtain a new symmetry by interchanging rows and columns of B. 
The six column permutations, six row permutations, and the transpose 
generate a group of 6 x 6 x 2 = 72 symmetries of the 3-j coefficients. 
This symmetry group was discovered by Regge [I ] .  The symmetries (7.22)- 
(7.24) generate a subgroup of order 12. 

Substituting (7.20) in the above formulas we can obtain corresponding 
formulas for the CG coefficients. The most frequently used CG coefficients 
C ( j ,  , m ,  ; j , ,  rn, [ j ,  , m,) are those for which j ,  = f or I .  We can easily com- 
pute these special cases from (7.21). For j ,  = f the coefficients are zero 
unless j ,  = j ,  f and m, = m ,  + m, . The nonzero coefficients are given by 

m, = -4 m, = f 

For j ,  = I the coefficients are zero unlessj, = j l ,  j ,  f I ,  and m 3  = m, t 
m,. The nonzero coefficients C ( j ,  , m,; 1,  m, I i,, m,) are 
(7.28) ni2 = - 1  m2 = 0 1n2 = 1 

i, = il - 

It is not difficult to obtain an explicit expression for an arbitrary CG 
coefficient. Indeed one can expand one of the generating functions in powers 
of the independent variables and equate coefficients of like powers. However, 
the resulting expressions are very complicated (see Hamermesh [I]). For 
practical (computer) computations it is usually more convenient to use 
recurrence relations for the CG coefficients. Such relations can be easily 
derived by differentiating the generating functions with respect to some of the. 
independent variables (Bargmann [2]). 

7.8 Applications of the Clebsch-Gordan Series 

We return to the study of a k-particle quantum mechanical system as des- 
cribed in Section 7.6. Suppose the Hamiltonian is given by 
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where 

(8.2) Hj = - (1 /2mj )  Aj  + Vj(x j ) ,  1 < j  < k ,  

i.e., H is a sum of single-particle Hamiltonians. Furthermore, suppose 
Vj(Axj) = V j ( x j )  for all A E SO(3), so that each potential function V j ( x j )  
is invariant under SO(3). This system admits the compact symmetry group 
G = SO(3) x SU(3) x - x SU(3) ( k  times). Indeed, we can define a 
unitary rep S of G on X by 

(8.3) [ S ( A l ,  . . . , AJY](xI,. . . , x,) = Y ( A i l ~ l , .  . . , AL’x,), 

A j  E S0(3), Y E X. 

It is easy to check that these operators commute with H. 
From Corollary 6.2 it follows that the irred unitary reps of G are products 

of k unitary irred reps of SO(3). Indeed, the irred reps of G can be denoted 
DUI,. . . , I 4  , where 

(8.4) D”l,...”t’(A,, . . . , A,) = D“”(A,) 0 * . . @ D”*’(A,) 

and D”)) is an irred rep of SO(3). 
Suppose L is an eigenvalue of H and W, is the corresponding eigenspace. 

If W, transforms irreducibly under G according to D(I1....,Ik), the multiplicity 

Y ~ , ( x , )  . . . Y~,(x,) ,  -l j  5 mj  I l j  form an ON basis for W, where Y k , ( x j )  
for fixed j is a canonical ON basis for the rep D(’” and “2, is an eigenvector 
of H j .  As we have seen earlier Y;,(x) = hI,(r)YzJ(O, p) in spherical coordi- 
nates, so the angular dependence of the wave functions is determined. The 
radial dependence can be obtained only by solving the Schrodinger equation, 

In the above system the k particles do not interact with one another. 
We now consider an interacting system obtained by adding a perturbing 
potential V ’  to H :  

( 8 . 5 )  H’ = H + V’(X,, . . . , xk). 
We further assume that V’ is invariant under the action T, (6.2), of SO(3) on 
X but not under the action S of G, i.e., the equality 

of 1 is q = dim D(’I....,’*) ~ ~ (21, + 1)(21* + 1) . . . (21, + 1). The functions 

V ’ ( A , x ,  , . . . , A,Xk) = V ’ ( x , ,  . . . , x,) 

holds in general only if A I = . . = A, = A t SO(3). Thus the symmetry 
group of the perturbed Hamiltonian H’ will be the subgroup of G consisting 
of all diagonal elements A x A x . e .  x A .  This subgroup is obviously 
isomorphic to SO(3). To determine the splitting of the eigenvalue L under the 
perturbation we need only express D(’ta...,’k) I SO(3) as a direct sum of irred 
reps of SO(3). 
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From (8.4) i t  is clear that this restricted rep is isomorphic to the k-fold 
tensor product 
(8.6) D("2 , ' k )  ISO(3) D('I' @ D"" 0 . . 1 @ D"*'. 

We can use the CG series to decompose (8.6) into a direct sum of irred reps 
and thereby obtain the splitting of the energy levels. For example we could use 
the CG series to decompose D"" @ D(',), tensor the resulting irred reps with 
D('?), and apply the CG series again, etc. (In case W, is not irred under G we 
can decompose W, into a direct sum of G-irred reps and proceed as above.) 

In the simplest case k = 2 and 
(8.7) DUI,~~) I SO(3) D(Ii) 0 DUA) D(lt4 l r )  @ DUctIp- 1 )  @ . . . @ D(I~i-~~I). 

Here the (21, + 1)(212 + 1)-degenerate energy level I splits into 2min(/, , 12) 
+ 1 levels and the energy level corresponding to D"' is (21 + ])-degenerate. 
We can use the CG coefficients to decompose W, into a direct sum of sub- 
spaces transforming under the irred reps of SO(3) given by the right-hand 
side of (8.7). Indeed a canonical basis for the subspace transforming according 
to D"' is given by 

(8.8) h,'(x, , xd = C W,,  m,  ; I,, m2 11, m)~',:,(X1)%LX2), 
mlmz 

- - l < m < l .  

As we have shown in Section 7.6, the computation of matrix elements of H' 
with respect to the canonical basis [/r,'J is relatively simple because SO(3) 
is a symmetry group of H'. This basis is far superior to  {Y',:lY$J since it 
explicitly exhibits the SO(3) symmetry. The matrix elements of H'are needed 
in quantum mechanical perturbation theory to compute the perturbed 
eigenvalues (Schiff [l], Landau and Lifshitz [2 ] ) .  

The decomposition (8.7)-(8.8) is also of great importance in the study of 
time-varying systems. We look for solutions Y of the Schrodinger equation 
(8.9) idY(x,,x,,t)/dt = H'Y(xl,x2,t) ,  

where Y(xl ,  x2,  t) E X for each t. Suppose the functions YA(xI, x,, r )  
are solutions of (8.9) such that Y,,,'(x,, x, ,  0) = h,'(x,, xz), expression 
(8.8). Then at t = 0 the Ym', -1 I m I, form a canonical basis for the 
irred rep D"'. According to the results of Section 7.6, the functions Ym'(x,, 
x,, r )  form a canonical basis for D") at every time t .  In particular 
(8.10) 

for all 1. Thus the quantum numbers 1 and m are conserved under the inter- 
action. 

To see the physical significance of this analysis we consider an (oversimpli- 
fied) example. Suppose the perturbing potential is a function of time, V' 

L3Y/ = m y m ' ,  L LY,' = 1(1 + l)Y,' 



266 7 THE ROTATION GROUP AND ITS REPRESENTATIONS 

= V'(x, , x,, t ) ,  such that for all t ,  V'  is SO(3)-invariant but not necessarily 
G-invariant. Furthermore suppose V' = 0 for t < 0 and t 2 z > 0, where z 
is some fixed time. Thus the perturbing potential acts only in the time interval 
(0,z). At all other times H' = H. 

Let W, be the eigenspace of H corresponding to eigenvalue 1. The space 
W, transforms irreducibly under G: 

(8.1 1) S I W ,  2 D(,l,'*) 

and has the ON basis 

{ Y ~ ~ ( x , ) Y ~ ~ ( x , ) :  - l j  m j  5 l j } .  

Now suppose Y is a solution of (8.9) such that Y(x , ,xz rO)  = 

Y ~ , ( x , ) Y ~ ~ ( x , )  E W,, i.e., the first particle has quantum numbers l , ,  m, 
and the second has quantum numbers I , ,  m, . As t increases, the particles be- 
gin to interact. We assume the interaction is elastic, i.e., we end up with the 
same two particles and energy is conserved. No particles are created or 
destroyed by the interaction. 

After time t = z the particles are again noninteracting. By conservation 
of energy, "(7) must have energy 1. Thus "(7) E W,, or 

and we can describe the interaction by computing unlnr: 1 an,nE l2 is the prob- 
ability that a system in the state YilYit at t = 0 ends up in the state 
YfillYk2 at t = z. Since SO(3) x SO(3) is not a symmetry group of H', m ,  
and m, are not conserved by the interaction. Thus, if particle one starts out 
in the state 'Pi, there is no reason to assume that it will end up in this state. 

On the other hand, SO(3) is a symmetry group of H'. If the system is in 
the state h,' at t = 0 then it must be in the state h,' at t = z. Note that the 
vectors 

(8.13) h,'(xl,xz), 11, - 1 , I I l I I l  ti,, - l < m < l ,  

form an ON basis for W , .  Thus, if "(0) = /?,, then by conservation of 
angular momentum 

(8.14) Y ( z )  = b,h,'. 

Since Y(7) is a unit vector we must have I b, 1 = 1 ,  or b, = eM6, 0 I 8, < 2 ~ .  
Just as in Section 7.6 we can easily show that 8, is independent of m. The basis 
{hm'] is clearly more convenient for W, than the basis {Yi,Yk2}. On the 
strength of conservation of angular momentum alone we have proved that 
h,' is merely multiplied by a phase factor elei. The results of the scattering 
experiment are determined by the scattering angles 8,, I I ,  - I, I I I I I ,  + 
I,, which must be computed from the dynamical equations. 
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Now that we know how the {hml} transform we can use the CG coefficients 
to determine how the basis {Y!&Yks) transforms. A straightforward com- 
putation yields 

(8.15) Yk,Yk2 --f C C(I , ,  m ,  ; I , ,  m2 I I ,  m)eiBIC(l, ,  n, ; I,, n,  11, m)Y!,',Y22. 

Thus the probability that a system in the state Y:,Yf, at t = 0 will be found 
in the state Yfi:Yfi: at t = z is 

l n l m  

If the system has k > 2 particles a similar but more complicated analysis 
can be used to decompose W ,  into a direct sum of irred subspaces under 
SO(3). The principal complications arise from the fact that a given irred rep 
may occur with multiplicity greater than one. Then there is no unique way to 
decompose W, and it may be necessary to relate the various possible decom- 
positions by Racah coefficients (Liubarskii [ 11). 

In the preceding discussion we have ignored the possibility of spin. 
However, for many particles such as the electron, the proton and the neutron, 
physical observations do  not agree with the predictions of our theory. To 
obtain predictions in agreement with experiment it is necessary to postulate 
more complicated transformation properties of the particle state functions. 
Intuitively, one may think of a particle with spin, say an orbital electron 
in an atom, as a billiard ball spinning about its own axis. In  addition to 
its orbital angular momentum the billiard ball possesses an intrinsic spin 
angular momentum. 

To make the discussion concrete we construct the state space of a single 
nonrelativistic particle with spin s, 2s = 0, 1, 2 ,  . . . . The Hilbert space X, 
consists of vector valued functions 

where e, is the column vector with a one in row p and zeros everywhere 
else. The vector Y(x) E X, if 

5 Y ' ( x ) ' Y ( x )  dx = I 2 I Y , ( x >  I 2  dx < 00 
R I  , = - s  

and the inner product is 

(8.18) (0, Y) = I o l ( x ) m  dx = I 2 @ , ( x ) m  dx .  
RI ,=--s 
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We define a unitary rep T of SU(2) on X, by 

or in components 

(8.19) [T(A)Y],(x) = 2 T~,(A)Yy(R(A-')~), --s _< p 5 s. 

Here R(A)  E SO(3) is defined by (1.12) and (1.20) and the matrix elements 
T;,(A) by (2.14). Since the matrices P ( A )  are unitary and satisfy the homo- 
morphism property T3(AB)  = Ts(A)Ts(B) ,  the operators T(A) are unitary in 
X, and satisfy T(AB) = T(A)T(B). Any vector-valued function Y(x) which 
transforms under the action of SU(2) according to (8.19) is called a spinor 
field of weight s. (A spinor field need not belong to X, .) It follows from Sec- 
tion 7.2 that if s is an integer, T defines a single-valued rep of SO(3), while if 
s is half-integral, T is double-valued on SO(3). 

In nonrelativistic quantum mechanics it is postulated that the state 
vectors of the electron, proton, and neutron transform under rotations as 
spinor fields of weight 3. There are mesons and baryons with spins 0, 1 ,  
and 4. The photon in relativistic quantum mechanics has spin one, while 
the nuclei of various atoms can have spins greater than 1. 

We have postulated that the state vectors of a particle with spin belong to 
X, and transform under rotations of space by (8.19). If s is half-integral this 
postulate seems ambiguous because T is a double-valued rep of SO(3).  
Indeed if R E SO(3) there exists A E SU(2) such that R = R(+A)  and 
T(-A)Y = -T(A)I for I E $2,. However k T ( A ) I  both define the same 
state (ray) in X,, so there is no physical contradiction. 

In a manner similar to the above construction we can define state spaces 
for systems containing several particles. As an example we construct the 
state space for a system containing two electrons. The Hilbert space X,/, @ 

consists of all tensor-valued functions 'Y(x,, x,) with components 

[T(A)I](x) = Ts(  A)Y(R(  A-  ')x), 

Y = - S  

~ p I p l ( x I  3 %), PI, pz = 1 3 ,  such that 

The inner product is 

Here the spinor indices and spatial coordinates corresponding to particles 
one and two are p l ,  x,  and p 2 ,  x, ,  respectively. [Actually, by the Pauli 
exclusion principle the state space is the proper closed subspace of X,, ,  @ 

consisting of vectors I such that Y,,,,z(xl, x,) + Yp2pt(xz, x , )  = 0. 
Thus, not all elements of XI,, @ X, J 2  have physical significance (see Section 
9.8).] In a similar manner one can construct state spaces for systems contain- 
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ing an arbitrary (finite) number of particles with arbitrary spin. A state vector 
" ( x , ,  . . . , x k )  in a k-particle system has components Y, ,... J x l ,  . . . , xk). 
If thej th  particle has spin s j  then the index p j  takes values - s j ,  - s j  + 1 ,  
. . . , s j .  Under a rotation R(A)  the state vector 'Y is transformed to 

(8.21) [T(4v1,1...,k(x1 7 * * 9 X k )  

The rep T is single-valued on SO(3) if an even number of spins s, are half- 
integral. Otherwise, T is double-valued. 

The rep T of SU(2) induces a corresponding rep of su(2) defined by opera- 
tors 

We choose the basis a , ,  a,, a,, (1 .S>, and compute the operators 8 ,  , O,,  g3 
in the case where T acts on X, according to  (8.19): 

a = (d /dMexp fd)lz-o, 3 E 4 2 ) .  

(8.22) gI,=s,+c,,  j = 1 , 2 , 3 ,  

where S j  is a (2s + 1)  x (2s + 1 )  matrix 
s, = (d/dW"exp t3,) l,=o 

acting on spinor components and 2, is the differential operator (6.22), (k = 1). 
[If s = 4 then T1/ , (A)  = A and 8, : a,, see (1.8). These three matrices are 
called the Pauli spin matrices.] The action of the spin matrices on the spinors 
e, is given by 

(8.23) 
-s p s, 

where S' = fiS,  + S, = Tfs, + is,  and S3 = -S, = -is,. Since T 
is unitary the operators J, = ig, are symmetric on X, and satisfy the usual 
commutation relations 

(8.24) [J , ,  J2] = iJ , ,  [J3 ,  J l ]  = iJ, ,  [J,, J,] = i J , .  

[Compare with (6.24).] In quantum theory the J, are called total angular 
momentum operators. Here J, = S, + L,, where the self-adjoint matrices 
S, = is, are spin angular momentum operators and the symmetric operators 
L, = is, are orbital angular momentum operators. Note that the S, and 
L, operators commute with one another since the first acts on the spinor in- 
duces alone, while the second acts on the coordinates x alone. 

In case T acts on a k-particle state space according to (8.21), an analogous 
computation yields 

S3e, = pe,, S+e, = [(s f p 

S Se, = (S,S, + S,S, + S3S,)e, = s(s + I)e,, 
I)(s T p)ll/ze,k,, 

(8.25) 
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where S y )  is a (2s, + 1) x (2s, + 1) matrix acting on the spinor indices pc 
and Ly) = i.E?) is the differential operator (6.22) acting on the coordinates 
x,. The commutation relations are again (8.24). 

To investigate some of the physical consequences of this fornialism we 
consider a system containing a single electron (s = t). Suppose the Hamil- 
tonian K on takes the form 

(8.26) 

where H = (- 1 /2m)A + Y(x) ,  m is the mass of the electron, and V ( x )  is 
rotationally invariant. We are assuming that K is spin-independent, i.e., 
it does not depend on the spinor index p. Let A be an eigenvalue of H acting 
on the Hilbert space X (no spin), and assume that the eigenspace W, in X 
transforms according to the (21 + ])-dimensional irred rep D"' of SO(3). 
Here the action of SO(3) on X is given by Y(x) - Y(K1x),  R E SO(3). 
An ON basis for W, is { j ( r )Ylm(O,  p): -1 < m < I}, wherej(r) is determined 
from the solution of HY = A". It  is obvious from (8.26) that the eigenspace 
W,' of Xl,z corresponding to eigenvalue A is 2(21+ 1)-dimensional and 
has an ON basis 

Thus the degeneracy of A. is twice that in a spinless theory. It is easy to check 
that both the spin operators S, and the angular momentum operators Lj 
commute with K. Thus K admits the six-dimensional symmetry group SU(2) 
x SU(2) obtained by letting SU(2)  act on the spin indices and spatial co- 
ordinates independently in (8.19). Clearly, w,' transforms according to the 
irred rep D(1'2*g) of SU(2) x SU(2).  

Now we introduce a spin-dependent perturbing (matrix) potential V' 
such that the perturbed Hamiltonian K' = K + V' is still rotationally invari- 
ant, i.e., such that K' commutes with the operators (8.19). Then K' will 
no longer commute with all the spin operators S j  and orbital angular mo- 
mentum operators L,, but will still commute with the operators J, = S, + 
L,. The symmetry group of K' is the diagonal subgroup of SU(2) x SU(2) 
consisting of those elements ( A ,  B)  such that A = B. Clearly, this subgroup 
is isomorphic to SU(2).  Since 

as follows from (8.19) and the CG series, we see that for I 2 I the perturba- 
tion splits the 2(21 + 1)-degenerate eigenvalue A into two eigenvalues of 
degeneracy 21 + 2 and 21, respectively. For 1 = 0 the twofold eigenvalue does 
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not split. These predictions are dramatically different than the corresponding 
predictions for spinless particles, and their experimental verification provides 
a justification for the introduction of spinor fields into quantum theory. 

corresponding to the decomposition (8.28). lndeed the vectors 
We can use the CG coefficients to construct a canonical basis for X I  

A r )  C C(L m ;  f, P I1 1 4, n)Ylm(8,  p)e, 

/ 7 t j - " . Z I '  ~ - jtr) C CV, nt; J, p I I - ), n)Yfrn(8, pk,, 

hy+l l  21) ~ 

f lm 

irm 

form canonical bases for D"'Il z i )  and D(!-l1 2 1 ) ,  respectively. This basis is 
very important in scattering problems involving spin-dependent forces. In 
such problems spin and orbital angular momentum are not separately 
conserved but only total angular momentum. Thus s, p ,  I, m are not good 
quantum numbers and only the eigenvalues of J3 and J J are conserved. 

The decomposition of energy eigenstates of a system containing k par- 
ticles with spins s,, . . . , sk into eigenstates of total angular momentum is 
analogous to that above. 

7.9 Double-Valued Representations of the Crystallographic Groups 

We have seen that in a physical system containing particles with spin 
it  is possible that an energy eigenspace W, of the rotationally invariant, 
spin-dependent Hamiltonian H transforms under a half-integral irred rep 
D'"' of SU(2) .  For example, from (8.21) and the CG series, the eigenspaces 
of systems containing an odd number of electrons transform under half- 
integral reps. [Those with an even number of electrons transform under 
integral (single-valued) reps of S 0 ( 3 ) . ]  

Suppose W, is such an eigenspace of H in the Hilbert space X correspond- 
ing to a k-particle system. Now suppose we embed our system in an infinite 
crystal with crystallographic point symmetry group G (of the first kind). 
That is, we add to H the perturbing potential V ' ( x ,  , . . . , x,) with symmetry 
group G :  

(9.1) H' = H I V ' ,  ~ ' ( R X , ,  . . . , Rx, )  = V ' ( X , ,  . . . , x k ) ,  R E G. 

We assume V '  is spin-independent, i.e., V '  is a function arid does not affect 
the spinor indices. 

Let G' be the set of all A E SU(2)  such that R(A)  E G, where R(A) 
is defined by (1.20). Since R ( - A )  = R(A),  then A t G' implies --A E G'. 
In particular I = -E,  E G'. Clearly, G' is a group. Since the mapping A + 

R ( A )  is 2-1, the order of G '  is twice that of G. Furthermore, {E2, I ]  is a 
normal subgroup of G such that G'/{E,,  I ]  r" G. According to (9.1), T ( A ) V '  
= V'T(A)  for A E G' and T(A) given by (8.21). Thus T(A)H' = H'T(A) 
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for A E G' and G' is a symmetry group of H'. If G is the largest point group 
fixing V ' ,  then G' is the largest subgroup of SU(2) which is a symmetry group 
of H'. 

To analyze the splitting of the (2u + I)-degenerate energy level ,I under 
the perturbing potential V'  we must decompose the restricted rep D(")I G' 
into a direct sum of irred reps of G'. If R(q, 8, w )  E G has Euler coordinates 
q, 8, y then the corresponding elements of G' are A ( q ,  8, y), (1.13), and 
- A  = ZA. Since Z commutes with the elements of G and I 2  = E, it follows 
that Q(Z) = *E for any unitary irred rep Q of G'. If Q(1) is the identity 
operator then Q ( A )  = Q ( - A )  and the Q induces a single-valued irred rep of 
the factor group G'/(E,, Z ]  z G. We say Q is integral. On the other hand, if 
Q(Z) = - E  then Q ( - A )  = - Q ( A )  and Q induces a double-valued rep of 
G. We say Q is half-integral. The relationship between G and G' is analogous 
to that between SO(3) and SU(2). 

If u is an integer then the operator T(I) corresponding to the rep D'"' 
of SU(2) is the identity. Thus, D'"' I G' splits into a direct sum of integral 
irred reps of G'. We get the same splitting as by restricting the single-valued 
rep D'"' of SO(3) to G. 

However, if u is half-integral (which is the case which concerns us here) 
then T(Z) = -E and D'"]I G' splits into a direct sum of half-integral irred 
reps of G' (double-valued reps of G). 

To determine this splitting we must find the character table for G'. 
This is a straightforward computation. Given G of order n we express its 
elements in terms of Euler angles and determine the group G' of order 2n. 
Then we use the techniques of Section 3.6 to compute the character table. 
The integral characters are easy to find since there is a 1-1 relationship 
between reps of G and integral reps of G'. If x is a simple character of G 
then the corresponding integral simple character of G' is f ( A )  = x ' ( - A )  = 

x(R(A)) ,  A E G'. Thus it only remains to compute the half-integral charac- 
ters of G'. Complete tables of these characters are presented by Hamermesh 
[l] and Liubarskii [I] .  Here, we present without proof the table of simple 
half-integral characters for 0' where 0 is the octahedral group. 

If R E 0 with Euler angles q, 8, y we denote by R' the corresponding 
element in 0' with the same Euler angles and set R -  = -R'  E 0'. Now 0 
contains 24 elements iil five conjugacy classes: E, e4Z(3), e,(6), e4(6), e,(8). 
On the other hand, 0' contains 48 elements in eight conjugacy classes: 

{e:+(3), e4-(3)], {e:+(3), e:-(3)3. Thus, 0' has eight irred reps of dimensions 
n , ,  . . . , n8 such that n l z  + . . . + n g Z  = 48. However, in Section 3.6 we 
already found five irred reps of 0 (the integral reps of 0') with dimensions 
I ,  1,2, 3, 3. Thus there are three half-integral reps of 0' with dimensions 
n,, n 7 ,  n,, where n62 + n72 + n82  = 24. The only solution with n6 

E, 1, 1e,+(4), e;-(4)1, 1e:+(4), e3-(4)i7 p4+(3) ,  e:-(3)1, ~ , + ( 6 ) ,  e2-(6)), 

n7 
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(x ' ) '6 '  

( x ' ) (7 '  

(x ' ) ' 8 '  
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2 -2 1 -1 2/2 -2/2 0 0 
2 -2 1 - 1  -1/1 Jz 0 0 
4 -4 -1  1 0 0 0 0 

n,  is n6 = n7 = 2, n ,  = 4. The character table can be shown to be 

XI"' 
e ,+(4) e;+(4) e4+(3) e:+(3) e:+(3) e,+(6) 

E I e:-(4) e3-(4) e:-(3) e4-(3) e:-(3) e2-(6) 

X":zJ 
x'3 2 J  

x's 2 ,  

x'7 2 J  

x'9 2 J  

7.10 The Wigner-Eckart Theorem and Its Applications 

Let T be a unitary rep of SU(2) on the Hilbert space X. The mapping 
Q --f T(A)QT-'(A) defines a rep of SU(2) on the space a ( X )  of all bounded 
linear operators Q on X. We could introduce an  inner product on a(%) 

2 -2 1 - 1  JT -2/2 0 0 

6 -6 0 0 --JT 2/2 0 0 

10 -I0 - 1  I J T - J T O  0 

4 -4 -1 I 0 0 0 0 

8 -8 I - 1  0 0 0 0 



274 7 THE ROTATION GROUP AND ITS REPRESENTATIONS 

with respect to which this rep is unitary and then decompose the rep into a 
direct sum of irred reps D("). Rather than carry out such a decomposition we 
shall merely investigate the irred subspaces of operators. 

Let W'") be an irred subspace of @(X) transforming according to D'"' 
Then there exists a canonical basis {Q,: -u  I m 5 u ]  for W'"' such that 

(10.1) 

Operators with transformation properties (10.1) are called spherical tensors 
of rank u. We shall compute the matrix elements (Q,,,f'jl, g?), where fyi 
and gb2 belong to  canonical ON sets in X transforming irreducibly under T: 

U ,  Y ?  

(10.2) T(A)I;l = C T",)(A)f;', T(A)gF = C Tyi(A)g:?, 
k = - u l  s =  -YP 

Our considerations will also apply to unbounded operators Q, on X provided 
there is a dense subspace Z of X such that (a) the domain of each of the Q, 
contains Z, (b) Z is invariant under the T(A), and (c) (10.1) holds on Z. 

The group rep (10.1) induces a Lie algebra rep of su(2). Indeed if J = 

(d/dt)T(exp t$)l,=o. $ E su(2), then by setting A = exp t$ in (10.1) and dif- 
ferentiating with respect to t at t = 0 we obtain the Lie algebra rep 
(10.3) Qm + [ J ,  Q m 1 =  JQm - QmJ. 

Since the Q, form a canonical basis we find 

(10.4) [ J 3 ,  Q,l = mQ,, 
where 
(10.5) J' = fJ, + iJ,, J 3  = - i J , .  

Spherical tensors appear frequently in quantum mechanics. For example 
a Hamiltonian H which commutes with the T(A) is a spherical tensor of rank 
zero. As another example we set X = L2(R,)  and let [T(A)Y](x) = Y ( A - ' x )  
for A E S0(3), Y E X. Then for fixed integer 1 the multiplicative operators 

[ J ' ,  Q,1 = [(u f m i- T m>lL 2Q,k ,, 

(10.6) Qrny(r, 8, p) = r'Yi"(8, q ) W r ,  8, 
are spherical tensors of rank 1. Here, the Ylm(8, q) are spherical harmonics 
expressed in spherical coordinates. To verify this we will check the relations 
(10.4). From (5.4), (5.6), and (10.5) we find 

(1  0.7) 

Furthermore, from (5.7) 
(10.8) J3Y;"' = my;"', JIY," 7 [ ( I  m -+- 1)(1 -f m)]' ZY;(m"'.  

Since the J operators are differential and Q, = r'Y;" is multiplicative we find 
(10.9) [J, Q,]Y = J(r'Y;"Y) - Y ' Y F ~ ( J Y )  = [J(r'Ycm)}Y. 
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Together (10.8) and (10.9) yield (10.4) for u = 1. [Actually the above result 
is valid for Q, = f ( r ) Y i m ( 0 ,  q), where f ( r )  is arbitrary.] 

Let us consider the special case I = I .  The canonical basis vectors are 

Multiplying all vectors by (41~/3)"~, we see that the vectors 

(10.11) (1/2/2)(x - iy), z ,  -(l/z/z->(x + i ~ )  

form a canonical basis for D"'. Note that x, y ,  z does not transform as a 
canonical basis. Here, the multiplicative operators Q, = x, Q, = y ,  Q, = z 
are the position operators of quantum theory. 

A similar computation using the same J-operators shows that the differ- 
ential operators 

also transform as spherical tensors of rank one. Note that the dy are closely 
related to the linear momentum operators in quantum theory: 

P, = - i d / d x ,  P, = - i d / d y ,  P, = - i d / d z .  

We will compute the matrix elements (Q,frl, g?) for a set of spherical 
tensors of rank u. From (10.1) and (10.2) we obtain 
(10.13) 

(Qmfrl, gg2) = (T(A)Qmf;l, T(A)g") = (T(A)QmT- '(A)T(A)fY', T(A)gT) 

z= C T~,(A)T",:(A)Ts(A)(Q.f;l ,  g?). 
n k s  

Multiplying the left- and right-hand sides of this equality by dA, integrating 
over SU(2), and making use of the identity (7.9), we find 

(10.14) (Q,f;l, g?) = C(u, in; u ,  , i I u 2 ,  h ) N ,  

N =  

Theorem 7.1 (Wigner-Eckart). 
then (10.14) holds where N depends on u, u ,  , u2 but not on m, j ,  and 11. 

I f  {Q,,,} is a set of spherical tensors of rank u 

The point of this theorem is that the dependence of the matrix element 
on m, j ,  and lz is completely determined by the CG coefficient. If for fixed 
u, u , ,  and u,  we are able to compute one of the nonzero matrix elements 
(10.14) then we can solve for N and (10.14) will tell us the values of all the 
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matrix elements. The constant N is sometimes called a reduced matrix 
element. From the known properties of the CG coefficients we see that the 
left-hand side of (10.14) will be zero unless m + j = h and ti2 = I u - u ,  I, 

We have stated the Wigner-Eckart theorem for reps of SU(2) ,  but actually 
it holds for reps of any finite group or compact Lie group G. Indeed if we 
denote by T'") a complete set of nonequivalent irred unitary reps of G then 
we can define by (10.1) the operators of rank u where now A E G. Expression 
(10.13) is unaltered by our generalization. We can integrate (10.13) over G 
with respect to the invariant measure dA if G is a Lie group or sum over the 
group if G is finite. Similarly, expression (7.9) is valid for G provided the 
factor (2w + 1)/16n2 is replaced by n,/VG, where n, is the dimension of T(w).  
In particular we can define CG coefficients for G in analogy with those for 
SU(2).  (There is one possible complication here. It may be that T'") occurs 
more than once in the decomposition of T'" '@ T(v). In this case the CG 
coefficients will need an extra parameter to denote which of theT"")-subspaces 
is under consideration.) 

We can get a better understanding of the Wigner-Eckart theorem by 
recalling the discussion of invariant tensors in Section 3.8. Expression (10.13) 
shows that the tensor a with components ankr = (Qf?, g:2) is an invariant in 
a tensor space transforming under the rep 

l u - u u , I + l  , . . . )  U f U , .  

( 1 0.1 5 )  T'u) @ Thi) @ TI"1) 

of G, where T(.Z) is the rep whose matrix elements are T2(A).  Since a is in- 
variant it must transform according to the identity rep T'O'. Let q be the mul- 
tiplicity of T'O' in (10.15) and let V0) be the subspace of invariant tensors in  
the tensor space V. Then q = dim V'O) and a E Vol is nonzero only if q > 0. 
Furthermore, exactly q parameters are needed to uniquely determine a. Let 
x ( ~ ) ,  f U l ) ,  ~ ( " l )  be the characters of T(U), T(Ui), T(U21, respectively. Then ,,,,,(A) 
is the character of T(Uzl. Since the character of T'O) is x'O)(A) = 1 and the 
character of (10.15) is ~(~)x(~'~x(u'i we find from the orthogonality relations 
that q is given by 
( 1 0.1 6) 

= J, X ' " ' ( A ) X ' " I ' ( ~ ) X " ' ( A )  6 A  = ( X ( u ) X ' u I ) x o ,  1) = ( x ( u ) X ( u l ) ,  X'ur)). 

On the other hand, the right-hand side of (10.16) is just the multiplicity of 
T(i12) in the tensor product T"" 0 TIYi). Thus, we can obtain q from a knowl- 
edge of the CG series for irred reps of G. In particular, if T(Uz) does not appear 
in the CG series for T'") @ T"I) then q = 0. 

In the special case where G = SU(2)  the series is 
(10.17) Dtu) @ D("l) 21 D(u+ul) 0 D''+ul-il @ . . . @ D ( l u - u l l ) ,  
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so q = 1 if u, - u + u I ,  . . . , I u - u ,  1; otherwise q = 0. In the cases where 
q = I the space of invariant tensors is one-dimensional and can be deter- 
mined by specifying a single constant N .  

We now give some applications of these results to quantum mechanics. 
Let X be the usuel Hilbert space corresponding to a k-particle system 
(without spin) and let the action of SO(3) on X be given by (6.2). Consider 
the position operators Q,, - x,,, s = I ,  2, 3 [x, = (x,,, x2,, x3,) = 

(x,, y , ,  z,)], of thej th  particle. We will compute the matrix elements 

(10.18) (QBjY:,, Y&) = xSj'I'i ,(xl , .  . . , xk)%(xI, . . . , x k )  d x ,  
R i* 

where the Yze transform as canonical basis vectors under the representations 
D""' of SO(3). According to (10.1 I )  the operators Q"' 2 - * / 2 ( Q 1 j  - iQJ ,  
QfoJ = Q3j ,  Q"' = -2-I "QIj + iQ,J determine a spherical tensor of 
rank one. We first compute the matrix elements 

(10.19) (Q(sJYi,, Yp,), s = I ,  0, - I ,  -1, < mk < Ik. 
It is obvious that the matrix elements (10.18) can be determined immediately 
from (10.19). Since D"' @ D"I) z D""" @ D"" @ D"'-" if I ,  2 1 and 
D"' @ D'O' z D"', it follows from our above analysis that for 1, 2 1 the 
matrix elements are nonzero only if I ,  = I ,  + 1,  I , ,  or 1, - 1, while for I ,  = 

0 the matrix elements are zero unless I ,  = 1 .  An explicit expression for the 
matrix elements is given by (10.14). 

If the system contains particles with half-integral spin we can form expres- 
sions (10.19) where the Ii take half-integral values. The above analysis is 
unchanged except for the special case D"' @ D"12' 2 D'3s2' @ D"!2J, 
which implies that for 1, = 1 the matrix elements are zero unless 1, = or 1. 

Now suppose the group acting on X (no spins) is O(3).  Recall that the 
irred reps of O(3) are DY), where the sign denotes parity, (6.5), (6.6). The 
Q'"' transform like polar vectors under 0 ( 3 ) ,  hence like D"). It is easy to 
verify the CG series 

The selection rules for the matrix elements follow immediately from (10.20). 
Again the nonzero matrix elements are given explicitly by (10.14). 

We see from these results that (10.19) is always zero if Y:, and Yk2 
have the same parity. An  interesting special case of our analysis occurs 
for one-particle systems ( k  = 1 ) .  In this case Yf;l,(x) =jlz(r)Yri(O, p), where 
the YTt(t9, p) are spherical harmonics. Recall that { Ylm] transforms according 
to DY) if 1 is even and D? if I is odd. Thus (Q'slYk,, Yk,) is nonzero only if 
1, = I ,  1. Parity considerations have eliminated the possibility I, = I ,  . 
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In case the system contains particles of half-integral spin we have to 
perform our analysis using the group SU(2)  x { E ,  I j  rather than O(3), but 
this changes the above results in no essential manner. 

In quantum theory the matrix elements (10.14) may have interpretations 
other than those given here. For example, expressions of the form (10.19) 
occur in the study of emission and absorption of light by atoms (Liubarskii 
[I]). In this case these expressions are related to the lowest-order (dipole) 
approximation of the transition probability from one state to another. 
Our results stating that only certain special matrix elements are nonzero 
are called selection rules in this theory. Similarly, the quadrapole approxima- 
tion of quantum perturbation theory corresponds to the approximation of a 
set of operators by spherical tensors of rank two and use of the Wigner- 
Eckart theorem to simplify the matrix element computation. 

7.11 Spinor Fields and Invariant Equations 

The Euclidean group E'(3) frequently appears as a symmetry group in 
classical and quantum physics. Suppose for example that X is the Hilbert 
space of a k-particle system (Section 7.6). Then the operators T(a, 0) given by 
(1  1.1) 

a E R , ,  0 E SO(3), Y E X, 
define a unitary rep of E+(3) on X. Note that the restriction of T to SO(3) 
yields the usual action of SO(3) on X, while the restriction of T to the 
translation subgroup R ,  yields 
(11.2) [T(a, E)Y](x,, . . . , x,) = Y(x, - a , .  . . , x, -- a). 

If E + ( 3 )  is a symmetry group of the system then the T-operators commute 
with the Hamiltonian H :  

(11.3) T(a, O)H = HT(a, 0). 

For a = 8 we have seen that ( 1  1.3) signifies the conservation of angular 
momentum. On the other hand, if we set 0 = E in ( 1  1.3), differentiate both 
sides of the equation with respect to a,, and set a = 8 we find P,H = HP,, 
where, (10.18), 

[T(a, O)Y](x,, . . . , x,) = Y(O-l(x, - a), . . . , O-'(x, - a)), 

Pj =: - i  C d / d  j = I ,  2, 3, (1 I .4) CI x j h )  

is a linear momentum operator. Thus, E + ( 3 )  symmetry of a system implies 
conservation of angular and linear momentum. Conversely, conservation of 
angular and linear momentum implies E+(3) symmetry. (In the standard 
quantum mechanics texts it is shown that conservation of linear momentum 
implies the Schrodinger wave functions can be factored into two parts. One 
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part describes the motion of the center of mass as a free particle and the other 
describes the relative motion of the system with respect to the center of mass.) 

If the system contains particles with spin the proper symmetry group is 
&'(3), consisting of pairs {a, A ] ,  a E R,,  A E SU(2),  such that 

(11.5) 

where R ( A  ,) E SO(3) is given by (1.20). Here, &+(3) and E+(3)  are six-dimen- 
sional locally isomorphic groups (they have isomorphic Lie algebras). The 
map 

{a, ,  A,Ha,, A , )  = {a,  + R(A,)a,, A,A, l ,  

{a, A3 -> (a, R ( 4 1  

is a homomorphism of &+(3) onto E+(3)  which covers each element of E'(3) 
exactly twice. 

The elements of X are spinor-valued functions Y = ( Y , ( x , ,  . . . , x,)} ,  
p = 1 ,  . . . , q. (If there are several spin indices we combine them into one in- 
dex of larger domain.) The action of E ' ( 3 )  on X is 

( 1  1.6) "Va, A ) Y l , ( x l ,  . . . , x k )  

= 2 T ~ ~ ( A ) Y ~ ( R ( A - I ~ ( ~ ~  - a), . . . , R ( A - I ) ( ~ ,  - a)), 
" = I  

where the matrices T(A) define a unitary rep of SU(2), not necessarily irred. 
It is straightforward to check that T is a unitary rep of &+(3) with respect to 
the inner product 

As before, if the T(a, A )  commute with H then total angular momentum and 
linear momentum are conserved. 

Although we have been led to expression ( I  1.6) through Hilbert-space 
considerations, this expression makes sense independent of Hilbert space. 
In general any spinor-valued function which transforms under G'(3)  by ( I  1.6) 
Is called a spinor field. If the matrices T ( A )  satisfy T(A)  = T ( - A )  then the 
operators T define a single-valued rep of E '(3). In this case the function Y 
is usually called a tensor field. Tensor fields abound in classical physics. For 
example the electromagnetic field E,(x) ,  j = 1, 2,  3, transforms under E' (3 )  
as a tensor field of rank one, i.e., the matrices T ( A )  define a rep equivalent to 
D"'. Similarly, magnetic fields, elasticity tensors, current tensors, and 
moment-of-intertia tensors all transform as tensor fields under E'(3). True 
spinor fields occur primarily in  quantum mechanics and relativistic physics. 
The best known example is the Dirac electron field where q = 4 and T ( A )  
defines a rep equivalent to D" 2 '  @ D" 2 j .  

Let Y, , (x ,  t )  be a spinor field transforming according to ( I  1.6) with 
k = 1 .  Suppose Y J x ,  t )  describes some physical quantity which is a solution 
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of a system of q linear differential equations 

(11.7) 

where the Bjshp are q x q matrix functions, Y ( x ,  t )  is a 1 x q column vector, 
and 8 is the zero vector. Assuming the isotropy of space-time we see that 
Eq. (1 I .7) can be physically meaningful only if they assume the same form in 
every Cartesian coordinate system: If we replace x by x' = R(A)x + a, 
t by t' = t + c, and Y J x ,  t )  by Y,,'(x', t ' )  = C T p V ( A ) Y v ( x ,  t )  in ( 1  l .7),  
then the resulting system of equations should be equivalent to (11.7), i.e., 
the primed equations should be linear combinations of the unprimed equa- 
tions and conversely. We shall classify all such Euclidean invariant equations 
(under certain restrictions). The dynamical equations of any physical theory 
which admits E + ( 3 )  as a symmetry group, via the rep (11.6), will be found 
in our classification. Our analysis will provide a group-theoretic framework 
within which all Euclidean invariant physical theories can be described and 
compared. 

Note first that Eq. ( 1  1.7) are invariant under all translations in space and 
time if and only if the matrices BjShp are independent of x and t .  Now we 
dispense with translation invariance and restrict our attention to invariance 
under the operators T(A)  = T(8, A ) ,  which form a rep of SU(2).  Further- 
more, we can eliminate dependence on r in (1 1.7) by considering only solu- 
tions of the form Y(x, t )  = Y(x)eiw' .  Then d/d t  is replaced by io. (This 
amounts to taking the Fourier transform in t . )  

We can always write ( 1  I .7) as a system of first-order differential equa- 
tions by introducing new components Y , ( x ) ,  p > q. This will be shown later 
when we consider specific examples. Thus, we can reduce (1 1.7) to a system of 
1 equations 

(11.8) 

where B , ,  B , ,  B , ,  C are constant I x r matrices, Y ( x )  = (Yp(x)) is a 1 x r 
column vector and the action of SU(2)  on Y(x) is 

(11.9) [T(A)Y],(x) = 2 S,,(A)Y,(R(A-l)x), 
Here r 2 q and S ( A )  is a matrix rep of SU(2) .  

For the present we assume C is a nonsingular r x Y matrix. Then mul- 
tiplying (11.8) on the left by C-' we see that this system of equations is 
equivalent to a system of the form 

p = 1 , .  . . , r .  
" = I  

(11.10) a )  ( L I Z  I L,- t L , -  Y ( x )  = K Y ( X ) ,  
d d 

d y  d z  
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where the L, are r x r matrices and K # 0 is a constant. (We could take 
K = -1 but it is convenient to leave it arbitrary.) 

By passing to a new basis if necessary we can assume that the matrices 
S(A)  take the form 

(11.11) S(A) = 

Z 

where T("(A) is a matrix realization of D'"' and a, is the multiplicity of D'") 
in S(A). In other words we have decomposed the action S of SU(2) on the 
components of Y into a direct sum of irred reps. In this new basis we relabel 
the components of Y as Y;", the component of the rnth canonical basis 
vector in the nth occurrence of D''" in (1 1.1 1). Here - u  < rn < u and 1 I 
n I a,. In terms of the new basis, the system of equations still takes the form 

We can express the partial derivatives on the left-hand side of our equa- 
tions as linear combinations of d ,  , d o ,  d -  l ,  (10.12), which form a canonical 
basis for D"'. Thus, the left-hand side is a linear combination of terms 
d lY&,  doY,41, d-,Y:,,. For fixed v and n, and p ranging over -v, -v + 1, 
. . . , v these 3(2v + 1) quantities transform according to D"' 0 D'"' 
D("+') @ D(") 0 D'Y-IJ. Thus the new basis functions 

h:,, = ~ C ( l , j ; v , p ~ u ' , r n ' ) d , Y ~ ~  

( 1 1 .lo). 

PI 

v + l , v , v - 1 ,  if v > l ,  (11.12) 
u' = $,f, if v = f, -u' 5 rn' 2 u ' ,  

11, if v = 0, 

transform irreducibly under D'"". Since the CG coefficients are unitary we 
can express each of the terms djY;". on the left-hand side in ( 1  1 .lo) as a linear 
combination of the h:,,,. and rewrite (1 1.10) as 
(11.13) C B~mu,s , ,h~~n,  = IcY;~. 

vn'rn'u' 

Consider the subsystem of 2u + 1 equations (11.13) for which u and n 
are fixed, and -u  < rn u. Now YL;(x') = C T;,(A)Yt,,(x) and hL%,,(x') 
= C T~,.(A)h,$,,.(x) so this subsystem will be invariant under SU(2) if and 
only if the left-hand side of the subsystem transforms like a canonical basis 
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for D'"'. From (1  1.12) we see that any invariant system must take the form 
(11.14) 

where the sum is taken over u' = u + I ,  u, u - 1 and n' = I , .  . . , a",. 
The constants B:;. are completely arbitrary and there is one equation for 
each component YE of P. Note that integral values of u are never coupled 
with half-integral values of u in (11.14). If both values occur, the system 
breaks up into two independent subsystems, one coupling integral and the 
other coupling half-integral values. 

The case where the matrix C is singular or not square is more complicat- 
ed. Suppose C = 2. Equations (1 1.14) with K = 0 clearly fall under this 
case and in general all invariant equations take roughly this form. However, 
i t  is not easy to decide if two systems of equations are equivalent, i.e., there 
is no simple canonical form for such equations. For rc # 0 this difficulty 
does not occur: Two systems of equations for the Y;" are equivalent if and 
only if the constants && agree for the two systems. 

If C is a singular matrix or is not square then the system of equations can 
be put in the general form (1 1.14) where K f 0 for some equations and 
IC = 0 for others. The number of equations is not necessarily equal to the 
number of components of P and there is no simple canonical form. For- 
tunately, in the equations of mathematical physics it is usually true that C 
is nonsingular. 

Our analysis of invariant equations follows Liubarskii [l]. There is another 
ap$roach to this theory, due to Gel'fand and Shapiro, which is based on Lie 
algebras. The Lie-algebraic method is much more complicated than that 
given above but it extends rather easily to the case where the matrices L ,  , 
L,,  L,  in ( 1  1.10) act on infinite-dimensional spaces (Gel'fand et al. [I], 
Naimark [2]). 

For equations invariant under the full orthogonal group O(3) these results 
have to  be slightly modified. The components of P are labeled corre- 
sponding to the reps D',), u an integer. The differential operators d , ,  , do 
form a canonical basis for DL'). It follows from the identities 
(11.15) D'_) @ D',) D$+1) @ DP) @ D(Y-1) 

that the invariant equations take the form ( I  1.14) except that the components 
of P on the left- and right-hand sides of these equations have opposite parity. 

We consider some examples. The simplest &+(3)-invariant equations 
are those in which the components of P transform according to  the single 
irred rep D'"'. Denoting the 2u + 1 components of P by Y," we obtain the 
system of equations 
(11.16) a c C ( l , j ; ~ , m ' I u , m ) d ~ Y ~ ~ ' = ~ Y , " ,  -u 5 m 5 u. 

j + m ' = m  

There is a single arbitrary constant a. This system is not E(3)hvariant since 
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the parity of the left-hand side is opposite that on the right. For E(3)- 
invariant equations the action of O(3) on the indices of Y must be reducible. 

Consider the manifestly E(3)-invariant equation 

(11.17) 

where V(x) is a scalar D'+'". We shall write ( 1  1.17) as a system of first-order 
equations by introducing three new components Vj(x) = d , V ( x ) , j  = fl, 0. 
Clearly the V j ( x )  form a canonical basis for D?,). The system ( 1  1.17) is 
equivalent to 
(11.18)  - d , V _ ,  + d , V ,  - d - , V ,  = K V ,  d,V = V j ,  j = & I ,  0. 

Without loss of generality we can assume K = I .  The indices of the column 
vector (V, V l ,  V,, V - , )  transform according to DLo) 0 DL'). By our theory 
the most general E(3)-invariant system with these transformation properties 
is 
(11.19) a 2 C ( 1 , j ;  I ,  - j IO,O)d ,V_,  = V ,  b C ( l , I ; O , O I l , / ) d , V =  V,, 

1 = 0, f-1. 
It follows from the table (7.28) that ( I  I .  19) is identical with ( 1  I .  18) provided 
a = -JT, b = 1. 

Another important example is given by two of Maxwell's equations for 
an electromagnetic field in a vacuum : 

j =  - I 

1 aH 1 aE 
c dt 

V x E + -- = 0, V x H - - - = O .  
c at 

( 1  1.20) 

Here E(x, t )  = ( E x ,  E,, E,) is a vector field transforming according to the rep 
D!.,) of O(3) and H ( x ,  t )  is a vector field transforming according to DLI). We 
are using Gaussian units. If we consider solutions of frequency o, E(x, t )  = 

E(x)e'-', H(x, t )  = H(x)e'-', then the equations become 
(11.21) 
Expressed in terms of canonical basis vectors a+ , , d o ,  Ei , = 2- 
- iE,,), E,  = E,, H , ,  = 2 - ' ' 2 ( & H x  - iH,), and H ,  = H,, (11.21) reads 

( i c / w ) V  x E = H, - ( i c /o )V  x H = E. 

E,  

(c lo) (d&,  - d , E , )  = H I ,  

( c / w ) ( d - , E ,  - d , E - , )  = H , ,  

( c / o ) ( d -  , E ,  - dOE-,) = H- ,, 

- ( c / ~ ) ( d , H ,  - d , H , )  = E , ,  

- ( c / o ) ( d -  ,Hl - d , H _  ,) = E, ,  

- ( c / w ) ( d -  ,H0 - d , H -  ,) = E- . 
(11.22) 

By our theory the most general O(3)-invariant system of equations with 
C nonsingular and indices transforming according to D ' )  @ DLi) is 

C(1, j ;  1 ,  m - j l  I ,  m ) d j E m - j  = H,, a 

b C ( l , j ; l , m - j l l , m ) d j H , - j = E , ,  m = l , O , - I .  
( 1  1.23) ' = -  

j = - l  
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It  follows from (7.28) that (11.22) is the special case of (11.23) such that 
a = - f l c / o ,  b = f l c / o ,  The other two Maxwell equations V E = 0, 
V H = 0, correspond to the case where C is singular. 

Problems 

7.1 
C3". 
7.2 
system split under the influence of a perturbation with D S  symmetry. 
7.3 
D3d symmetry. 
7.4 Prove identity (7.16). 

7.5 Determine the double-valued irred reps of the point groups C3 and D 3 .  

7.6 Compute the double-valued irred reps of D6.  

7.7 Compute the splitting of levels transforming according to double-valued irred reps 
of SO(3) under a perturbation with D3 symmetry. 
7.8 Show that the prescription R(r,  u)  = exp(su - L) t SO(3) defines a system of 
coordinates on SO(3) and determine the geometrical significance of these coordinates. Here 
u is a unit vector and u - L = u1L1 + U Z L Z  + u3L3. Compute the invariant measure in 
( r$  u) coordinates and verify explicitly that the simple characters of SO(3) form an or- 
thogonal set. 
7.9 Consider a spherical tensor of rank one which transforms as a polar vector under 
O(3). Determine the selection rules for matrix elements of the tensor between states trans- 
forming as irred reps of Du, . 
7.10 Repeat the previous problem for a tensor transforming as an axial vector under O(3).  

Compute the Clebsch-Gordan coefficients for all tensor products of irred reps of 

Determine how the energy levels of an S0(3)-symmetric quantum mechanical 

Compute the level splitting of an 0(3)-symmetric system under a perturbation with 



Chapter 8 

The Lorentz Group and Its Representations 

8.1 The Homogeneous Lorentz Group 

The homogeneous Lorentz group in four-space L(4) is the set of all 4 x 4 
real matrices A such that AtGA = G, where 

It is straightforward to verify that L(4) satisfies the group axioms. In par- 
ticular, if A E L(4) then A-I = GA'G t L(4). Also, E and G belong to 
L(4). If A E L(4) then so is -A and At = GA-IG. 

If x = (xl ,  . . . , x,) and y = (y l ,  . . . , y,) are  column four-vectors such 
that y = Ax, A E L(4), then 

- 1 -  J~~ + L , ~ ~  - y,' = J J G ~  = (Ax)'G(Ax) = xt(AtGA).~ = x'Gx. 

Thus the form x'Gx is invariant under the action of A. Conversely, if A is 
a 4 x 4 real matrix such that (Ax)G(Ax) = x'Gx for all real four-vectors 
x, then A E L(4). By the methods of Section 5.4 it is easy to show that L(4) 
is a linear Lie group with Lie algebra 

(1.2) ~ 4 3 ,  1 )  = {a:  at = -GaG], 

[see (10.4), Section 9.101. Note that GZ = E. Any element of so(3, 1 )  can be 

285 
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written in the form 

(1.3) 

where the real parameters aj, P, are arbitrary. Thus so(3, 1) is six-dimen- 
sional and L(4) is a six-parameter Lie group. The exponential mapping Ct - 
exp a maps 4 3 ,  I )  homeomorphically onto a neighborhood of the identity 
in L(4). 

As a basis for so(3, 1) we choose the matrices C,, j = I ,  2,  3, defined by 
setting a, = 1 and all other parameters zero, and the matrices aj ,  j = 1, 2, 3, 
defined by setting P j  = 1 and all other parameters zero. The commutation 
relations are 

(1.4) 
[ C j ,  = c j j k g k ,  I@:, g j l  = f j j k @ k  

[ @ i , @ j I  = -c c j j k C k >  I I i, j I 3, 

where eijk is the completely skew-symmetric tensor such that c , ~ ,  = + I .  
Note that C , ,  C,, C, form a basis for a subalgebra of so(3, 1) isomorphic 

to $43). Furthermore, the matrices 

form a Lie subgroup of L(4) isomorphic to O(3). For convenience we identify 
this subgroup with O(3). The corresponding subalgebra is spanned by the 
matrices C j .  

The one-parameter subgroups exp q.Zj all belong to SO(3) [see (1.4), 
Chapter 71. On the other hand, a simple computation yields 

1 0  0 0 

0 
expb@, = 1 ] E L(4), 0 0 cosh b sinh b 

0 0 sinh b cosh b 

(1.6) 

with similar results for 63, and aZ. Since the matrix elements of (1.6) are not 
bounded it follows that L(4) is not a compact group. 

We will find it convenient to complexify the Lie algebra. A useful basis 
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for the complexified algebra is 

2' = +C, + is,, 
= *a2 + ia1, 

C3 = -is,, 
a3 = -icB3. 

(1.7) 

The commutation relations are 

(1.8) 

[s+, .2-1 = 2.23, 

[c+, a31 = -a+, 
[s+, a+] = [e-, a-1 = [ ~ 3 ,  a31 

[a3, a7 = +.F, 

[23,2*1 = is, 
IS-, a31 = a+, 

z, 
[a+, a-1 = - 2 2 3 .  

[c3, a*] = &a*, 
[2+, a-1 = [ab+, 2-1 = 2a3, 

Note that C',  .GC3 form a basis for the subalgebra sl(2) of the complexified 
Lie algebra. 

A third useful basis is obtained by choosing 
et = $($' + iai), a+ $(gi - j @ ? )  

e3 = f(23 + i633), 3 3  = 9 ( & 3  - ia3). ( I  .9) 

Then the commutation relations become 
[e3, ei] r~ &C+ , 

[as, a*] = AD', 

[e+, e-1 = 2e3, 
[a+, 9-1 = 293, 

(1.10) 
[e, a>] = z, 

i.e., any e matrix commutes with any 9 matrix. It fallows from (1.10) that 
so(3, 1)" z $ 4 2 )  @ $42) .  This result holds only for the complexified Lie 
algebra. It is not true that so(3, 1)  is the direct sum of two nontrivial real Lie 
algebras. 

Let us return to an examination of the group L(4). If A E L(4) then 
AGA = G. Taking the determinant of this expression we find (det = 1 ,  
or det A = f l .  Both signs are possible since E, G t L(4), with det E = 

-det G = 1 .  
In terms of components, A = (Atk) E L(4) provided 

(1.11) 

F o r j  = I = 4 this reads 
3 C At4 - A:4 = - 1 .  

h - 1  
(1.12) 

(Also c - Ai4 = - 1 since At t L(4). Thus /A44  1 2 I ,  SO A44 2 I 
or A44 5 - I .  If A44 2 I ,  then A is forward-timelike, otherwise A is backward- 
timelike. Since E is forward-timelike and G is backward-timelike it is clear 
that both cases occur. The forward-timelike matrices form a subgroup 



288 8 THE LORENTZ GROUP AND ITS REPRESENTATIONS 

of L(4). Indeed, if A and A' are forward-timelike then (AA')44 = 

[(At, - 1)(A't4 - 1)]1/2 <A44A44. Similarly it is easy to check that the inverse 
A- I = GA'G of a forward-timelike transformation is forward-timelike. 

(1.13) 

Cs=I A4jAi4 + A4,A6, > 0 since I C A,,A;., I _< [C AZi C Aj4] ' 2  l i 2  5 

Using these results we can separate L(4) into four components: 

L i + : A 4 , 2  1, d e t A =  $1 L ' - :  A,, 2 1, det A = -1, 
L L + : A 4 4 < - l ,  d e t A =  +1 L 1 - : A 4 , < - 1 ,  d e t A =  -1. 

Every element of L(4) lies in a unique component. It is easy to show that the 
components are disconnected in the sense that no analytic curve in L(4) can 
connect two distinct components. The component L ' +  is itself a group, the 
proper Lorentz group. It is clear that L' + contains the connected component 
of the identity in L(4). 

Lemma 8.1. 
(a) L : -  = SL" = L'+S,  where S = -G. 
(b) L ' +  = ( - E ) L ' + .  
(c) L ' -  = G L ' +  = L'+G. 

Proof. (a) Clearly S = -G E L ' - .  If A E L" then det(SA) = det(AS) 
= det S = - 1 and = (AS)44 = A44 2 1, so SA and AS belong to 
L 7 - .  Thus L T -  2 S L ; + ,  L i -  2 LI'S. Conversely if A E L i -  thenSA and 
AS belong to L t  +. Setting SA = A , ,  AS = A2 and using the relation S2 = 

E, we obtain A = SAl = A2S. Therefore, L T -  = SL'+ = L'+S. Parts 
(b) and (c) are proved in the same manner. Q.E.D. 

The matrices S, - E and G are of special importance in the theory of L(4). 
Here S is called space inversion, G is time inversion, and -E = S G  = GS 
is total inversion. We will discuss the physical significance of these names in 
the next section. 

It follows from the lemma that a parametrization of the whole group can 
be obtained directly from a parametrization of the propx Lorentz group 
L'+. We can choose local coordinates for L" by merely selecting six inde- 
pendent matrix elements. However, the following construction yields a more 
useful coordinate system. 

Lemma 8.2. Let A E L i + .  Then A E SO(3) if and only if A,, = + I .  

Proof. From ( l . l2 ) ,  Cj,l 4, = xi,, A;,, = Ai4 - I .  Since A E L'+ 
we have A,, 2 I .  Thus A,, = A4, = 0, 1 5 h 3, if and only if A,, = I .  
By ( l . l l ) ,  A4, = 1 if and only if A takes the form (1.5). Q.E.D. 
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Lemma 8.3. Let A, A' E L t  + and suppose A e  = Ale, where 

Then there exists a unique R E SO(3) such that A = A'R. Conversely, if 
A' E L t  + and R E SO(3) such that A = A ' R  then Ae = Ale. We are con- 
sidering SO(3) as the subgroup of matrices (1.5). 

Proof. I f A e  = A'e for A, A' E L T  + then R = (A')-IA E L 1 +  and Re = e. 
Thus R,, = 0 for 1 2 h I 3 and R,, = 1. By the preceding lemma, R E 
SO(3). 

Conversely, if A' E L t +  and R E SO(3) then Re = e and A'Re = A'e. 
Q.E.D. 

Theorem 8.1. Every A E L t +  can be represented in the form 

A = R,(exp b(B3)R,, R , ,  R ,  E SO(3). 

Proof. 
We will show that such elements exhaust L T + .  Suppose A E L f + .  Then 

It is obvious that all elements o f  the form R,(exp b(B3)R, lie in Lt+. 

If A,, = 1 then A E SO(3) by Lemma 8.2 and the theorem follows with 
b = 0. If A,, > 1 then 

(1.14) A:4 + Ai4 + A:, -- Ai4 - 1 = r2 > 0, 

where we assume r > 0. Since At4 - r z  = 1 there exists a unique number 
b > 0 such that r = sinh 6,  
Then (1.6) implies 

= cosh b. Indeed, b = In[A,, + (Ai4 - 

According to (1.14) there exist spherical coordinates r, 8, , (p,, such that 

A I 4  = r sin 8 ,  cos q , ,  AZ4 = r sin 8, sin (p,, A3, = r cos 8 , .  
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It follows from (1.20), Chapter 7, that the matrix R, = R(p, + n/2, e l ,  0) 
(Euler parameters) satisfies 

Clearly, R, exp b63, E L r  + and R,(exp b63,)e = Ae. By Lemma 8.3 there 
exists a unique R, E SO(3) such that A = R,(exp b@,)R,.  Q.E.D. 

If A is not an element of SO(3) then the preceding factorization is unique. 
If the Euler parameters of R, are p,, 8,, y, we have 

and the six parameters p, , 8, , b, I,, 8,, y, serve as coordinates for A. If 
8,, 8, = 0, n these coordinates are not 1-1. Similarly, if A E SO(3) then 
b = 0 and only the product R , R ,  is prescribed, not the individual factors. 
However, those points at  which the coordinates are not 1 - 1  form a lower- 
dimensional manifold on the group and do not affect the invariant measure. 

It follows from (1.15) that any A E L r  + can be connected to the identity 
element by an analytic curve lying entirely in L r  +. Indeed we can choose the 
curve ( tq , ,  . . . , fyZ), 0 5 t I 1. Thus L' + coincides with the connected 
component containing the identity in L(4). This proves that L(4) consists of 
four connected components. The Lie algebra yields information only about 
L T + .  To study the other three connected components we make use of Lemma 
8.1. 

In Section 7.1 we showed that SU(2)  was a double covering group of 
SO(3). There is a similar relationship between SL(2) = SL(2,Q and L r  +. 
Indeed, sZ(2) considered as a six-dimensional real Lie algebra is isomorphic 
to so(3, 1) .  Thus, the real Lie groups SL(2) and L r  + are locally isomorphic. 
To show this we recall that d ( 2 )  consists of all 2 x 2 complex matrices a 
with trace zero : 

(1.16) 

(1.15) A = R,(V, + :a, el,  OWP b w ~ , ( p ~ ~  8,, Y,)  

Writing z, = x j  + iy,, we see that s42) is a six-dimensional Lie algebra 
over the reals. As a basis for 8 4 2 )  we shoose the matrices g , ,  9,, 9, [(1.8), 
Chapter 71 and 

These matrices satisfy the commutation relations (1.4), with C j  replaced 
by g j  and 63, by 5,. 
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To explicitly exhibit the global relationship between SL(2) and L t '  we 
consider the four-dimensional space S of all 2 x 2 skew-Hermitian matrices 
S = -St. Each such matrix can be uniquely written as 

[These matrices form the Lie algebra of U(2).] The mapping 

(1.19) 

is a rep of SL(2)  on S. Indeed kt = A S ' 2  = - A S 2  = -X, SO X E S. 
The homomorphism property is just as obvious. Now det X = det(AS#) 
= det S, so, writing 

( I  .20) 

we obtain 
( I  .21) 

y , z  1 y2z  1 y , 2  - y,2 = det X = det S = x 1 2  -1 x Z 2  + x3' - x , ~ .  

From ( I .  19), the y j  are linear combinations of the x, : 
.4 

From (1.21) and the remarks following ( 1 .  1 )  we conclude that L ( A )  E L(4). 
Furthermore, since (1.19) defines a rep of SL(2) we have the group property 
L(AB)  = L(A)L(B), A ,  B E SL(2). 

The map A ---t L(A) is continuous in the parameters of A and SL(2)  
is connected. Therefore, L ( A )  must lie in L t  +, the connected component 
of the identity in L(4). We have established the existence of a real analytic 
homomorphism A + L(A) of SL(2)  into L i + .  Clearly the kernel of this 
homomorphism is (fE,). Thus, L ( A )  = L( -A)  and exactly two elements 
of SL(2) map onto each element in  the range of the homomorphism. 

Suppose A E SU(2) ,  a real subgroup of SL(2).  Then 2 = A- '  and a 
comparison of (1.9), Chapter 7, with (1.19) shows that L(A) = R ( A )  E 

S0(3 ) ,  where R ( A )  is defined by ( I .  12), Chapter 7 ( y ,  = x,). Thus the homo- 
morphism maps the subgroup SU(2)  2-1 onto the subgroup SO(3) of L 1 + .  
We will use this result to show that A - L ( A )  is a homomorphism of SL(2) 
onto L + . 

Let us compute L(exp 65,) where 3, E d ( 2 )  is given by (1.17). Clearly 

(1.23) 
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where y ,  = x , ,  y z  = x,, y ,  = x, cosh b + x, sinh b, and y ,  = x, sinh b 
+ x, cosh b, so L(exp bS,) = exp b@, [expression (1.6)]. Now suppose 
A E L T +  is given by (1.15). If A ,  = A ( q ,  + 4 2 ,  O , ,  0)  and A ,  = A ( q z ,  
02, y2)  are elements of SU(2) expressed in Euler coordinates, we have 

L(A,(exp bS,)A,)  = L(A,)L(exp bS,)L(A,)  = R,(exp b@,)R,  = A, 

so the map A - - ( A )  covers LT+. We can also use the parameters q, ,  O , ,  
b, qz,  f i t ,  wz as coordinates on SL(2), where 
(I .24) 

0 < ~ l , ,  qz < 2 ~ ,  0 <e l ,  8,s n, 0 < b, - 2 ~  v / ,  < 2 ~ .  

The parameters of - A  are the same as those of A except that y, is replaced 
by yz f 211. On LT + the parameters range over the same values except that 
vz is restricted to 0 2 y2 < 2n. 

Since our group homomorphism is locally 1-1 it induces a Lie algebra 
isomorphism a -, L(a) of sl(2) onto so(3, 1). It is straightforward to check 
that L(3,) = C, , L(S,) = @,, 1 < j < 3. 

If T is a rep of the proper Lorentz group by operators T(A) then the 
operators T'(A) = T(L(A)) define a rep of SL(2) such that T'(-A) = T'(A). 
On the other hand, if S is a rep of SL(2) such that S ( A )  = S ( - A )  then the 
operators S'(L(A)) = S(A)  define a rep of LT  +. Thus, there is a 1-1 corre- 
spondence between single-valued reps of L" and reps S of SL(2) such that 
S(--E,) is the identity operator. 

Since SL(2) and L(4) are not compact, the results of Chapter 6 do not 
hold for these groups. In particular a finite-dimensional rep of SL(2) is not 
necessarily equivalent to a unitary rep. For example the matrices L(A), 
A E SL(2), define a four-dimensional irred rep of SL(2). Since the matrix 
elements of L(A) are unbounded this rep cannot be equivalent to a unitary 
matrix rep. 

Furthermore, we shall see that SL(2) has infinite-dimensional unitary 
irred reps, which is not possible for compact groups. An arbitrary rep of 
SL(2) cannot necessarily be decomposed into a direct sum of irred reps. 

Suppose S is a finite-dimensional irred rep of SL(2). Since -Ez commutes 
with all elements of SL(2), the operator S ( - E , )  commutes with all S(A) .  
By the Schur lemmas, S(-E, )  = aE, where E is the identity operator. 
Furthermore, [S(--E,)I2 = S(E,) = E, so a2 = 1 and ct = & I .  Thus, 
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S(-E, )  = &E. If a = f l  then S defines a single-valued irred rep of LT +. 
However, if a = - 1 then S ( - A )  = - S ( A )  and S determines a double-valued 
rep of L t + .  These are the only possibilities. 

In quantum mechanics the double-valued reps appear naturally for the 
same reasons that double-valued reps of SO(3) appear. Thus S L ( 2 )  is the 
group to study for quantum mechanical Lorentz invariance. 

8.2 The Physical Significance of Lorentz Invariance 

We briefly discuss a realization of the Lorentz group which appears in  
Einstein’s special theory of relativity. In this theory space-time is viewed as 
a four-dimensional real manifold called Minkowski space. The elements or 
points of this space are events. In Minkowski space we distinguish a family 
of coordinate systems called inertial frames or observers. With respect to an 
inertial frame the coordinates of an event are denoted x = (x, , x,, x3,  x,) 
= (x, x4), where the Cartesian coordinates x = (xl ,  x2, x,) are the spatial 
coordinates of the event and x, = ct, where t is the time coordinate of the 
event. Here c is the velocity of light in a vacuum. The points of Minkowski 
space are swept out as the x, range over all real numbers. 

Let 9 be an inertial frame and let p,  q be events with coordinates x, y in 
4 .  Here x and y are column 4-vectors. We define the squared space-time 
distance between these two events by 

(2.1) 

where C is given by (1.1). Now suppose 9‘ is another coordinate system with 
respect to which the events p ,  q have coordinates x’, y’, respectively. We 
postulate that 9‘ is an inertial frame (with respect to 9) provided 

3 

,= 1 
I I  x ~ y1Iz = C (x, - Y , ) ~  - (x, - ~ 4 ) ~  = (X yYG(x - Y), 

(2-2)  Ilx - -Y I IZ  = llx’ -Y’1I2 
for all pairs of events p ,  q, i.e., provided the space-time distance between 
events is preserved. By a computation analogous to that carried out in  Section 
2.2 one can show that if 4’ is inertial then the relationship between the coordi- 
nates of the event p in 4 and 9‘ is 

4 

k l  
x,‘ = C A,kxk -1 a,, j = 1,. . . , 4 ,  (2.3) 

where A E L(4) and a = (a , ,  . . . , a,) is a real four-tuple. Conversely, if 
9 is inertial and 9’ is a coordinate system related to 4 by (2.3) then 9’ is iner- 
tial. (For a proof that the coordinate transformation must be linear see 
the work of Ratz [I] . )  

I t  is clear from definition (2 .2)  that the inertial frames form an equivalence 
class. That is, (a) 4 is inertial with respect to 9, (b) if g’ is inertial with respect 
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to 9 then 9 is inertial with respect to 9’, and (c) if 9’ is inertial with respect 
to g and g” is inertial with respect to 9’ then g” is inertial with respect to 9. 
Once one inertial frame is chosen it is easy to obtain the rest. 

Let p be an event with coordinates x ,  x’, x” in the inertial frames 8, g’ 
g”.  Then the relations between these coordinates are given by 

(1) xs’ = A r k X k  + 0,. 

(2) 
(3) 

x;’ = C Aisx,‘ -t a/’. 

xi’ = C &Lxk -+ a;, 
5 

A, A‘, A“ E L(4). 
k 

From (1) and (2) we have 

xi’ = C (c A ; r A r k ) X k  f c A i s a i  + ‘ l”  
k s  

A comparison of this expression with (3) yields 
(2.4) A’’ = A’A, a” x A’a -1. a’. 

It follows that the set of all pairs {a, A} forms a group with product 

(2.5) 
This is a ten-parameter Lie group called the PoincarC or inhomogeneous 
Lorentz group P. There is a 1-1 relationship between inertial frames and 
elements of P. 

In the theory of special relativity it is postulated that the laws of physics 
must take the same form in any inertial frame. Since the elements of P deter- 
mine the coordinate changes from one inertial frame to another, this means 
the dynamical equations of physics must be invariant under the Poincare 
group. For differential equations we mean this invariance in the same sense 
as Euclidean invariance in Section 7.1 1. From (2.5) the set of all elements 
{b, R),  R E 0 ( 3 ) ,  b = ( a , ,  a,, a 3 ,  0), forms a subgroup of P isomorphic 
to E(3). Thus, Poincark-invariant equations are automatically Euclidean- 
invariant. We shall determine the possible Poincare-invariant equations in 
Section 8.5. 

Let p be an event and consider the set i, of all inertial frames in which the 
coordinates ofp are (0, 0, 0, 0), i.e., the inertial frames whose originof coordi- 
nates is p .  Let us fix a system 9 E i,. Then if g‘ E i, there is a (a ,  A] E P 
such that the coordinates x in 9 and x’ in g’ are related by x,’ = C ASkxk + 
a, .  This equation must hold for x = x’ = (0, 0, 0, 0), so a is the zero vector. 
Similarly if g’ is a coordinate system related to g by x,’ = C Askxk, A t 
L(4), then g’ E i,. Thus there is a 1-1 correspondence between elements of 
i ,  and elements of L(4) a subgroup of P. In the following we restrict ourselves 
to inertial frames in i,. 

We now investigate the physical significance of Lorentz transformations. 

{a’ ,  A‘}(a, A} = {A‘a -t a‘, A‘A], A, A’ E L(4), a ,  a‘ E R,.  
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Let x be a column four-vector with spatial components x = ( x , ,  x,, x3j 
and time component x4 = ct. Under space inversion Sx = (-x, x4), under 
time inversion Gx = (x, -x4), and under total inversion SGx = -x, so 
the meaning of these coordinate transformations is clear. According to 
Lemma 8.1 we need only determine the physical significance of transforma- 
tions in L ' + .  To do this we prove a variant of Theorem 8.1. 

Theorem 8.2. 
A = V(b)R, where R e SO(3) and 

Every A E L : +  can be represented uniquely in the form 

V(b) = exp(b,(Bl $- b,(B, i -  b,(B,). 

The group elements V(b) are called velocity transformations. 

Proof. By Theorem 8.1. 

A = Rl(pl + fa, o>(exp b(B3)R2(p2? eZ, v /Z>,  

where 

(2.6) 
and r = sinh b, b 2 0. Suppose r > 0, in which case this factorization is 
unique. Now A = R,(exp bG33)R;1(RlRz). The matrices B(t )  = R,  x 
(exp tba3)R;' form a one-parameter subgroup of L' + as t runs over all 
real numbers, and the tangent matrix a t  the identity is bR,(B,R,'. A direct 
computation gives 

R,(B3Ri1 = (cos p, sin B, ) (B ,  + (sin p, sin O,)(B, + (cose,)G3,. 
Since the tangent matrix completely determines the one-parameter subgroup 
we have 

(2.7) R,(exp t6(B3jR;l = exp(t[b,(B, + b,@, + b3(B3] )  = V(tbj, 
where 

(2.8) r = sinh b. 

Setting t = 1,  we obtain A = V(b)R, where R = R,R, E SO(3). By con- 
struction this factorization is unique if r > 0, i.e., if A $ SO(3). However, 
if r = 0 then b = 0 and A E SO(3). In this case V(b) = E and A = R ,  so 
again the factorization is unique. 

A 1 4  = r sin 8, cos p,, AZ4 = r sin 8, sin p,, A3., = r cos 8, 

b = (b cos p, sin 8,, b sin p, sin O , ,  b cos el), 

Q.E.D. 

Since the CBj are symmetric matrices it  follows that V(b)  is a positive- 
definite symmetric matrix. Thus the product A = V(b)R is just the well- 
known polar decomposition of a real nonsingular matrix into the product 
of a positive-definite symmetric matrix and an orthogonal matrix. 

Let 9' be the inertial frame related to 9 by the velocity transformation 
x' = V(b)x. In frame 9 the origin of spatial coordinates at time t has coordi- 
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nates x = (0, 0, 0, c t ) .  In frame g’ this event has coordinates 
(2.9) X’ = V(b)x 

= cr(sinh b sin 8 ,  cos y, , sinh b sin 8 ,  sin y,, sinh b cos O , ,  cosh b)  
= (XI, ct’). 

Thus, in g‘ the coordinates of the event are related by the equations 

(2.10) x’ = Vt’ ,  
C rc 
b (1 + r2 )1 / zb ’  

v = -(tanh b)b = 

where b is a unit three-vector in the direction of b. The spatial origin of coordi- 
nates in system g is moving with uniform velocity v with respect to the spatial 
origin of coordinates in g’.  Note that 

sinh b = v/c 
(1 - v2/c2)”2 ’ 

From the definition of V(b) it is easy to show that thisvelocity transformation 
leaves invariant any vector x = (x, 0) such that x-v = 0, i.e., x.b = 0. 
Indeed 

In the special case where the velocity v is in the direction of the positive 
z axis then 

and the coordinate transformation becomes 
z + vt x‘ = x, y‘ = y, z‘ = 

, t + zv/c2 
t =  x = ( X , Y ,  z ) .  ( I  - v 2 / c y  ’ 

(1 - v2/c2)”2’ 
(2.1 1) 

Equations (2.11) are the usual Lorentz transformations discussed in text- 
books on special relativity. The physical significance of R E SO(3) is obvious, 
so a Lorentz transformation A = V(b)R can be interpreted as a rotation of 
spatial coordinates followed by a velocity transformation. 

Warning. The velocity transformations do not form a subgroup of L!’ 
because the product of two velocity transformations is not necessary a veloc- 
ity transformation. 
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In the above discussion we have given a passive interpretation of Lorentz 
transformations : The space remains fixed and the observers (inertial frames) 
transform under L(4). Alternatively, we could adopt the active interpretation : 
There is one fixed coordinate system and the Lorentz group transforms the 
points of Minkowski space. In the active interpretation a velocity transforma- 
tion maps a state in which a particle is at rest into a state where the particle 
has velocity v. 

8.3 Representations of the Lorentz Group 

To find the analytic irred reps of L r  + we compute the analytic irred reps 
T of SL(2) considered as a real Lie group and determine which of these 
reps satisfy T(-E,) = E. We have already computed the irred reps D(") of 
SL(2) which are analytic functions of the complex group parameters. If 
D'")(A) is a matrix realization of D"') then the complex conjugate matrices 
D("](A) also define an irred rep of SL(2) which is analytic in the real group 
parameters but not in the complex group parameters (Prove it!) Since any 
rep equivalent to a complex analytic rep is complex analytic it follows that 
D'U) and D" are nonequivalent irred reps. 

As a convenient basis for the real six-dimensional Lie algebra d ( 2 )  z 
so(3, 1) we choose the matrices g j ,  Tj = i g j ,  1 < j  < 3, where the g j  are 
defined by (1.8), Chapter 7. These matrices satisfy the commutation rela- 
tions (1.4) with C j  replaced by g j  and CBj by S j .  Now we forget the origin 
of our basis as a set of matrices and merely consider the abstract Lie algebra 
d(2) spanned by linearly independent basis elements g j ,  5 j  with commuta- 
tion relations (1.4). From (1.9) we see that s1(2)', the complexification of our 
real Lie algebra, has a basis e j ,  

- 

with commutation relations 

(3.1) [ej, 9 k ]  = 0, [ej, e k ]  = C E j k t e t r  [aj, 9.J = C E j k t D i r  
I 

where ej = (aj - i5,)/2,9, = (g j  + iSi)/2. The Lie algebra of the group 
SU(2) x SU(2) = G is another real form of the complex algebra (3.1). Since 
G is compact we know that its global irred reps are just D(rr~v)  = D(') @ D(v), 
2u, 2v = 0, 1, 2, . . . . Therefore, the possible irred finite-dimensional reps 
ofL(G) are just the Lie algebra reps induced by D'',v). Since there is a 1-1 
correspondence between reps of a complex Lie algebra and reps of any of 
its real forms we conclude the the irred reps of sQ2) and d(2)" are D(u,v). 
Indeed if we denote the operators corresponding to such a rep by Cj = T(ej), 
D j  = T ( B j )  and set 

C' = f C ,  + iC,, D 3  = - iD3 ,  

then there exists a basis { f k ~ ~ ) )  for the rep space cU(u,v' corresponding to the 
C 3  = -iC3, D' = f D ,  + i D , ,  
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(2u + 1)(2v + 1)-dimensional rep D(u#ul such that 

C3fk;')  = rn f Inu;Iu), 

D3 f k;"' = n f :;'), 

C'f:;v' = [(u & m + I)(u 

D'f  2;') = [(v f IZ + I)(w -f n)]1'2f2;31 
n~)]l'zfk~~/,~ 

(3.2) 
-C.cf:;,";l"' = u(u + l)fk;n", - D*D f ?A") = V(V + l)f$,". 

[We call a basis satisfying (3.2) canonical.] The operators C-C = C,C, + 
C,C, + C3C3 and D .  D commute with the Cj and D j ,  so they must be mul- 
tiples of the identity operator for any irred rep of sZ(2). 

Now we will show that the Lie algebra reps D(',u) induce global reps of 
SL(2). To begin we consider the complex analytic rep D(") of SL(2) deter- 
mined in Chapter 7. Clearly, the induced Lie algebra rep has the property 
Fi = iJj, 1 I j I 3. Thus C' = J' ,  C3 = J 3 ,  and the D-operators are zero. 
We conclude that D'"' is equivalent to the rep D(',o). On the other hand the 
Lie algebra rep induced by D") has the property Fj = -iJj. Hence D' = 

J', D3 = .I3, and the C-operators are zero. This shows that D(') is equivalent 
to D(OJ). Similarly, if we compute the Lie algebra rep induced by the group 
rep D(") @ D(v) o f  SL(2) on TI'") TI'"' we get exactly the results (3.2), by 
making the identification f2;') = f : )  @ gp), where ( f g ) }  and {gp)} are cano- 
nical bases for TI("' and TI('), respectively. 

To sum up, we have shown that a complete set of finite-dimensional 
analytic irred reps of the real Lie group SL(2) is given by D("pv), 2u, 2w = 

0, 1 ,  2, . . . . The matrix elements of these reps with respect to a suitable 
(not canonical) basis are 

(3.3) 

Note: If the vectors f k )  form a canonical basis for D(') it is not true that 
the complex conjugate vectorsf:) form a canonical basis for D("'. To see 
this, choose a matrix realization of Dcu1 so that the fk) are (2u + I)-compo- 
nent column vectors. This group rep induces a matrix Lie algebra rep of 
$42). The matrices Fj,  J j  satisfy the properties 
(3.4) C3fk)  = mfl,"), C*f k) = [(u 5 m + l)(u -f rn)]1'2f$1, 

D' = 0 3  1 Z ,  

where the C and D matrices are defined by the expression following (3.1). 
Now denote the corresponding matrices induced from the complex conjugate 
matrix rep DG) with stars. Then Jj* = j j ,  F,* = F j ,  so 

- 
- - 

.b L r * . L I n  p 
- 

3 -  - - &  z - L  
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Substituting these results in (3.4), we find 
C"' ~ c*3 ~ z , D*3f$) = - C T  = - mj k), 

m ~ [(u T m -t I )(u j, rn)ll,2jkk I .  D*?fk) = - C F =  

This shows that the vectors g $ )  = (- l ) ' -mj?"~  form a canonical basis for 
D l " , .  

With respect to a canonical basis the matrix elements of DCY) are 

where the T?A(AA) are the matrix elements of D'"' in a canonical basis. It 
follows immediately from (3.4) that T( -E2) = (- 1)2(u+U)E, so D('-v' deter- 
mines a single-valued rep of the Lorentz group if and only if u + v is an 
integer. 

D'"' @ D'". Taking the complex conjugate of By construction D(',''' 

we obtain an analogous relation for DcU' @ D'"'. [Note: Even though we 
have defined D(') by taking the complex conjugate of a matrix realization of 
D'") with respect to a fixed basis, it is easy to show that DfU) is basis-indepen- 
dent. Indeed, one merely verifies that two matrix reps T(A),  T' (A)  are equiva- 
lent if and only if T(A) and T'(A) are equivalent.] Thus 

D ( u , a I  @ D ( u ' , v ' )  - (D'ui @ Dl")) @ ( D l u ' )  @ D(d1) 

- - (D(u1 @ D'u')) 0 ( D l v )  0 D(d1) 
(3.5) 

- 

is the CG series for irred reps of SL(2). Note that each irred rep D""J) occur- 
ring in the decomposition of D(',ui @ D''',u'' has multiplicity one. Therefore, 
it is easy to project out the subspace Wcwzr) of T J ' u z u )  0 TJ(u',u') which trans- 
forms irreducibly under D(w,r' .  Indeed from (3.3) and the results of Section 
7.7 a canonical basis for W(w,z'  is given by the vectors 

(3.6) hfi,=) = C C(u, m ;  u', m'l w ,  k)C(v, n ;  v', n'I z, I)fg:") @ fjnY:nu:), 
mnm'n' 

- w < ~ < w ,  - z < I < z ,  

where the C(-1 -)are the CG coefficients (7.21), Chapter 7. The coefficients 
for the real Lie group SL(2) are products of the coefficients for the complex 
group SL(2). 

If we restrict the rep D(u,u' of SL(2) to the subgroup SU(2)  it decomposes 
into a direct sum of irred reps of SU(2).  To determine the decomposition we 
note the rep D(') of SU(2)  is equivalent to D'"'. Indeed D'"' is irred and every 
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irred rep of SU(2) is equivalent to some D(v). Since dim D(“) = 2u + 1 we 
must have fV’) 2 D(”). Alternatively, the character f n )  of D‘”’ is real, so D‘”) 
and D(u) have the same character. Using this result we obtain 

Note the special cases D(‘,a) 1 SU(2) 
Although the canonical basis {fg”)} is very convenient for computational 

purposes, it does not clearly exhibit the decomposition (3.7) when the Lie 
algebra sf(2) is restricted to 4 2 ) .  According to (3.7) there exists an ON basis 
{fp): ( u  - wl I w 5 u + v, - w  I k < w )  for CU(n,v)  such that 

(3.8) 
Recall that the J-operators satisfy the commutation relations of 4 2 ) .  We 
could use CG coefficients to express the {fp)} basis in terms of the {f?;”)) 
basis. However, it is more instructive to compute the action of the Lie algebra 
on the (fp)) basis directly. 

For this purpose we choose the operators J ’ ,  J 3 ,  F’, F 3  with commuta- 
tion relations (1.8), (Jr C, FE a), as the generators of our rep. The action 
of the 5-operators on fp) is given by (3.8). To determine the action of the 
F-operators we note from (1.8) that the operators Q,  = -F+ ,  Q, = a F 3 ,  
and Q- , = F -  transform as a spherical tensor of rank one under the action 
of SU(2). According to the Wigner-Eckart theorem (10.14), Chapter 7, 

D(O*”) 1 SU(2) % D(u), 

J 3 f p ’  = k f k  Oy’ , J’fp’ = [ (w * k + I)(w F k)l”zfP21. 

(F’fp’, fy’) = T N ( w ,  w‘)C(l, f l  ; W, k 1 w‘, k‘) ,  

(F’fP’ ,  fy’) = 2-”2N(w, w’)C(l, 0; W, kl w ’ ,  k’). 
(3.9) 

In particular, these matrix elements are zero unless w’ = w f 1, w. Explicit 
expressions for the CG coefficients are given in (7.28), Chapter 7, so we need 
only compute the constants N .  These constants can be obtained from the 
remaining commutation relations 
(3.10) [ ~ 3 ,  F A ]  = T J’, I F + ,  F - 1  = -253. 
I t  follows from (3.9) that 
(3.11) F’fp’ = &[(w 7 k)(w F k - l ) ] ’ ’ ’ A W f P ~ l ’ ’  

- KW f k + l ) ( W  T k)ll’zBwfp2, 
k Kw A k + l ) (w & k + 2)11/2Cw+lft211’, 

(3.12) F’fp’ = [(w - k)(w + k ) ] ” 2 A w f ~ - ”  
- kB,f t ’  - [(w + k + I)(w - k + l)]”2Cw+lfp+’), 

where the constants A, ,  B,, C, depend only on w. We can simplify the above 
formulas by renormalizing the vectors fp). If we introduce new basis vectors 
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f;(,) = a, fP) ,  where the a, are nonzero complex numbers, then Eq. (3.8) will 
remain unchanged in the primed basis while (3.1 1) and (3.12) will maintain 
the same form with A,, B,, C, replaced by 

(3.13) A,' = (a,/a,- ,)A,, B,' = B,, C,' = (a,- ,/a,)C,. 

The new basis vectors flk(,) will be orthogonal but not necessarily of length 
one. Note the product A,'C,' = A$, is invariant under renormalization and 
must be nonzero for I u - o I + 1 5 w I u + v since Dtufv) is irred. Thus we 
can choose the constants a, so A,  = C,. We will suppose that this is the case 
in expressions (3.11) and (3.12). 

Now we use the commutation relations (3.10) to compute A, and B,. 
Substituting (3.8), (3.1 I ) ,  and (3.12) in [ F + ,  F 3 ] f p )  = J ' f p '  and equating 
coefficients of fpi)l on both sides of the resulting relations, we find 

(3.14) [(w + 1)B, - (W - I)B,-(]A, = [ (w + 2)B,+1 - wB,]A,+, = 0, 
(3.15) ( 2 ~  - l)A,' - ( 2 ~  + 3)A;+, - B,' = 1.  

The other two equations (3.10) lead to the same results. Since A, # 0 it 
follows from (3.14) that 

B,, , = wB,/(w 4- 2), w = I u - v 1, . . . , u -1- O. 

The solution is 
(3.16) B ,  = B,,wo(wo -I- I ) / [ w ( w  + I)]  = iwow,/[w(w + I)]. 
where i w ,  = Bw0(wo + I) ,  w, = J u  - v I .  We will determine the constant 
w,  later. Substituting (3.16) into (3.13, we get a recurrence relation for Aw2: 

w=w, ,  . . . ,  u f v -  1 .  
Since fp"-" does not belong to 'u(',v' we must require A,, = 0. With this 
restriction Eq. (3.17) determine A W 2 .  The solution is 

(3.18) 

(By choosing the normalization factors a, appropriately we can always 
assume I arg A ,  I I 4 2 . )  

To determine w ,  we note from (3.1 I )  that A,,,,, = 0 since f,!,!'+"+l) does 
not belong to cU(u,u l .  Therefore, (3.18) implies w I 2  = ( u  + o + l)', or w, = 

&(u + o + I ) .  To determine the proper sign we must distinguish between 
D ( u , u )  and Dct'+). 

It follows from (3.2) that -C-C = u(u + l)E and - D .  D = v(v + I)E 
for the rep Dcu,ul.  If we express the C j  and D j  in terms of the operators (3.1 I )  
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and (3.12) and use (3.16)and (3.18) we find 

(3.19) 

Thus, if we allow w, to be negative we can make the unique assignment 

-c.c = :<w, + W ]  + l)(w, + w ,  + 3)E, 
-D.D = S ( W ,  - W ,  + l)(w, - W, + 3)E. 

(3.20) w o  = u - 21, w ,  = u + v + 1. 

This is permissible since expressions (3.11), (3.12), (3.16), and (3.18) depend 
only on wo2,  wI2 ,  and w o w I .  In particular the rep defined by the pair (w,, w , )  
is equivalent to the rep (- w,  , - w ,). Here 2w,, 2w , , and w, + w ,  are integers 
with I wo I i I w ,  I. 

Summing up, there is a basis { f p)} for the rep space of D(u*u) such that 
(3.21) 
(3.22) 

(3.23) 

where 

(3.24) 

and w,  = u - v, w ,  = u + v + 1. 
In many respects the basis { f iwl} is more convenient than the basis {fc;u’). 

This is particularly true in problems where one is interested in the restriction 
of a rep of SL(2) to the subgroup SU(2). 

The noncompact group SL(2) also has bounded infinite-dimensional 
irred reps. If T is such a rep, a slight extension of the results of Section 6.3 
shows that TI SU(2) decomposes into a direct sum of irred reps of the com- 
pact group SU(2) : 

(3.25) 

For the present we assume that the multiplicity a, of D‘”’ is either zero or 
one, i.e., each rep Dtw’ appears at  most once in the decomposition. Further- 
more, we assume that the usual relationships between the bounded operators 
T(A), A E SU(2), andJ’, J 3 ,  F’, F 3  hold for these infinite-dimensional reps. 

Let Z be the set of all w such that D‘”’ is contained in the decomposition 
of T 1 SU(2). There exists a basis { f p )  : w E I ,  - w 5 k 5 w} for the rep space 

m 

TI SU(2) z C @ U ~ D ( ~ ’ .  
2 w = o  
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such that Eq. (3.8) are satisfied. Indeed for fixed w, { f p ' }  is a canonical basis 
for D'"). Applying the Wigner-Eckart theorem, we see that the operators 
F ' ,  F 3  satisfy Eq. (3.11) and (3.12) exactly as in thefinite-dimensional case. 
Let wo be the smallest number in the index set I .  It follows from (3.11), 
(3.12), and the irreducibility of T that I = { w, + n : n = 0, I ,  2, . . .}. Thus 

TI SU(2) 2 5 0 D(vo+nl. 

(There can be no gaps in the sequence of D'"' since T is irred. If the sequence 
is finite then T is isomorphic to one of the finite-dimensional reps D'u*" 
which we have already classified.) 

The computation of relations (3.21)-(3.24) is exactly the same for T as 
for finite-dimensional reps. The only difference is that w 1  is no longer an 
integer or half-integer such that w I  = M', + k for some integer k 2 0 ;  other- 
wise T would be finite-dimensional. Thus, w I  is an arbitrary complex number 
not satisfying the above requirement. We conclude that the infinite-dimen- 
sional irred reps of SL(2) can be labeled by the parameters (wo, w,) where 
2w, is a nonnegative integer and w1 is a complex number such that w, f 
w, + k, k = 0, 1 , 2 , .  . . . However, i t  is not clear that each of these Lie 
algebra reps can be exponentiated to a global irred rep of SL(2). Naimark [2] 
proves that there is in fact a global group rep corresponding to each of 
our Lie algebra reps. Furthermore, Naimark shows that any irred rep T of 
SL(2) when restricted to SU(2) contains each D'"' at most once. 

Let us check to see which of our reps are unitary. If T is unitary a simple 
computation (which should be familiar to the reader by now) shows that 

"= 0 

(3.26) ( J 3 ) *  = J 3 ,  (.I+)* = J - ,  ( F 3 ) *  = F 3 ,  ( F + ) *  F -  

Just as in Section 7.7 we can use the requirements on the J-operators to prove 
( fp ) ,  fg')) = 0 unless w = w' and k = k'.  Furthermore 1 1  , fp)  1 1  = 1 1  f y )  11, 
-w 2 k , j  I w .  Since F 3  is symmetric we have 

( F 3 f p ' ,  f p ' )  = ( f p ' ,  F ' f f " ) ) .  

Substituting (3.23) into this expression, we find 
- 

(3.27) B,  = B,, A , , ~ ~ f ~ - l ) ~ ~ z  = - ~ w ~ ~ f ~ ' ~ ~ z .  

The relation ( F + ) *  = F -  yields no additional constraints. By (3.24), B, is 
real if and only if (a) w, = ic, c real, or (b) w, = 0. 

Writing A ,  = R ,  + iI,  i n  terms of real and imaginary parts, we see that 
the second relation (3.27) implies R ,  = 0, IIfp' 1 1  = \l.fp-')Il. Since all of 
the basis vectors have the same length we can normalize them so I /  f p )  I (  = 1 .  
By (3.24) the requirement R ,  = 0 is identically satisfied in case (a) since 
- w I z  = cz 2 0. In case (b) this requirement will be satisfied provided 



304 8 THE LORENTZ GROUP AND ITS REPRESENTATIONS 

(w2 - ~ , ~ ) / ( 4 w ~  - 1) 2 0 for w = 0, 1, 2, . . . . This is possible if and only 
if 0 < w I 2  5 1. Thus -1 < w, < 1. 

This discussion shows that the unitary irred reps (w,, w , )  of SL(2) fall 
into two classes: 
(3.28) The principal series: w ,  pure imaginary. 
(3.29) The complementary series: w,  = 0, w, real, I w ,  I 5 1 .  
The only finite-dimensional unitary rep is the identity rep (0, 1) D'O*O'. 

We now construct models of the corresponding Lie group reps, starting 
with the finite-dimensional reps D(",'). From (2.1), Section 7.2, we know 
D("s0) z D("), 2u = 0, 1,2, . . . , has a model in terms of operators 

(3.30) [ T ( A ) f ] ( z )  = (bz + d ) 2 u f ( s ) ,  A E sL(2). 

acting on the (224 + 1)-dimensional space TID(") of polynomials with order 
2u in z. The vectors f!,$ = (-z)"+'"/[(u + m)!(u - m)!]1/2 form a canonical 
basis. 

It follows that D'O.") Z DD(vJ has the model 

(3.31) 

on the (2v + 1)-dimensional space g(,) of polynomials with order 2v in 2. 
The vectors g?) = (- l ) v - ~ ~ u )  = (.?)"-"/[(v + n)!(v - n)!]1'2 form a canonical 
basis. 

D(") @ D('). Thus li(u~u) has a model defined 
by operators 

According to (3.5), D("J') 

(3.32) [T(A) f ] ( z ,  2) = (bz + d ) 2 " ( b r ) 2 " f ( -  az + c ,a2 ?) + 5 
b z + d  d z + d  

acting on the (22.4 + 1)(2w + I)-dimensional space of polynomials with order 
2u in z and 2v in 2. 

It is clear from (3.32) that D ( " x v )  z D(uJ') . Only the diagonal reps DD(u,vJ are 
equivalent to their own complex conjugates. Such reps are called real. 

It is easy to find a model of the unitary reps in the principal series (wo,  ic), 
(3.28). Indeed by comparing the eigenvalues of the invariant operators 
C . C  and D- D in the and {fP)] bases we have concluded that wo = 

u - w, w ,  = u + v + 1. This suggests that the action of (w,, ic) can be ob- 
tained from (3.32) by setting 2u = wo + ic - 1 and 2w = -w ,  + ic - I :  

Here we regard f ( z )  = f ( x ,  y )  as a function of the two real variables x, y ,  
where z = x + iy, and we suppress the argument z. If the operators T(A)  
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act on the Hilbert space L,(R,),  

then one can show that they define a global irred unitary rep of SL(2)  whose 
induced Lie algebra rep is equivalent to (w,,, ic), 2w, = 0, I ,  2, . . . , c real 
(Naimark [2]). 

It is just as easy to formally compute the action of the unitary reps from 
the complementary series, However, in this case there is some difficulty in 
determining the proper Hilbert space on which the rep acts. Naimark works 
out the details. 

The computation of the infinitesimal generators (generalized Lie deriva- 
tives) for all of the above models is straightforward but will not be carried 
out here. Furthermore, we will now limit ourselves to fiqite-dimensional 
reps. The infinite-dimensional unitary reps of the homogeneous Lorentz 
group seem to be of less importance for physical applications (see, however, 
Ruhl [I]). 

Because of the isomorphism between the Lie algebras d(2)  and su(2) 
@ 4 2 )  we can conclude that any finite-dimensional rep of SL(2 )  or LT + 

can be decomposed into a direct sum of irred reps D("*Y). (This is false for 
infinite-dimensional reps.) We shall use this fact to compute the (finite- 
dimensional) irred reps of the general Lorentz group L(4). We shall also 
compute the irred reps of the complete Lorentz group L 1  = {SLr ' ,  LT +)  
obtained by adding the space reflection S to the proper Lorentz group. 

Let T be an irred rep of L + and let S = T(S). Since S commutes with all 
rotations [see (1.5)] it follows that 

SJ'S-1 == J ' ,  SJ3S-1 = 33, s = s-1. 

On the other hand, by ( I  .3) 

SB'S-1 = -BZ, SB3S-l = -B3. 

In  terms of the C- and D-operators [(1.9)] these results become 
(3.34) SC's-1 = D' ,  sC3s-l = 0 3 .  

Suppose the rep D(",') is contained in TI L 1  +. Then there exist vectors {f!:;,v): 
- u  4 m i u, -v < n I v} spanning a subspace 'u(u,u' of the rep space 
'u which transform under the C- and D-operators according to (3.2). Define 
vectors g 2 " )  E 'u by g::') = Sf:;'). Then by (3.34) and (3.2) 

(3.35) C3g!.;") = ng:;"), C'g;;' = [(v n + I)(v n)]'  zgi>;!m, 

with similar results for the D-operators. Thus the vectors {gp;")) span a sub- 
space cU(v,u) of 'u which transforms under D(v,u). Since S2 = E we have 
sgpA"' - - s 2  f,; ( u  v )  = f2hv). Furthermore, the space 'u(',y) + CU(",") is invariant 



306 8 THE LORENTZ GROUP AND ITS REPRESENTATIONS 

under T. Since T is irred this space must coincide with 'u itself. There are two 
possibilities depending on whether or not u = v. If u f v the set { f g ~ ~ ) ,  gb.")} 
is linearly independent and '11 = 7 F U )  @ 'u('.u). We designate the 2(2u + 1) 
x (2v + 1)-dimensional rep by 
(3.36) D(".') 0 D'","), u # V. 

Conversely, it is easy to show that each pair of reps of L' + taking the form 
(3.36) does define an irred rep of L '. 

Now suppose u = v and define new vectors h i n  = f$,") -l gk;,";l"). The 
{A:,,] span a subspace TI(+), while the {A;,,] span TI(-). Here 

C3h' mn = m( f mn (UsU) g$,")) = mhi,,  D3h&, = nhf, 

(3.37) C'h;, = [(u + m + 1Xu - m)]"2hi+l ,n,  

D+h& = [(u + n + l)(u - n) ]* /Zh:n+ ,  , 
with similar results for C -  and B-.  Also, 
(3.38) Shin = s f & Sgkf' = g?;l") * f L ; U )  = 

As a consequence, both TI(+' and V'-' are invariant under T. Since T is irred, 
either 'u = I)'+) and 'u(-) = {e} or 'u = V(-' and TI'+) = {O}.  If the first case 
holds then h i ,  = 0, so fln";l') = gk;") = Sf?hu) and S transposes the lower 
indices of the basis vectors fl,";lu) for 'u. We denote the corresponding irred 
rep by D'," "I. If the second case holds then h;,, = 0 and Sf,$;") = - f : f ) .  

We denote this rep by D?,"). Here dim D!u,") = dim D5") = (224 + 1)2. 
Thus the possible irred reps of L' are D(',u) @ D('.u), u > v, and D!u,"), 

D?,"). Only those reps such that u + v is an integer are single-valued on 
LT . The remaining reps are double-valued on L' but they are single-valued 
reps of the group generated by S and SL(2). 

We can obtain the irred reps of L(4) by noting that L(4) = ( L ' ,  Z-L'} ,  
where Z = - E  is the total inversion operation. Since Z commutes with all 
elements of L(4) and Zz = E it follows that T(Z) = f E  for each irred rep 
T. Thus, to each irred rep of L' there correspond exactly two reps of L(4). 
In one rep T(Z) = E and in the other T(Z) = -E. If u + v is not an integer 
then these reps are double-valued on L(4) but single-valued on the group 
generated by S, I, and SL(2). 

We mention some of the simplest examples of our reps. The usual 4 x 4 
matrix realization (1.1) of LT + is equivalent to the real rep D(1!2."2' of SL(2). 
The usual 2 x 2 matrix realization is equivalent to D"/2,0). The matrices 
2, A E SL(2), define the rep D'o,1;2). The usual 4 x 4 realization of L t  is 
equivalent to DL1'2*1!2). A quantity transforming under L' according to 
DYsO) is called a scalar; one transforming according to D'OsO) is a pseudo- 
scalar. Vectors and pseudovectors transform according to DL"Zs and 
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D\' 2 , 1  2 ) ,  respectively. Finally the usual 4 x 4 realization of L(4) is equiva- 
lent to DY,2p1'2) with T(Z) = -E. 

8.4 Models of the Representations 

Let V be a complex two-dimensional vector space with basis { v , ,  v,} .  
We define a model of the rep D",2,0'  of SL(2) on V by 

The vectors fi1,i2) = v ,  and fL1izi = v2 form a canonical basis. 

dimensional vector space W with basis {w,, W J :  

- 
Similarly we can define a model of the rep D'o,'/2' D" 2 . 0 1  on the two- 

(4.2) 

The vectors g\'i2) = wt and gL1{'A = - w l  form a canonical basis. 

defined by 
Now consider a rep of SL(2) on the 2(P+4'-dimen~ional space V @ p  @ Wgq 

(4.3) A(v,, 0 . . . @ v , ~  0 wp, 0 . . * @ wfi0 

The elements a of this space are called spinors of rank p + q. In terms of the 
components aal"'aupl". f iO of a with respect to the basis v, , ,  @ . . . @ wpo the 
group action (4.3) reads 

It is evident that the spinors of rank p + q transform according to the rep 
(D" 2 * 0 1 ) 6 p  @ (D'O.' 2))oq .  We can use the Clebsch-Gordan series (3.5) re- 
peatedly to decompose this rep into irred reps D(u*ul but the resulting expres- 
sion is complicated. However, it is easy to verify that DQ 2 .q  2 '  is the irred 
rep of highest weight contained in the reducible rep and its multiplicity is 
exactly one. We show how to determine the subspace transforming under 

Let S p  be the subspace of completely symmetric spinors in P P .  The 
elements of S p  are symmetric in the spinor indices a"l"'"''. As shown in 
Section 4.3, dim S p  = p + 1 and a E S p  is uniquely determined by the 
independent components u1 1 . . . 1 . 2 2 . - 2  = a(s1  , where s is the number of twos 
and p - s the number of ones, s = 0, 1,  . . . , p .  Furthermore, S p  is invariant 
under the induced action of SL(2) on PP. We have shownearlier that S p  

D(P 2 . q  2 )  
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transforms irreducibly under the rep [ p ,  01 = [p] of GL(2) [Section 4.31. We 
will now show that Sp remains irred when GL(2) is restricted to the subgroup 
SL(2). Let aso be the element of S p  such that = 1 and all independent 
components of asO are zero. Clearly, the tensors ao, a', . . . , ap form a basis 
for Sp. Furthermore a direct computation from (4.4) with q = 0 shows 

(exp tC3)aa0 = (exp tJ3)aS0 = exp[t(+p - so)]aso. 

Recall that the D-operators are zero for this rep. It follows that the highest 
weight vector in S p  with respect to C 3  has eigenvalue p/2. Thus 9 must con- 
tain a subspace transforming according to  D(p/2,01. Since dim D'P.'z,oJ - - P f  
1 = dim Sp, Sp is irred. 

An exactly similar argument shows that the subspace 3 of completely 
symmetric spinors in Woq transforms according to D'o*g/2'. Now the sub- 
space S p  @ ,@ of VBP @ WBq consists of spinors aai...apflk...Bu symmetric in the 
indices a,, . . . , ap and in the indices P I , .  . . , P, simultaneously. Furthermore, 
Sp @ 3 transforms under D(pi2,O1 @ D'OS~'~' - D(p/Z.q,'2). This shows that 
Sp @ ,@ is the subspace of V@ @ WQq which carries the rep D(pi2,q.'Z1. Letting 
p and q range over all nonnegative integers we can obtain models of all reps 
D"'vu) of SL(2). 

The use of spinors to provide models of SL(2) reps is very popular in 
mathematical physics. An extensive spinor calculus has been evolved which 
enables one to perform operations on spinors to yield new spinors. For 
example, if ual...fla is a spinor of rank p + q and bui'".flP'is a spinor of rank 
p' + q', then the quantity with components aat*..subor~'...aa' transforms as a 
spinor of rank ( p  + p') + ( q  + 4'). For more details on the spinor calculus 
see the work of Gel'fand et al. [l]. 

Let V be a four-dimensional real vector space with basis ( v I ,  . . . , v4} 
and define a rep of L' + on V by 

(4.5) Avi = f; Aliv,, A E L 1  ' 
I= I 

This rep is clearly irred; in fact it is equivalent to D c l i z , l i z l .  We will verify 
this explicitly. 

If we restrict the rep (4.5) to the subgroup SO(3) then v, remains fixed 
and v , ,  v2,  v ,  transform under the vector rep D"'. The only four-dimensional 
irred reps of L' + are D'3!2,0), D'0,3'21, D(L,'z.1,'2) and the first two of these 
reps remain irred when restricted to SO(3).  However, 

D~1/2,1.'21 1 So(3) D(1) 0 D'OJ, (4.6) 

in agreement with our comments above, so (4.5) defines a rep equivalent to 
D'1/2,1:2J. One can verify from (1.3) that the vectors 

(4.7) fit! = ( l / , , / T ) ( ~ v l  - iv2), fill  = v,,  fbpl = --iv4 
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form a canonical basis which exhibits the decomposition (4.6). Furthermore 
from (1.9) the vectors 
(4.8) f l,,i, = vJ v, ,  f Y;zi,'$~\~2 = i v ,  - iv, 
form a canonical basis satisfying relations (3.2). 

We can extend the action (4.5) to the space VBn.  If a E V@'" with tensor 
components uil.*.in, 1 I i j  5 4 ,  then the action of L T +  on VBn is given by 

( 1 1 2  1/21 

Clearly this rep is equivalent to ( I Y I  2 * 1  z))@' and the Clebsch-Gordan series 
(3.5) can be used to decompose it into irred reps. Note that every irred part 
of (D<I 2,1 /2) )@n is a single-valued rep of L' + and every single-valued irred 
rep can be so obtained.The elements of V@" are called tensorsin distinction 
to the spinors (4.4) which lead to double-valued reps. 

The Lorentz group acts as a natural transformation group on Minkowski 
space according to the formula 
(4.10) x - A - ' x ,  A E LI+,  

where x = (x ,  y ,  z,  c t )  is a column four-vector. The Lie derivatives corres- 
ponding to this action are 
(4.1 1) 
~I 

d d d d d d L ,  = z -  - y--, L ,  = y- - x -  dy  dz dz dx dx  dy' 

d 
d x  Z' 

L,  = x -  - z--, 

d d B - - t - - z z -  
dz dt ' 3 -  

d B - - t  2 -  ; T 3 - Y p  B ,  = - t -  - x 

In these equations and for the computations to follow, we choose units in 
which c = 1. 

The components x ,  y ,  z ,  t form a basis for a realization of D(L"Z,1i2)  under 
the action (4.10). Indeed, comparing (4.11) with (3.21)-(3.24) we see that a 
canonical basis exhibiting the decomposition (4.6) is given by 
(4.12) f i l , )  = ( I / f l ) ( i x  - iy), fb') = z ,  j$") = i t .  

Furthermore, the vectors 

(4.13) fL'l,i,Tl12 = z T r ,  
form a canonical basis satisfying relations (3.2). 

Another model of D(1/2,1i21 which will prove useful is obtained by using 
(4.10) to induce a group rep on the four-dimensional space 53 spanned by 
the derivatives dldx,, j = 1, . . . , 4, where x = ( x l ,  . . . , x , )  = ( x ,  y ,  z ,  t ) .  
Indeed if xi' = C ( A - ' ) j l x l  then x1 = C Aljxj' and 

!2 112) 
f?izj,'4;),2 = &x - iy 
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The derivatives 
a a  a .a 

ax ay az YL p a+l/2,kl = &- ~ I -  (4.14) a,,,,,,, 2 = - 

form a canonical basis satisfying relations (3.2) for u = v = 4. 
At this point it is convenient to describe the relationship between energy 

and momentum of a particle in the theory of special relativity. Let g be an 
inertial frame with coordinates x = (x,, . . . , x,) = (x, y, z, t ) .  We describe 
the path of a particle with mass in in this frame using the parametric equa- 
tions x, = /z,(s), l < j  < 4, where the parameter s is determined by 
(4.15) ds = [l - (dx/dt)2 - (dy/dt)2 - (d~/dt)~]' 2dt 

- - &[dt2 - dx2 ~ dy2 - dz2I1 = (1 - v - v ) ~  dt 

and v is the velocity of the particle at time t .  [The sign on the right-hand side 
of (4.15) is the sign of dt.] Since no massive particle can have a velocity as 
great as the velocity of light (c = 1 in this case), ds is always real. The world 
time between two events q1 and q2 with coordinates x"' = (x"', t"') ,  xf2) = 

( x ( ~ ) ,  t'2'), t"' # P2' which lie on the path of the particle is 

(4.16) 

where the integral is taken along the particle path from x(I) to x'~). Note that 
s, and s2 are not uniquely determined by (4.16) but only their difference 
s2 - s,.  The expression dt2 - dx2 - dy2 - dz2 is obviously invariant under 
the Lorentz group, so the world time between two events q , ,  q2 is the same for 
all inertial frames 4' related to if by an element of L: .  However, if 4' is 
related to g by an element of L 1  + or L' - then dt and dt' have opposite signs 
and ds = -ds'. In particular, under time inversion (dx, dy, dz, dt) -> (dx, 
dy, dz, -dt). In this case the magnitude of the world time between two 
events is conserved but the sign is reversed. 

If the particle is moving with uniform velocity v (with resepct to 4)  then 
the frame 4' with spatial axes parallel to the spatial axes of 4 and spatial 
origin of coordinates embedded in the particle is also an inertial frame. In 
4' the world time difference between q ,  and q2 is just the ordinary time inter- 
val between the two events as determined by a clock fixed in the particle. 

(4.17) p = (m dxlds, m dylds, m dzlds), 

where x(s), y(s), z(s) are the spatial coordinates of the particle with respect 
to 9. The total energy is given by 
(4.18) E = (p-p + m2)1'2 

and the four-vector momentum by 

f 1 2 ,  

l t l ,  
s2 - s, = 5 ds, 

The momentum p of the particle is defined as 

(4.19) P = ( P ,  E )  = ( P I ,  P z ,  P,l P J .  
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Note that 
(4.20) ph2 - p S 2  - p z 2  - p I 2  = mz. 

Now ds is Lorentz-invariant and (dx, dy, dz) transforms under the Lorentz 
group exactly as (x, y ,  2).  Let x = (x, y ,  z ,  t )  = (x, t )  be the coordinates in 
9 of an event q such that t > 0 and t Z  - xz - y z  - z z  = mz > 0. Then we 
can write 
(4.21) x = (x, t )  = (x, (x-x + m2)1/2). 

Comparing (4.19) and (4.21), we see that both of these vectors must transform 
in exactly the same manner under L t .  (Here we are assuming that the mass 
of a particle is the same in all inertial frames.) Since x transforms according 
to D"!2-1'2', so does p .  In particular the expression for the four-momentum 
of a particle takes the same form in all inertial systems, as it must in order 
to be physically meaningful. This shows that expression (4.20) is also Lorentz- 
invariant. Note, however, that x and p do not transform in the same way 
under time inversion G.  Under G,  x goes to (x, - t )  and p goes to (-p, E ) .  

In relativistic quantum physics the states of a one-particle system at time 
t are given by spinor-valued functions \y = {Yp(x ) ] ,  p = 1, . . . , q, where 
x = (x, y ,  z,  1). The action of the Poincari group 6 on these state functions 
is given by 

(4.22) [T(a, A)YI,(~) = k T,,(A>Y,(L(A-~)(~ - a)>, 
v = l  

a E R,, A E SL(2), 

where L(A) E L + is given by (1.18)-( 1.22) and T(A)  is a q x q matrix rep 
of SL(2). Here 6 is the set of all pairs {a, A }  with group product 

(4.23) {a13 A1Ha27 A21 = { a ,  + ~ ( A , ) a z ,  A1-43. 

{a ,  A }  - {a ,  L(A)J 
is a homomorphism of 6 onto the ordinary PoincarC group P, (2.5), which 
covers each element of P exactly twice. 

The construction of state functions for relativistic k-particle systems is 
analogous to that discussed in (1 1.6), Chapter 7, and is left to the reader. 
Furthermore, we shall be concerned only with the group-theoretic properties 
of the transformation (4.22) and shall omit any discussion of Hilbert spaces 
containing the state vectors Y. For such a discussion see the work of Schwe- 
ber [l]. 

In general, functions \y which transform under 6 by (4.22) are called 
spinor fields. If T(A) = T ( - A )  for all A E SL(2) then (4.22) defines a single- 
valued rep of P and the functions are called tensor fields. Among the impor- 
tant tensor and spinor fields of relativistic physics are the four-momentum 

The map 
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and the vector four-potential, T Z D" 2 , 1 1 2 ' ,  and the Dirac electron field, 
T g  D(1/2,0) @ D'o, ' /21 (Roman [I], Landau and Lifshitz [3]). 

If we set a = 8 in expression (4.22) we obtain a rep of SL(2). The Lie 
algebra rep of sZ(2) induced by this group action takes the form 

(4.24) d j  = S j  + L j ,  65, = Xj + Bj  j = 1,2,3,  

where the Lie derivatives L,, B j  are given by (4.1 1) and the matrices 

d d 
dt dt 

(4.25) S j  = -T(expr$j)I,=o, X j  = -T(expt@j)Ir=o, 

$ j ,  @ j  E m, 
act on the spinor indices of P. Suppose we restrict the group rep T(A) = 

T(0, A )  to the subgroup SU(2). Then the matrix rep T ( A )  will decompose 
into a direct sum of irred reps D"" of SU(2) .  The spinor components of Y 
can ahays  be chosen so that T(A)  1 SU(2) explicitly exhibits this direct sum 
decomposition : 

Thus, on restriction to SU(2)  the field Y transforms as a sum of spinor fields 
of weights s = u , ,  . . . , u, with respect to SU(2). This last statement is meant 
in the sense of (8.19), Chapter 7. The above remarks constitute the relativistic 
interpretation of spin. If  a particle state function transforms according to 
(4.22) with T G D"@ in a relativistic theory then the formula 

(4.26) D(u,el ISU(2) g D c u + u l  @ D ( u + u - l )  @ . . . 0 D l l u - u l l  

shows that this particle can have spins s = u + v, u + v - 1,  . . . , I u - v I. 
However, there is no known particle with more than one spin. For particles 
transforming according to D('*ol or D'O*"' this restriction to one spin is achiev- 
ed automatically: s = u. However, for particles which transform according 
to D(",vl with u, v > 0 it is necessary to subject the spinor function Y to 
certain additional constraints which, in a fixed inertial coordinate system, 
require that all components Y,, of Y are zero except those transforming ac- 
cording to a single rep D'") of SU(2). 

For example, the photon transforms according to the four-dimensional 
representation D"/2s'/21. Since D(1,2,1'21 I SU(2) g D'I) @ D'O' we would 
expect the photon to have spins one and zero. However, the system of equa- 
tions obeyed by the photon includes a supplementary condition which sup- 
presses the component transforming according to D'"' and we say that the 
photon has spin one (see the work of Jauch and Rohrlich [l]). The Dirac 



8.5 Lorentz-Invariant Equations 313 

electron field transforms according to D“’z~ol @ D‘o**’2J. On restriction to 
SU(2)  we obtain D“/21 0 D“,’2’, so the electron has the single spin f, even 
though D“/2J occurs with multiplicity two. 

8.5 Lorentz-Invariant Equations 

In Section 8.2 we enunciated the basic principle of relativistic physics: 
The equations and laws of a physical theory must have the same form in any 
inertial coordinate system. Stated another way, the equations of a physical 
theory must maintain their form under the action of the Poincart group. 
We shall use this principle to classify, under suitable conditions, the possible 
linear differential equations which can appear in a relativistic theory. Our 
analysis will be analogous to that for the Euclidean-invariant equations in 
Section 7.11. 

Let YJx) be a q-component spinor field transforming according to the 
rule (4.22) under the PoincarC group. We suppose that the components Y,  
satisfy a system of g linear partial differential equations in the independent 
variables x = (x, y ,  z ,  t ) .  By introducing new components if necessary we can 
assume the system takes the form 

at a )  
d a (c& + c,- ay -t c,- az + c,- + D Y(x) = 0, 

where C j  and D are q x q matrix functions of x and Y(x) = (Y,(x)) is a 
q-component column vector. We will investigate the conditions under which 
the system (5.1) maintains its form under the action (4.22) of (P. First, it is 
clear that (5.1) is invariant under all translations of coordinates if and only 
if the matrices C, and D are constant. Assuming these matrices constant we 
reduce the problem to one of invariance under SL(2)  (the homogeneous 
Lorentz group) : 

or 

(5.3) Yp’(x’) c T,,(A)Y,(x),  x’ = L ( A ) x ,  

where T(A)  is a q x q matrix rep of SL(2) .  Lorentz invariance of (5.1) means 
exactly that if we replace x by x’ and YJx) by Y,’(x’) then the resulting sys- 
tem of equations is equivalent to the original system, i.e., the primed equa- 
tions are linear combinations of the unprimed equations and conversely. 

To simplify the discussion we assume D is nonsingular. Then multiplying 
(5.1) on the left by D-’ we obtain the equivalent system 

(5.4) 
( L &  + L, -  a -I- L,- a + 

dy d z  
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where K is a nonzero constant. (We could choose K = - 1 but it is preferable 
to leave it arbitrary.) 

We may assume without loss of generality that the matrix rep T ( A )  has 
already been decomposed into a direct sum of irred reps: 

( 5 . 5 )  

T(A)  = 

where D''su'(A) is a matrix realization of D''+) and a,, is the multiplicity of 
!PU) in T(A) .  We can label the components of Y as Y / " , k ,  the spin component 
corresponding to the canonical basis vector f ; ~ ~ )  in the kth occurrence of 
D(u,u) in (5.5). Here we are using the basis (3.2). Thus, 

(5.6) [T(A)Y]",",,,(x) = $ 2 D~A;,!,,~ ( A ) W , , U . , , , k ( L ( A - I ) ~ ) .  

The partial derivatives on the left-hand side of (5.4) can be expressed as 
linear combinations of the derivatives d ,  I 2 ,  I 2 ,  (4.14), which form a canoni- 
cal basis for a reaIization of D[l 2 . 1  2 ) .  Thus the left-hand side of (5.4) is a 
linear combination of terms d,, 2 , t  ,,2W$mv.n.,k. For fixed u, w, and k ,  and m', n' 
ranging over - u  m' < u, -w < n' I w, these 4(2u + 1)(2w + 1 )  quanti- 
ties form a basis for the rep 
(5.7) 

m =-u "'--U 

D(1 2 . 1  2 )  @ D ( u , u )  D(u+l 2 , c i l  21 @ D'utl 2 , u - l  2 )  

@ D(u-1 2 . b - 1  21 33 D'" I 2 , r + l  2 ,  

If either u or w is zero, this expression has an obvious modification. By (5.7) 
and (3.6), the new basis functions 
(5.8) hi:A.(uw, k )  = C C($, j ;  u, m I u', m')C($, I; w, n Id, n') dl,lY:n,k 

transform irreducibly according to D'"'"''. Here u' = u 4 and v' = w & + 
for u, w > 0. Again the results must be slightly modified if either u = 0 or 
w = 0. 

Due to the unitarity of the CG coefficients we can uniquely express each 
of the terms d,,lY;n,k on the left-hand side of (5.4) as linear combinations of 
the h$$(uw, k) .  The resulting system takes the form 
(5.9) 

We consider a subsystem of (2u + 1)(2w + 1) equations (5.9) for which 

m n i l  

c A;;,$?;;.k(u,w,, k,)h$;(u,w,, k , )  = 
m'n'klulul 
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u,  v, k are fixed and -u  5 m I u,  -v I n 5 v.  From (5.3) and (5.6) we 
obtain 

(5.10) Y ' $ n , k ( x ' )  = o$hf'j/(A)Y!fY,*(X), 
j l  

(5.1 I )  h'$$(u,v, , k , ) ( x ' )  = C o $ , ~ ! ~ ' ~ , / , ( ~ ) h ~ ~ ~ ( u I w l ,  k , ) ( x ) .  
j ' / '  

If follows that our  subsystem will maintain its form under the action of SL(2) 
if and only if the left-hand side of the subsystem also transforms according 
to D'"."'. The necessary and sufficient condition for invariance is that all 
constants A " " ~ " " '  are zero except those for which u = u', v = v',  m = m', 
and n = n' .  Furthermore, the nonzero constants must be independent of 
the spin indices m and n. Thus, any invariant system takes the form 

where is given by (5.8) and the pair ( u ,  w) ranges over all irred reps in 
T(A). The constants are arbitrary and there is one equation for each 
component of \y. We see from this analysis that the component yzn,k on the 
right is coupled with those components Y;;;,,k, on the left such that 

(5.13) 
u ~ ~ & , u . - f  if u > O  { v ; $ , 3 - ;  if v > O  

if v = 0. 

Note that there are no nontrivial invariant equations in which the spinor 
indices transform according to a single irred rep D(u ,L) .  With a single Dfz," 
we could not achieve a coupling (5.13). 

I n  case the matrix D in  (5.1) is singular or not square the analogous dis- 
cussion in Section 7.11 is applicable. If D : Z we can construct invariant 
equations of the form (5.12) with K = 0 although the number of such equa- 
tions need not be equal to the number of components of Y. In this case it is 
possible to construct invariant equations in which the spinor indices trans- 
form according to a single irred rep D'""''. For an arbitrary singular matrix 
D one can construct systems of the form (5.12) in which K is zero for some 
equations and nonzero for others in the system. 

Naimark [2] presents a complicated derivation of results equivalent to 
Eq. (5.12) based on  computations using the Lie algebra of the Lorentz group. 
His derivation has the useful feature that i t  generalizes to the case where the 
matrices L j  in (5.4) are infinite. I n  this case the infinite-dimensional irred reps 
of the Lorentz group may appear. 

I t  is worth mentioning that all Lorentz-invariant equations are auto- 
matically Euclidean-invariant since & '  (3) is a subgroup of 6'. Thus the Lor- 
entz-invariant equations are already contained in the analysis of Section 7. I I .  

? ) I  ~L if u = 0, U I  -- { t 
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Our results must be modified if we demand invariance under the complete 
Lorentz group L obtained by adding space reflection S to the proper Lorentz 
group. In Section 4.3 we showed that the irred reps of LT were 
(5.14) D ( u s v )  @ D"J,u), u > u, S f k ; ~ )  = f:;~), 

(5.15) D!U,u), - s f = i- f ?Y', 
where S is the operator corresponding to space reflection in each rep space. 
It follows from (4.14) that d j , ,  --t -d,,, under space reflection, so the d j , l  
form a canonical basis for the rep DY1/2,1/2) of L T .  

Suppose \Y = {Y,(x)] is a spinor field transforming under L t .  In addition 
to the transformation equations (5.2) we have 

(5.16) 

where the matrices T(A), T(S)  generate a rep of LT (possibly double-valued). 
Here T(S)z = E. The matrix rep can be decomposed into a direct sum of 
irred reps of LT . (Prove it!) Thus, each component y z n , k ,  u # u, is associated 
with a component y n k , k  such that 
(5.17) T ( S ) y z n , k ( X ' )  y : k , k ( X ) ,  X' = SX, 

-u 5 m 5 u, -v < n < u. 
For u = u there are possible components y z , k  and \y"m"n;k such that 
(5.18) T ( S ) y z z k ( X ' )  = h!J!$k(X).  

We assume \Y satisfies the equations (5.4) with K # 0 and require that 
this system is LT-invariant. Clearly, the system is L T  + invariant so it can be 
expressed in the form (5.12). To guarantee L'-invariance we need only deter- 
mine the requirements on the constants A:;;:k, in order that the system of 
equations remains invariant under space inversion. 

Choose one of the equations (5.12) and replace x by x' = Sx and v A ? i , , k ? ( x )  

by T ( S ) Y i Y i , , k , ( x ' )  on both sides of the equation. If u # v then the right-hand 
side becomes K y k , k ,  while the vectors h;'(u,u,, k , )  become 
(5.19) 

Here we have used (5.8), (5.17), (5.18), and the fact that d j , ,  = - d , , j .  If the 
system is LT-invariant then this transformed equation must be identical with 
the original equation for the component K Y : h , k .  But from (5.19) this is pos- 
sible if and only if 

If the term on the right-hand side is KY:;: then under space inversion it 
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is mapped to &ICY;:,:. Again, for L T  -invariance the transformed equation 
must be the same as the original equation for the component KY::~. This 
is possible if and only if 

r f A u * , k  * t u i .  k I for u ,  f v , ,  
(5.21) ,4i%$, = FA"'-k u r + , k ,  for u 1  = v,, positive parity, 1 for u ,  = v, , negative parity, 
as can be shown by a proof similar to that of (5.20). Expressions (5.20) and 
(5.21) are necessary and sufficient for L'-invariance of the system (5.12). 

One of the simplest examples of an L' +-invariant equation is the Klein- 
Gordon Equation 

(5.22) 

Here v,(x) transforms as a scalar field under 6: 
(5.23) [T(a, A)vl(x) = ~ ( A - ' ( X  - 0)). 

In relativistic physics this equation describes fields corresponding to particles 
with mass m, . Since the spin index of v, transforms according to D'O-O' and 
D'a.o' 1 SO(3) z' D(O', these particles must have spin zero. 

To see the connection between the Klein-Gordon equation and ele- 
mentary particles recall that in  classical relativistic physics the relation be- 
tween momentum and energy of a particle with mass rn, is 
(5.24) E 2  - p I 2  - p 2 2  - p 3 2  = rno2,  

[Eq. (4.20)]. In quantum physics we associate the classical momenta and 
energy with differential operators according to the rule 

p , + + i d / d x =  P I ,  p 2 * - - t i d / d y = P 2 ,  
(5.25) 

p 3  i--f i d l d z  = P,,  

From (5.24) and the usual correspondence principle between classical and 
quantum physics we see that the state function q ( x ,  t )  describing a particle 
of mass rn, satisfies the equation 

E 4 * id ld t  = H. 

(5.26) (H2 - P I 2  - P z 2  - P , ' ) ~ ( x ,  t )  = m o Z ~ ( x ,  t ) .  

Making the substitutions (5.25), we obtain the Klein-Gordon equation. 
Let us write (5.22) in the canonical form (5.12). We introduce four new 

components rpm,"(x) = d,,,q(x), m, n = 54, which form a canonical basis 
for D(1/2,1/2' @ D(osol ? D"/2,1 2 1 .  From (4.14), the Klein-Gordon equation 
is equivalent to the system 

(5.27) 
d,,"v, = v , r n , " 9  rn, n = &* 

+ 3 l J 2 , l  2 v , , - l 1 2 , - 1 , 2  + d ,  2 , - l / Z ~ - I  2.112 + d-112,1,zrp1.2,-1 2 

- d - I ~ ~ , - l ~ z q l ~ 2 , 1 ~ 2 )  = mO2v,. 



318 8 THE LORENTZ GROUP AND ITS REPRESENTATIONS 

The indices of the spinor field 0 = (p,,,., q) transform according to D(1/2v’/2) 
@ D(oso). Now the most general L f  +-invariant system of equations for such 
a field takes the form 

According to table (7.27), Section 7.7 these two systems are identical provided 
K = 1, a = 1, b = -l/mo2. [Recall thatC(f,j; 0, O I i ,  m) = S j m . ]  

Now consider the behavior of (5.22) under space inversion. Under the 
group LT, p transforms as D\O*O) or D‘OsO), i.e., as a scalar or a pseudoscalar. 
Thus [T(S)q](x) = j-~(SX). In either case it is obvious that the Klein-Gordon 
equation rerhains invariant under space inversion. However, it is instructive 
to verify this result for the system (5.28). If p is a scalar then Q, = (pm,”, p) 
transforms as D!l/2*1’2) @ D\O,O). It  then follows from (5.21) that the system 
is L+-invariant. Similarly, if v, is pseudoscalar then transforms as D!”2*1/2) 
@ DLojo) and (5.28) is L’hvariant.  

Note that (5.27) is Lorentz-invariant even if m, = 0, in which case it 
corresponds to the system (5.1) with D singular. 

We cannot write a nontrivial first-order system of equations for a spinor 
field transforming as D(O*O). The next simplest possibility is D(l’2*o). A particle 
described by such a spinor field would have spin 3. As we have already re- 
marked, this field cannot satisfy a system of the form (5.12) with K # 0 
since D(1/2,0’ cannot couple with itself. However, for K = 0 the relation 
D(I/Z,I/Z) @ D(l/Z,O) - D(l,I/Z) @ D‘O,1/2) suggests the system 

or 
(5.29) al,2,1y- 1,2 - a- l 1 2 . r ~ 1 1 2  = 0, 1 = .ti. 
The left-hand side of this system transforms as D‘o*1/2’. (We reject a system 
whose left-hand side transforms according to D(1*’;2’ since it would subject 
the two spinor components to six conditions). Expression (5.29) is the equa- 
tion of the two-component neutrino. This equation cannot possibly be invari- 
ant under space reflection because P transforms as D“/2,0). Thus T(S)P 
transforms as D(OP~/~’ and the system does not admit S as a symmetry. It is 
easy to verify the formulas 

from (5.29), so each component of the field is a solution of the Klein-Gordon 
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equation with m, = 0. We conclude that the neutrino has spin 3, mass zero, 
and does not conserve parity, i.e., does not transform according to a rep of 
the complete Lorentz group. 

From experimental results the electron is known to have spin 3, nonzero 
mass, and to conserve parity in those reactions in which it takes part. Thus we 
would expect a spinor field Y corresponding to an electron to have spin f 
and to satisfy an L'-invariant first-order system. The simplest possibility is 
that Y transforms as D(1/2,01 @ D'O.' 2 ,  under L ' .  Then Eq. (5.12) take the 
form 

1 2  

1 = - 1 / 2  

I 2  

1 - - 1 / 2  

a C C(&, I; f, -1 I0,O) d,,,[Y-,- = icy,,,+ 

b C C(4, j ;  f, - j ~ O , O ) d l , m Y - l +  = icY,,-, m = 54, 
(5.30) 

where Y = {Y,,,+, Ym-]  is a four-component spinor, (Yrn+} forms a canonical 
basis for D'1/2,0', and I",,-] forms a canonical basis for D(a,1/2). Under space 
inversion Ym+ goes to Y,,- and Ym- goes to Ym+. Thus the system (5.30) 
is invariant under space inversion if and only if a = -b. If we choose a 
--b = JT, (5.30) becomes 

(5.31) 

or in matrix form 

d r n , ~ , 2 ~ ~ l  2 - d r n , - l , ~ ~ ~ / ~  =z ~yrn+, 

- d l / 2 , r n ~ ~ l  2 + d-1 2,my:/2 = KYrn-3 

dt d ,  
(5.32) ( L I G  d + L2& a + L 3 z  a + L4-  Y = m a y ,  iic = m a ,  

where 
0 0 0 1  0 0 0 - i  

0 0 O i  

-1 0 0 

0 0 0  - i  0 0 

0 0 - 1 0  0 0 - 1 0  

(5.33) L ,  = i[l 0 0  i = i [  %l 0 0  ij. 
0 - 1  0 0  -1 
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Note that the matrices L, satisfy the relations 
(5.34) L/Lk LkLj = 2Gjkr 

Where G = (Gjk)  is the matrix (1.1). 
From (5.32) 

(5.35) ( & L j  d / d x j ) ’ Y  = mo2Y.  
j =  1 

On the other hand, we can use (5.34) to evaluate the left side of this expres- 
sion : 

Thus, (5.35) becomes 

(5.37) 

so each component of Y satisfies the Klein-Gordon equation. The system 
(5.32) is one form of the Dirac electron equation. A solution of this equation 
corresponds to a particle of mass m, and spin 4 which conserves parity. We 
will investigate other possible forms of the Dirac equation in Section 9.6. 

Maxwell’s equations for an electromagnetic field in a vacuum provide 
another important example of a Lorentz-invariant system. See the work of 
Gel’fand et a/. [I] for the details. 

Problems 

8.1 Let y be a four-vector such that yrCy = -m2 < 0 and y4 > 0. (We say y is forward- 
timelike.) Show that there exists a A E L i + such that x = A y  where XI = x2 = x3 = 0,  
x4 = m. 

8.2 Use the polar decomposition to obtain an alternate proof of Theorem 8.2. 
8.3 Let D ( u , v )  be a finite-dimensional irred rep of the real Lie group SL(2, 6). Express the 
{ f g ~ ~ ) ]  basis in terms of the (fp)) basis (Section 8.3). 
8.4 Verify directly that the operators (3.33) define a global irred unitary rep of SL(2) 
on Lz(Rz)  whose induced Lie algebra rep is equivalent to (WO, ic). 
8.5 Decompose the reps (D\1/2g 2 ) ) @ n  and (D?/z. of L 1 into irred reps for n = 

2,3,4,5.  

8.6 Discuss the Lorentz invariance of Maxwell’s equations using the methods of Section 
8.5. Include a discussion of invariance under space inversion. (See Landau and Lifshitz [3] 
for the relativistic transformation properties of Maxwell’s equations.) 
8.7 Discuss the simplest relativistic equations suitable for describing a particle with 
spin 3. Which equations are invariant under space inversion? 
8.S Answer Problem 8.7 for particles with spin one. 



Chapter 9 

Representations of the Classical Groups 

9.1 Representations of the General Linear Groups 

I n  Section 4.3 we computed all the tensor irred reps of the general linear 
groups GL(m) = GL(m, (I). The reps were determined by Young frames. 
Here we use Lie-algebraic methods to determine all analytic irred finite- 
dimensional reps of GL(m). A comparison of the Lie-algebraic method with 
the method based on Young symmetrizers will yield results which are not 
easily obtainable from either method alone. The Lie-algebraic approach to 
the rep theory of GL(m) is patterned closely after the corresponding treat- 
ment of SL(2) and SU(2)  in Section 7.3. 

Recall that GL(m) is an m*-dimensional complex Lie group. Its Lie algebra 
gl(m) consists of all m x m complex matrices. The unimodular group SL(m) 
= SL(rn, 8) is an (mZ - I)-dimensional subgroup of GL(m) with Lie algebra 
sl(m) consisting of all m x m complex matrices of trace zero. 

As a basis for gl(m) we choose the matrices E h j ,  1 2 12, j I m, where 
Ehj is the matrix with a one for the entry in  row h, columnj, and zeros every- 
where else. It is easy to verify the commutation relations 

(1.1) ['hj ,  ',/I 
Denote the diagonal elements of 
The set fa,,, of all diagonal matrices 

Bjk8h/ - BUtGkj' 

the basis by X ,  L &,,, Ii = I , .  . . , m. 

32 I 
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forms an m-dimensional commutative subalgebra of gl(m). From (1.1) 
(1.3) [X, E k , ]  = (1, - 1 [ ) 8 k / ?  [X, X'] z, X, X' E %, . 
It is easy to show from (1.3) that A, is a maximal commutative subalgebra 
of gl(m), i.e., if A' is a commutative subalgebra of g[(m) and A' 2 A, then 

From now on we use the notation E,, only for k f I and reserve X, X j  
% I  = A,. 

to  denote elements of A,. The mapping X + ad X, where 
(1.4) ad %(a) = [X, a], a E gl(m), 

defines a rep of Am on gl(m), the adjoint representation, as we saw in Section 
5.6. According to (1.3) the element E,, is a simultaneous eigenvector for all 
operators ad %(A,, . . . , 1,) and corresponds to  the eigenvalue 1, - 1,. 
The nonzero elements of Am are eigenvectors corresponding to the eigenvalue 
zero. 

Note that the eigenvalues 1, - 1, = a ( X )  are linear functionals on the 
elements X = C l j X j  of A,. These m(m - 1) distinct functionals for 
k # I are called roots. The eigenvector E,, is called the branch belonging to 
the root 1, - 1, = a. We will sometimes write E,, = E, to denote this branch. 
Furthermore, we define X, = X, - X 1  for a = 1, - 1,. 

Lemma 9.1. 
(a) If a is a root then --a is a root. 
(b) [E , ,  E - , ]  = X, f Z .  
(c) [ E a ,  E,] = Z if a + /I is not a root and a f -p .  
(d) [E , ,  E,] = i E a + ,  if a + f i  is if root. 
(e) [X, &a1 = a(X)&a 7 [Xa 7 &a1 = 28,. 

Pvoof. (a) If a = 1, - 1, is a root then -a = 1, - 1, is a root. (b) [ E , ,  
&-,I = [E,,, &,,I = X, - X, = X u .  (c) If CI = 1, - l j  and /I = 1, - 1, 
and a + /I = 1, + 1, - Ai - 1, is not a root or zero, then j f k,  h f I, 
and [ G h j ,  &,,I = Z by (1.1). (d) If a + /I is a root then from (c) either j = k,  

- - (e) This follows directly from (1.3). Q.E.D. 
in which case [ E b j ,  &,J = E,, = E,,,, or 1 = h, in which case [E,,,-E,,] = -& k j  

Let p be a rep of gl(m) by operators p(a), a E gl(m), on the complex 
vector space V.  Setting p(E,) = Em, p(X)  = H = C LjH,,  we obtain the 
relations 

if a + B = O ,  
[L, E p I  = 0 if a + p is nonzero and not a root, 

(1.5) i" * E , + ,  if a + p is a root. 

[H, E,] = a(X)E,,  [ H ,  H,] = 0, I I i I m. 
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where a = I ,  - I ,  and /3 = 1, - I j  are roots and [A ,  B] = A B  - BA for 
linear operators A ,  B on V .  To determine the reps of gl(rn) it is enough to 
determine the possible operators {E,, H j )  which satisfy the commutation 
relations (1.5). 

If p is a rep of gl(rn) on the n-dimensional space V then V has a basis of 
simultaneous eigenvectors of the operators H = p(X), X E %,. A vector 
v # 0 is a simultaneous eigenvector if there exist constants c ,  , . . . , c, such 
that Hjv = cjv, I < j  I rn. Then 

for H = C I j H j .  The linear functional A(%) on Am is called a weight and v 
is a weight vector. Before proving the existence of a basis of weight vectors we 
note that in the special case where V = gl(rn) and p is the adjoint rep of g&m) 
acting on itself, the weights are just. the rn(rn- I )  roots a = 1, - 1, plus 
the zero weight. The weight vectors {&*, X i )  form a basis for the rep space. 

Lemma 9.2. If p is a rep of gl(m) on V then it contains at least one weight. 

Proof. Since Vis  complex the operator H I  = p ( X , )  has a least one eigen- 
value c, . Let W, be the nonzero eigenspace of Vcorresponding to eigenvalue 
c , .  I f v  E W, thenH,(Hjv)=Hj(H,v)=c,Hjv,soHjvc W,for 2 1 j I m .  
Since W ,  is invariant under H,,  H ,  I W, has an eigenvalue c,. Let W, G W, 
be the corresponding nonzero eigenspace. Then Hkv ckv, k = I ,  2, for 
v E W,. Continuing in this manner, we finally obtain a nonzero vector 
w t W, such that H j w  = cjw, 1 < j  
Q.E.D. 

m. Clearly, A = C I j c j  is a weight. 

Note. The above proof merely demonstrates that a set of commuting 
operators on a finite-dimensional vector space has a simultaneous eigenvector. 

The next result shows that by applying the operator E,  to a weight vector 
we may be able to generate a new weight. 

Lemma 9.3. 
E,v # 8 then A + a is a weight with weight vector E,v. 

Let v be a weight vector with weight A. If a is a root and 

Proof. If Hv = Av then H(E,v) = E,Hv + aE,v = (A + a)E,v, as follows 
from the second relation (1.5). Thus A + a is a weight if E,v # 0. Q.E.D. 

Theorem 9.1. 
weight vectors. 

If p is an irred rep of gl(m) on V then V contains a basis of 
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Proof. By Lemma 9.2 there is a weight vector v # 8 in V with weight A. 
Consider the set W of all vectors of the form 

V, E,,v, E,,E,,v,. . . , E,,  . . . E,,v,. . 9 

where the a j  run over all roots of gl(rn). By Lemma 9.3, each nonzero element 
E,, . . E,,v of W is a weight vector with weight A + a ,  + . . a + ak. Let 
W be the subspace of V spanned by the elements of W. By construction W 
is invariant under all operators E, and H .  Hence the nonzero subspace W 
is invariant under p .  Since p is irred, W = V .  Now choose a maximal linearly 
independent set of vectors from ‘w. This set is clearly a basis of weight vectors 
for V. Q.E.D. 

The proof of this theorem is valid only for irred reps. However, we will 
show later that every finite-dimensional rep of gl(rn) can be decomposed into 
a direct sum of irred reps. Thus, Theorem 9.1 is true for all reps. 

Let p be an irred rep ofgl(rn) and let {vj: j = I ,  . . . , n) be a basis of weight 
vectors from p with weights Aj .  Then every weight A of p is one of the A j .  
Indeed if A # Aj for any j then there exists an X E Am such that A(%) 
# Aj(X), 1 I j i n. This means that the nonzero eigenspace of H = p ( X )  
corresponding to  eigenvalue A(%) is linearly independent of the eigenspaces 
corresponding to the eigenvalues Aj(X) .  However, the latter eigenspaces 
span V by Theorem 9.1. This is a contradiction, so no such weight A exists. 

Corollary 9.1. If p is an n-dimensional rep of gl(rn) there are at most n 
distinct weights. 

Let 01 be a root. Since the rep p has only a finite number of weights there 
must exist a weight A* such that A* + a is not a weight. Let v, be a weight 
vector corresponding to A*, so 
(1 -7) HV, = A*(x)~,,  E,V, = e 
by Lemma 9.3. We define a sequence of weight vectors recursively by 

(1.8) 
By Lemma 9.3, 

E-,vj = vj+ ,  , j = 0, 1, 2, .  . . . 

(1.9) H v j  = (A* - ja)(X>v,, 

so either vj = 8 or  vj is a weight vector with weight A* - ja.  Since p is finite- 
dimensional there must exist a positive integer q such that v, # 9 and v,+, 
= 8. The q + 1 weight vectors v, ,  . . . , v, are called an a-ladder of ladder 
length q. The corresponding weights A*, A* - a, . . . , A* - qa also consti- 
tute an *ladder. According to (1.8) we can move down the ladder by applying 
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the operator E - = .  On the other hand, using 
(1.10) [‘a 9 E - Q 1  = He > 

we can show that application of E,  enables us to  move up the a-ladder. For 
convenience we set A*(%,) = A=*. 

Lemma 9.4. E,vj = r , v , - ,  , j - -  0,  1 , .  . . , q  + I ,  where r ,  = jA=* 
ti(i - l)a,. 

Proof. Induction on j .  According to (l .7),  ro  = 0. Suppose the lemma is 
valid for j < k I q. We must verify the result for j = k + 1. From (1.10) 
and the induction hypothesis, 
( 1 . 1  I )  

Thus r k + ,  = rk + A,* ~ ka, = ( k  + I)&* - &(k + I)ka,. 

E,v, b ,  = E,E-,v, = ( E _ , E ,  I H,)v ,  = ( r ,  + A,* - ka, )v ,  

Q.E.D. 
= ‘ k + l V k ’  

From the first equality in ( I .  1 1 )  we have r 4 + ,  = 0, since E_,v ,  = 8. Thus 
( q  + I)A,* - + ( q  + I)qa, = 0. 

Lemma 9.5. q = 2A,*/a,. 

Remark. From the commutation relations [ H , ,  E,,] = f a , E l , ,  [ E , ,  E- , ]  
= H , ,  it follows that the operators E,  ,, H ,  form a basis for a subalgebra 
of gl(m) isomorphic to ~ 4 2 ) .  Thus the construction of the a-ladder of weights 
containing A* is essentially the same as the construction of the irred reps of 
4 2 )  in Section 7.6. 

As we have shown earlier, a, = a(K,) = 2 for gl(m) since a = I ,  - 1, 
and X, = X, - X,. Thus q = A,* for gl(m).  However, i t  is convenient to 
use the notation a, because with its use we can verify Lemma 9.5 for other 
classical groups. 

Now let A be any weight and consider the linear functionals A, A + a, 
A + 2a, . . . . There will be a smallest nonegative integer h such that A + ha 
is a weight but A + ( / I  + 1)a is not a weight. Then A* = A + ha is a maxi- 
mal weight in the sense of (1.7) and there exists an a-ladder 
(1.12) A*, A* - a, A* - 2a,. . . , A* - (2A,*/a,)a, 

with ladder length 2A,*/a, = 2A,/a, + 2h. Since the ladder length is a non- 
negative integer it follows that 2A,/a, is an  integer. Furthermore, in terms of 
A the a-ladder (1.12) is 
(1.13) A + ha, A + (h - I)a, . . . , A - [2(AQ/aQ) + h]a .  
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The midpoint of this ladder is +{[A + ha] + [A - 2(A./ab)a - ha]} = 

A - (A,Ja,>a. (The midpoint is a weight on the ladder if and only if the ladder 
contains an odd number of weights.) Similarly we can find a smallest nonnega- 
tive integer k such that A - ka = A** is a weight but A** - a is not a 
weight. In analogy with Lemma 9.4 it is easy to show that A** is the lowest 
rung on an a-ladder of length q’ = -2A$*/a, = - 2 A , / a ; t  2k. The mid- 
point of this ladder is again A - (A,/a,)a. (Prove it!) Since both ladders 
have the same midpoints and no gaps. they must necessarily coincide. [For 
example, if the first ladder were longer than the second the weight A* - 
2(A6*/a,)a would lie lower than A**, which is impossible.] Thus there is 
only one ladder (1.13) and A belongs to it. Note that A lies a distance (A,Ja,)a 
from the midpoint of the ladder. Hence if we reflect the a-ladder in its mid- 
point, A will be mapped into the functional A - 2(A,/a,)a which is the 
same distance from the midpoint but on the opposite side. In particular 
A - 2(A,/a,)a is a weight. We have proved the following result. 

Theorem 9.2. If A is a weight and a is a root then 2A,/a, is an integer and 
A - 2(A,/a,)a is a weight. 

Corollary 9.2. The weights of the form A + j a  belonging to p are just 
those for which j = - k ,  -k  + I , .  . . , Ii - 1 ,  h, where A* = A  + ha is 
maximal and A** = A - ka is minimal, i.e., there are no gaps in the a- 
ladder. Here, k - h = 2A./a,. 

Proof. Suppose A* = A + ha is the maximal weight constructed in the 
proof of the theorem and let p be the largest integer such that (A*)’ = A* + 
p a  is a weight. Suppose p > 0. Then (A*)’ is maximal and S‘CA*)’ = (A*)’ - 
2[(A,*)’/a,]a = A* - 2(A,*/a,)a - p a  is also a weight which lies lower on 
the a-ladder than A*, since A#* 2 0. According to the proof of the theorem, 
all functionals on the a-ladder between S“(A*)’ and (A*)’ are weights, so 
A* is not maximal. This contradiction shows that p = 0. 

Similarly there is no weight on the a-ladder below P A *  = A - ka. 
By Lemma 9.5 the length of the a-ladder is 11 + k = 2A,*/a, = 2(A,/a,) + 
2h so 2A,/a, = k ~ 11. Q.E.D. 

The map SaA = A ~ 2(A./ab)a of the weights of p onto themselves is 
called a Weyl reflection. Each Weyl reflection permutes the weights. Hence 
the totality of reflections S” as a runs over the roots generates a group of 
permutations of the weights, called the Weyl group. As we have shown, 
S“A is the reflection of A with respect to the midpoint of the a-ladder on 
which A lies. In particular if A is the highest weight on the ladder then S‘A 
is the lowest weight. 



9.  I Representations of the General Linear Groups 327 

Theorem 9.2 greatly restricts the possible weights A = C c j l j .  The 
requirement that 2A,/a, be an integer for all roots a = 1, - 1, implies 
Am = c, - c, is an integer for all k f 1. 

If p is irred and v E V is a weight vector with weight A then from Theo- 
rem 9.1 the possible weights of p are all of the form 

A + a, + a2 + . . . + a,, a , ,  . . . , a, roots. 
Thus the difference A - A' of any two weights of p can be expressed as a 
sum of roots ai = 1, - 1,. 

Definition. A linear functional 6,1, + b , l ,  + . . .  + 6,,Jm on Pa, is real 
if all the constants b j  are real. A real functional is positive if the first nonzero 
6, is positive, reading from left to right. A (possibly complex) linear functional 
A is greater than another functional A' if A - A' is a real positive functional. 

Since a sum of roots is always a real functional it follows that the differ- 
ence of any two weights of p is real. Thus the above definition defines a lexico- 
graphic ordering of the weights of p. We say A = C cjAj is greater than 
A' = C c j ' l j  (A > A') provided the first nonzero difference c, - c,' is posi- 
tive. With this total ordering it makes sense to speak of the highest weight 
of p. (Note that the roots a = A, - I ,  are positive provided k < 1. If  a > 0 
then -a is negative. Since the roots and zero are the weights of the adjoint 
rep, the highest weight of the adjoint rep is 1, - A,,,.) 

If A is the highest weight of the irred rep p then A + a cannot be a weight 
for any positive root a, since A + a > A. Thus, if v is a weight vector with 
weight A then E,v = 8 for all a > 0. A basis of weight vectors for Vcan be 
selected from the set of all vectors of the form 

(1.14) Em,&, . . . E,,v, k = 1,2,  . . . .  
If k = I ,  the vectors E,,v are zero unless a ,  < 0. For k = 2 the vectors 
Ea,Ea2v are zero unless a, < 0. Ifa, < 0 and a l  > 0 then 

( 1 )  E,,E,,v = (E,,E,, f ECIIIa2)v = *tE,,+,,v if a,  + a, f 0 is a root. 
(2) E,,E,,v = E,,E,,v = 8 if a,  + a,  # 0 is not a root. 
(3) E,,E_,,v = (E-,,E,, 4- H,,)v = Am4v. 

We have used the commutation relations (1.5) to derive these results. Pro- 
ceeding in this way, we see that all weight vectors (1.14) can be written as 
linear combinations of weight vectors 

(1 .15)  E-o,E-ol . . . E_,,v, /3, > 0, j = I , .  . . , I .  

Furthermore, we can express the vectors ( 1.14) as linear combinations of the 
vectors ( I .  15) by a procedure which depends only on the commutation rela- 
tions (1.5), not on p or V. 
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Clearly we can choose a subset of the vectors (1.15) as a basis for V. Each 
such basis vector corresponds to the weight A - Cf=, p, with p j  > 0. The 
only possible basis vector (1.15) with highest weight A is v itself. This proves 
the first statement in the following theorem. 

Theorem 9.3. The weight space belonging to the highest weight A in an 
irred rep p is one-dimensional. Two irred reps with the same highest weight 
are equivalent. 

Proof. Suppose p and p’ are irred reps of gl(m) on V and V’ ,  respectively, 
with the same highest weight A. Let v and v’ be weight vectors belonging to 
A in Vand V’. Weight vectors of the form 

(1.16) w = E-p,E-p2 . ’ * E-,v, W‘  = ELptELpz . . . E\,,v’, 

p j  > 0, span V and V’. We define a mapping S from V to V’ by 

(1.17) ~ ( $ , n , w , )  1 9 a,w,’, p = I ,  2 , .  . . , a ,  6 ,  

where corresponding vectors w, E V,  w,’ E V’ are of the form (1.16) and 
belong to  the same weight. It is not clear that this mapping is well-defined. 
Assuming this for the present, i t  follows that S is a linear mapping of V onto 
V’. Furthermore, the vectors E,wk and Em’wk‘ for any root a can be written 
as linear combinations of corresponding weight vectors w, and w,’ by a proce- 
dure based solely on the commutation relations. The expansion coefficients 
in the primed and unprimed spaces will be the same. Similarly Huwk = 

(A - C p,)”w,, Hafwk‘ = (A - C / ? j ) a ~ k ’  where A ~ C p, is the weight 
to  which w,  and w,’ belong. As a consequence, 

k = l  

(1.18) E,’S = S E , ,  H,’S = S H , ,  

for all roots a. Since S is nonzero it follows from ( I .  18) and the Schur lemmas 
that p and p’ are equivalent reps. 

To finish the proof we must verify that S is well-defined, i.e., that whenever 
X i = ,  akwk = 8 in V, then S(C akwk) = Ckp,, akwk‘ = 8’ in V’. Consider the 
set W’ of all vectors z’ = C akwk’ such that z = C a,w, = 8 in V. Clearly 
W‘ is a subspace of V‘. Furthermore, by (1.1 S), Ed’z‘ = E,‘Sz = SE,z, where 
E,z = C akE,w, = 8, so E,’z’ E W’ for any root a. Similarly, H,’z’ E W’. 
Thus W ’  is invariant under p‘. Since p‘ is irred, either W ’  = V’ or W ’  = I@). 
But v’ $! W’.  For, if C a,w, = 8 and C akwk’ = v‘ ,  each of the w,’ with 
nonzero coefficient a, must be a multiple b,v‘ of v’ since v’ is a highest weight 
vector. We can assume that each w, is a multiple b,v of v and C a , w , ‘  
= C akb,v’ = v‘ .  Thus C a,bk = 1 and C akwk = C a,bkv = v # 8 .  This 
contradiction shows that W’ = {e) and S is well-defined. Q.E.D. 
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Corollary 9.3. If A is a weight such that A + a is not a weight for all roots 
a > 0 then A is the highest weight. 

According to this theorem each irred rep p is uniquely determined by 
its highest weight A, In particular the highest weights can be used to label 
the irred reps. Let us determine the possible highest weights 

A = clA, + c Z l z  + . * . + ~,,,l,,,. 

In order that A be a weight it is necessary that the differences ck - cI be 
integers for all k # I. If A is a highest weight then A + a is not a weight for 
all a > 0, so A is the maximal weight on each a-ladder containing it. From 
Lemma 9.5 we have 2Aala, = A= 2 0. The positive roots are a = l ,  - A,, 
k < I, so Aa = ck - cI 2 0. These are the only restrictions on highest weights 
if we consider Lie algebra reps alone. However, if we restrict ourselves to reps 
of gl(m) which extend to global reps of G y m )  we get an additional require- 
ment on A. Let X = C AjXj  E Am and suppose v is a highest weight vector. 
Setting H = p(X), we have Hv = A(X)v. Then 

(1.19) exp X = (1.19) exp X = 

\ ”  
(1.20) 
It is clear that the addition of any integer multiple of 2ni to a l j  leaves the 
group element exp X unchanged. Thus, if the Lie algebra rep induces a global 
group rep, the addition of an integer multiple of 27ri to a l j  must leave ( I  .20) 
unchanged. This is possible only if the c j  are integers. 

We conclude that the possible highest weights are 
(1.21) A* = pill + p z A z  4- . . . + p,A,, p j  integer, 
(1.22) PI 2 P z  2 . . .  2 p , .  
The corresponding irred reps p will be denoted ( p l ,  . . . , p,).  We shall show 
that there exists an irred rep of GL(m) corresponding to each such set of 
integers p j  . 

Since GL(m) is not compact we cannot directly apply the theory of Chapter 
6 to show that every rep of GL(m) decomposes into a direct sum of irred reps. 
However, using a technique (the unitary trick) from Chapter 7 we can relate 
the reps of GL(m) to those of the (compact) unitary group U(m). The real 
Lie algebra u(m) of U(m) consists of all m x m matrices i63, where 63 is self- 
adjoint. Now every a E gl(m) can be expressed uniquely in the form 

(exp H)v = eA(X)v = exp(c,l, + . . - + c,A,)v. 

a = 63 + ie, 63 = $(a + at), e = --‘i a - at), z (  
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where 63 and C? are self-adjoint. Thus u(m) is a real form of gl(m) and there is 
a 1-1 relationship between complex reps p of gl(m) and p’ of u(m). In partic- 
ular, p‘ is the restriction of p to the subalgebra u(m) and p is the extension of 
p’ to the complexified algebra u(m). = gl(m). The reps p and p’ are simul- 
taneously reducible or irred and a decomposition of one rep into irred com- 
ponents induces a decomposition of the other. From Section 5.8, this 1-1 
relationship also holds between the finite-dimensional analytic reps of GL(m) 
and their restrictions to U(m). Since V(m) is compact we deduce that every 
finite-dimensional analytic rep of GL(m) [or gl(rn)] can be decomposed into 
a direct sum of irred reps (This result is false if the rep is infinite-dimensional 
or if it is not analytic.) 

Now we begin the construction of all analytic irred reps p of GL(rn). 
The one-dimensional reps 
(1.23) A --f (det A)p, A E CL(m), p an integer, 
are clearly analytic and irred. It follows from Corollary 5.3 that the induced 
rep of gl(m) is 

a - p  tr(a), a E gf(m) .  

Choosing X E fam as in (1.2) we see that each of these reps has a single weight 
(1.24) A = p ( A ,  + A, + . . .  + A,,,). 
Thus, we have constructed the reps ( p ,  . . . , p ) ,  p = 0, & 1 ,  . . . . 

We define the tensor product representation p @ pr of 6 on V @ V’ by 
(1.25) 

It is straightforward to verify that p @ p’ is indeed a rep of 6. In fact i t  is 
just the Lie algebra rep induced by the corresponding tensor product of 
group reps. 

Let p, p’ be reps of a Lie algebra 6 on the vector spaces V, V’ ,  respectively. 

p $3 p’(a)(v 0 v’) = (p(a)v> 0 v’ + v 0 (p’(a>v’>, 
c1 E 6, v E v, v’ t V‘. 

Lemma 9.6. Let p, p’ be reps of gl (m)  on Y and V ’ .  The weights of p @ p’ 
are all functionals of the form A + A‘, where A is a weight of p and A‘ is 
a weight of p’. 

Proof. Let {vj) be a basis of weight vectors for V and {v,’) a basis of weight 
vectors for V’. Then Hvi = Aj(X)vj and H‘v,‘ = Ak’(X)v,’, where A j ,  A,‘ 
are the weights of p and p’, respectively. Choose the vectors {vj 0 v,’} as a 
basis for V @  V’. The action of p @ p’(X) = H + H‘ on this basis is 
(1.26) p @ p’(X)v, @ Vk’ = (HVj) @ v,’ 4 vj @ (H’v,’) 

= (Aj(X) -1- Ak’(X)>vj @ v,‘. 
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Thus {v, @ vk’] is a weight basis with weights Aj  + Ak’. By the remarks 
preceding Corollary 9.1 these are the only weights of p @ p’. Q.E.D. 

Now suppose p is the irred rep (pl,  . . . , p m ) , p l  2 p z  2 . . - 2 P,, and 
p‘ is the irred rep (pl’, . . . , p,‘) .  Furthermore, suppose both p and p’ induce 
global irred reps of GL(m) on V and V’. Then p @ p‘ determines a rep of 
gZ(m) which extends to GL(m). It follows easily from the preceding lemma that 
the highest weight in p @ p’ is 

(1.27) A* = (p1 + p1’)Ji + ( ~ 2  + p2’)JZ + * . + ( p m  + P m ‘ ) J m ,  

i.e., the sum of the highest weights in p and p’. Furthermore, the weight space 
of A* has dimension one. Now p @ p’ can be decomposed into irred reps 
and the weight A* must belong to exactly one of the irred pieces. Since A* 
is the maximal weight of p @ p’ this irred piece must be the rep 

(1.28) (p1 + Pl’, . . . 9 p ,  + P,‘). 
Thus the existence of (pl,  . . . , p , )  and (pl‘, . . . , p,’)  implies the existence of 
the rep (1.28). We shall use this method to prove the existence of the irred 
reps (p l , .  . . , p , )  for all integers p1  > p ,  2 . . . > p , .  Unfortunately our 
procedure only proves existence. To obtain explicit expressions for the reps 
we fall must back on Young symmetrizer methods developed in Section 4.3. 

Consider the tensor product of p = (pl,  . . . , p,) and the one-dimensional 
rep p‘ = ( p , p ,  . . . , p ) .  In this special case p @ p’ 2 ( p ,  + p ,  . . . , p ,  + p )  
is irred.(Prove it!) The group operators of p @ p’ are 
(1.29) (det A)pT(A),  

where the T(A) are the operators of p. Thus we can limit ourselves to the 
construction of reps for which p1 2 p 2  2 . . . 2 p ,  2 0. The remaining 
reps can be obtained from (1.29). 

In Section 4.3 we determined all tensor irred reps of GL(m). Each such 
rep was determined by the Young frame [fl,fz, . . . ,f,], f, 2 f, 2 . . . 2 
f, 2 0. We will now explore the relationship between these reps and the reps 

. - . ,Prn)* 
Let us first consider the reps 

(1.30) [ l X ] = [ 1 , 1  , . . . ,  1 , O  , . . . ,  01, s = l , 2  , . . . ,  m, 

of GL(m). Here the rep space consists of completely skew-symmetric tensors 

(1.31) a i l f ~ . . . i 8  , l < i j < m .  

This space is -dimensional since the independent components for 

which i ,  < i ,  < - - < i, completely determine the tensors. The group ac- 
(3 (3 
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tion is 

As a basis for the rep space we choose the tensors a(k, . - . ks),  1 < k ,  < k ,  < 
- - < k,  I m. Here a(k, 1 . k,) is the skew-symmetric tensor with compo- 
nent u ~ ~ ' . * ~ ~  = 1 and all linearly independent components zero. It follows 
immediately from (1.32) and (1.19) that the a(k, . - - k,) form a weight basis 
for the rep. Indeed 
(1.33) Ha(k, . . . k , )  = (A,, + 1 k z  f * ' + AkJa(k, * ' k,),  

so the (T) weights of [l"] are 

(1.34) A,, + l k r  f . . . + A,,, 1 k, < k ,  < . . * < k ,  < m .  

Each weight has multiplicity one and the highest weight is 
(1.35) 
so [I,] F (1 , .  . . , 1 ,0 , .  . . , O )  = (1s). 

In the above discussion we have used facts about Young frames to con- 
clude that [lS] is irred. However, we can give an independent proof of irreduci- 
bility based on Theorem 9.2. Let 

1, + 1, + . * .  + A,, 

(1.36) A = n,1, + + n,1, + * + nll, + + n m l ,  

be a weight belonging to an irred rep p and let a = 1, - 1, be a root. Then 
SaA = A - Aaa is also a weight. A simple computation gives 
(1.37) S"A = A - (TI, - n,)(1, - 1,) 

= n,l, + - .  . + n,& + . . . + n,A, + . . - + nJ,, 
i.e., SaA is obtained from A by interchanging 1, and A,. Thus the group 
generated by the Weyl reflections is the group S, of all permutations of 
A , ,  . . . , 1,. If A is a weight belonging to p then every linear functional 
obtained from A by permuting A , ,  . . . , 1, is also a weight belonging to p .  

Let us apply this result to show that [l"] is irred. By (1.35), the highest 
weight of [l"] is A* = 1, + A, + . . . + 12 + 01,+, + . . . + O L , ,  so the 

rep space contains the irred rep (ls) .  Now (1") must contain the distinct 

weights (1.35) obtained by applying all permutations of A , ,  . . . , 1, to A*. 

However, dim[l"] = so [l"] (la). 

(3 
(7 

It is now simple to prove the existence of irred reps ( p , ,  . . . , p, )  for all 
integers p ,  2 p z  2 - 2 p , .  Consider the rep 
(1.38) [l']@kl @ [12]@'k2 0 . . * @ [1m]Qik ,  = p ,  
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where k , ,  . . . , k ,  are nonnegative integers. Using an  obvious generalization 
of Lemma 9.6 we see that the highest weight of p is A* = p , I ,  + p 2 1 2  + . . . 
+ p , , , l , ,  where 

p ,  = k ,  k ,  - i  . . .  + k ,  

P z  = k ,  + . . .  + k ,  

(1.39) 

P m - I  = k m -  I -1- km 

P m  = k m .  

Clearly p ,  > p ,  2 . . . > p ,  2 0. Since A* occurs in p with multiplicity 
one it follows that the irred rep ( p , ,  . . . , p , )  of GL(m) is contained in p with 
multiplicity one. We can obtain all reps (p,, . . . , p, )  with p ,  2 0 by choosing 
the integers k ,  = p , ,  k,- , = p , -  , - P , ,  . . . , k ,  = P ,  - P3 k ,  = P, - Pz. 
Then using (1.29) we can relax the requirement p ,  2 0. 

Let us now determine which rep ( p ,  , . . . , p , )  is equivalent to the irred 
tensor rep with Young frame [f, , . . . ,f,]. The elements of the rep space of 
[f,, . . . ,f,] are tensors 

1 ,  ' . .  if I 

J f z  
j ,  . . .  ' 

(1.40) FB, B = . 

I ,  . . * Zf,, 

with f, + f, + . . . + f, indices, each index taking the values one to  m. 
These tensors are defined in terms of a Young symmetrizer by (3.47), Section 
4.3. The action of the induced Lie algebra rep on each tensor component 
FB is easily shown to be 

( I  .4l) ( H F ) B  = ( I i ,  + . . . - 1 -  li, + l j ,  + . . . + A Z f n , ) P .  

Since the tensors FB are skew-symmetric with respect t o  interchange of indices 
in the same column of B, the highest possible weight vector is the tensor with 
component P o  = 1 and all linearly independent components zero. where 

1 1 . ' .  1 

2 2 . . '  2 
(1.42) B, = . 
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(see the discussion of FBo at the end of Section 4.3). Clearly, this weight vector 
corresponds to the highest weight A* = f , A ,  + f J 2  + . . . + f,,J,. Thus, 
[f, , . . . , f , ]  (f, , . . . ,f,). This completes the construction of irred reps of 
the complex Lie group GL(m). 

Since u(m) is a real form of gl(m) and U(m) is a connected subgroup of 
the connected group GL(m) it follows that there is a 1-1 relationship between 
finite-dimensional analytic reps of V(m) and GL(m). In particular every rep 
of GL(m) restricts to a rep of U(m) and every rep of V(m) extends to a unique 
rep of GL(m). One of these reps is irred if and only if the other is. Hence, the 
irred reps of U(m) are also denoted [f, , . . . ,f,],f, 2f2  2 . . 2 f,, where 
we allow the fj to be negative. 

The real Lie group GL(m) = GL(m, 6)  is 2m2-dimensional. As a basis 
for the real Lie algebra we choose the elements E k ,  and i E k l ,  where E,, is the 
m x m matrix with a one in row k,  column I and zeros everywhere else. Let 
p be a complex rep of gl(m) and set p(Ekl) : Ekl ,  p(iEk,) = F,,. If we introduce 
a new basis C,, = - iFkl), D,, = #Ekl + iF,,) for the complexified 
Lie algebra the commutation relations become 

(1.43) 
[c,,, Ck’l ’ ]  d l k ’ c k l ’  - 6 l ’ k c k ’ l  

[Dki, Dvr]  = JivDki, - 81~kDvi,  [ c k i ,  D ~ T ]  = 0. 

Thus, if we denote the real Lie algebra gl(m) by g/,(m), relations ( I  .43) 
show iglr(m)Ic gZ(m) @ gl(m). Hence the irred reps of [gl,(m)]’ can be 
expressed as products p‘ @ p“ of irred reps of gZ(m). 

Suppose the reps p’ ,  p” of gE(m) induce matrix reps p‘(A) ,  $’(A) of GL(m). 
Then reasoning exactly as in (3.3), Section 8.3, we see that p’  @) p” induces 
the matrix rep p‘ ( A ) p ” ( x )  = ( p ’ ( A ) k l p ’ ’ ( i ) k , l , )  of GL,(m). Even if p‘ and p” 
do not induce global reps of GL(m), p’ @ p” may induce aglobal rep. Indeed 
the reps A + (det A)” and A + (det 2). are only local for arbitrary a E 6. 
but their product A ----t (det A)“(det 2). = I det A 1 2 ”  is global. We conclude 
that the analytic irred reps of the real Lie group GL,(m) are 
(1.44) 9 f m ’ l ,  

where f, 2 f2 2 . 
I det A I “ * [ f , ,  f 2 ,  . . . , f , l  0 [fl’, f z ’ , .  

2 f , ,  f,’ 2 f , ’  2 2 f,,’, c E Q. 

9.2 Character Formulas 

Since U(m) is a compact group we can use the techniques of Chapter 6 
to deduce its simple characters and their orthogonality relations. The follow- 
ing results are due essentially to Weyl [3]. 

The matrices X k ,  k = 1, . . . , m, (1.2), form a basis for the abelian sub- 
algebra brn of gl(m). Similarly the matrices i X ,  form a basis for the real 
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abelian subalgebra &,,, of u(m):  

Here i,,, is the Lie algebra of the abelian subgroup A, of U(m):  

Since a unitary matrix can be diagonalized by a unitary similarity trans- 
formation, every A E U(m) is unitary similar to a 0 t A,, where the elmk are 
the eigenvalues of A :  

(2 .3 )  A = U@U-‘ ,  U E U(m). 

Thus A is conjugate to a n  element of A,,, . Furthermore, distinct CP, cD’ E Am 
are conjugate if and only if they have the same diagonal elements (in a differ- 
ent order). Thus we can use the parameters q l ,  . . . , Q,,,, 0 < q j  < 2 x  of 
@ to denote the conjugacy classes of U(m). Since a character x is constant 
on conjugacy classes we can write x - x(ql ,  . . . , Q,,,), where x is a symmetric 
function of its m arguments. 

To compute the simple characters we choose parameters on U ( m )  as 
follows: The first m parameters v l ,  . . . , q,,, pick out the conjugacy class in 
which an element lies and the remaining m2 - m parametrize the elements 
in a fixed conjugacy class. 

Given A E U(m) we assign the parameters q I ,  . . . , qm from (2.3). For 
definiteness we assume Q, q Z  5 . . . 2 p m .  We can obtain all elements 
in the conjugacy class of A by forming UcDU-’ and letting U run over U(m). 
This suggests that the elements in the conjugacy class can be parametrized 
by the matrices U. However, U is described by mz real parameters, so we 
would obtain m2 + m parameters for A E U(m).  Since U(m) is m2-dimen- 
sional, some of these parameters must be redundant. 

The redundancy occurs in the choice of U .  Suppose the eigenvalues of 
0 are distinct. Then UcDU-I -- VcDV-I for U ,  V E U(m) if and only if 
U = V@’ for CP’ E A,. The m parameters of cD’ are redundant so the ele- 
ments of a conjugacy class are uniquely determined by m2 - nz local param- 
eters whose exact choice need not concern us. I f  two eigenvalues of cD are 
identical then m 4- 2 parameters of U are redundant. (Prove it!) Since cD has 
111 - 1 independent eigenvalues in this case, a matrix A with two eigenvalues 
identical is determined by (nz’ ~ in - 2) + (m  ~ I )  = m2 ~ 3 parameters. 
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Thus the submanifold of such matrices has three dimensions less than the 
manifold; it does not affect the invariant measure. 

Let us assume that in some neighborhood W of A, E U(m) we have 
(2.4) A = UcDU-', A E W, 

where U = U ( b , ,  . . . , b,,-,), cD = cD(p,, . . . , p,,,), and the pj are distinct. 
The pi and bj define local coordinates for A .  To determine the invariant 
measure on U(m) with respect to this coordinate system we choose a real 
analytic curve A(r) in Is, and compute A-'k E u(m). The parameters bj( t ) ,  
pj(t) are analytic functions of t ,  so from (2.4) we obtain 

(2 .5 )  
or  

(2.6) 
Here A - ' A  = a, U-lU = 'u, and W'cb = & are  elements of u(m), i.e., 
these matrices are skew-Hermitian. Furthermore, U - ' ( A - l A ) U  = B - I b  = 

63 E u(m), where B(t )  = U-'A(t)U E U(m). Writing (2.6) in terms of matrix 
elements, we obtain 

A - ' A  = UcD-'U-'(UcDU-' + U b U - l  - U@U-'UU- ' ) ,  

U-'(A-'k)U = @-'(U- '@D - U - ' O  + W'b.  

(2.7) @ j k  = [ ( € j / € k )  - l]'ujk + j @ j S j k >  

where ej = e ' p J .  Thus, 
(2.8) ajk = [ ( f j / c k )  - l]'ujk, j f k ,  ajj = i g j .  

A convenient basis for u(m) is given by iX,, k = 1, . . . , m, and E j k  - 
E k j ,  i ( E j ,  + & k j ) ,  k # j ,  k , j  = 1, . . . , m. From Section 6.1, if U(m) has 
local coordinates t ,  , , . . , t,! then the invariant measure on U(m) is given 
(up to a multiplicative constant) by 

d A  = VA(lI  . . . , t,.) dt ,  . . . dt,,, 
where 
(2.9) V, = Idet(ajk)l, A - '  dA/dtj = C ajkCt, 

and {ak] is the basis for u(m) given above. Furthermore, since U is unitary 
and B - l B  = U-'(A-'k)U it follows from the proof of Theorem 6.1 that 
V,, = I det (p,") 1, where 

Using the parameters q,,  . . . , pmr b , ,  . . . , b,,_, as well as expressions (2.8) 
and (2.10) it is straightforward to verify the formula 

k 

(2.10) 63 T= B - '  dB/dtj = C pikak. 

(2.1 1) dA= 1 ( f j / e k ) -  lldw,dp1 . . * d p , , , ,  
j j e k  

where 
dw,= W ( b , , .  . .  , b,,,_,)db, ' . .  db,s-,,, 

depends only on the b-parameters. 
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is skew-symmetric in its m arguments. 

on conjugacy classes. Performing the b-integration, we find 
Consider a continuous functionf(q,, . . . , qm) on U(m) which is constant 

+.. 

where the measure do, has been normalized so that 1 dw, = 1 .  Thus, the 
inner product on Lz(U(m)j of two functions f, g constant on conjugacy 
classes is 

(2.14) (f, 8) = V-l jzK. . . j Z r f ( p , ,  . . - , p , ) i ( y l , ,  . . . , qm) AA dq, . . ' dq,, 

where V = J : K  . . . J z n  AA dq, . - * dq,. [Note: the integral in (2.14) gives 
an answer m !  times too big since a conjugacy class is determined by q ,  2 
qz 2 . . . 2 q m  and f and g are symmetric. However, V is also m!  times too 
large, so the factor m!  cancels.] 

Since the characters of U(m) are constant on conjugacy classes we can 
use (2.14) to compute the inner product of two characters. Let x be a simple 
character and let v I ,  . . . , v, be a basis of weight vectors for the corresponding 
rep, with weights A , ,  . . . , As, respectively. In terms of this basis the matrix 

0 

/I(@) of @(PI, . . . , qm>, (2.21, is 

(2.15) 

Here exp[iAj(ql, . . . , q,)] = 
By definition, 

. . . c p ,  where A j  = p l y l  + . . . + p,rp,,. 

(2.16) 

where the integer c ~ ~ . . . ~ ~ ~  is the multiplicity of the corresponding weight in 
the rep. Since x is a symmetric function of q I ,  . . . , q, the integers c, ,... ,,,, 
are symmetric in p I  , . . . , p,. Thus a weight A' obtained from A by permut- 
ing the coefficients pI  , . . . , pm has the same multiplicity as A. Recalling the 
definition of the Weyl reflection S" we find the following result. 

z(q,, . . . , pm) = t r  /I(@) -- c c ,  ,... p",€? . . . €2, 
PI 
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(2.19) 

Lemma 9.7. If A is a weight and A' = S 4 A  for some root a then A and A' 
have the same multiplicity. 

€2 E'Z . . . & 

If x is the character of the rep [ f,, . . . , f,], f, 2 f, 2 . . .2 f,, then the 
term of highest weight on the right-hand side of (2.16) is E { !  . . and the 
coefficient of this term is c ~ ~ . , . ~ ~  = I .  

Now consider the product ( = xA. Since x is symmetric and A is skew- 
symmetric, t; is a skew-symmetric function of E , ,  . . . , E , .  Furthermore, 

(2.17) c = C d 9,...g . . . E $ ,  f j  = e'", 

where the dq,...qm are integers. The highest-order term in (2.17) is clearly 

I ,  > I, > . . . > 1,. Since c is skew-symmetric and contains efi . . €2 it 
must also contain the terms 

is a finite sum 

1 . € { I + , -  I e f p + m - 2  . . . efm.-~+ I 1.. = €lteh . . . €2, where l j  = fj + m - j and m - 1  e m  

and it follows easily from (2.18) that 

= (21C)mm! a,,,,, . . ' a,"&- 
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In  particular 

and 

where we have used (2.20) and the relation r = x A .  Since ,y is a simple char- 
acter, (x, x) = 1 and c' = c" = . . . = 0. 

Theorem 9.4. The character of the irred rep [f,, . . . ,f,] of U ( m )  is 
(2.23) 
where 1, =f, + m ~ j .  

Expression (2.23) makes sense only if no two of the E ,  are equal, since 
otherwise both the numerator and denominator are zero. However, from 
(2.16) we see that x is defined and continuous for all E , ,  . . . , on the unit 
circle. Thus, we can compute the character for equal E ,  by taking an appro- 
priate limit in expression (2.23). 

For example, the dimension N ( f , ,  . . . ,f,) of the rep [f,, . . . ,fm] 1s just 
x ( ; ; : : < m , , .  To obtain this value of the character we set E ,  : 1 in  (2.23) 
and pass to the limit as c - I .  Then 

X f l " ' f - ( E i ,  . . . , 6,) = I &I, . . . , elrn 111 P - ' ,  . . . , E ,  1 I = t /A,  

(2.24) N(f,, . . . , f,) = lim { [ (6') -- &)]/[n (em-' - Ern k ) ] }  
c-I j ~ k  I' k 

= A ( f l , .  . . , f , ) /A(m - I ,  m - 2 , .  . . , 1,O) 

since & - &k = - e'"'* . -t i(1, - fk)p as p - 0. Note that N ( f ,  + p ,  
. . . ,f, + p )  = N (  f,, . . . ,f,) for any integer p .  This is in agreement with 
the observation 

[f, -t p , .  . . > f, t PI r" [P"I 0 u - 1 9 . .  . > f"ll 
where [p"]  is one-dimensional. 

If the requirement that I E ,  I = 1 is relaxed, expression (2.23) also defines 
the character of the irred rep [f,, . . . ,f,] of GL(m). Indeed, if A E GL(m) 
has m distinct eigenvalues e l ,  . . . , em then there exists B E GL(m) such that 

Thus the conjugacy class to which A belongs can be described by the param- 
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eters e j .  If p is a matrix realization of [f, , . . . , f,] then 
(2.26) 

where c ~ ~ . . . ~ ~  is the multiplicity of the weight A = C p j l z j .  This expression 
is exactly the same as (2.16) except that the e j  need not have modulus one. 
Thus, formula (2.23) must be valid for Xf i" ' f " (e , ,  . . . , em). If the eigenvalues 
of A are not all distinct it may not be possible to diagonalize A by similarity 
transformations. However, we can always find a sequence of matrices {A'"' 
E GL(m), n = 1,2 ,  . . .} such that each A'"' has m distinct eigenvalues 
c y ) ,  1 < , j  I m, and A'"' --t A,  c y )  - e j  as n --t w. Since f i " ' f "  is continu- 
ous we have ,fl"'f-(A) = limn f u  ~fl"'f-(A'")) = limn-.- ~f'"'f=(e(") 1 , . - * . ,  
eg)) and the character is given by an appropriate limiting form of (2.23) even 
if the eigenvalues of A are not distinct. 

f l - - f m ( e , ,  . . . , em) = tr p(A) = tr p(D) = C c,, ...,, epl - . . c;m, 

9.3 The Irreducible Representations of GL(m, R),  SL(m, E), and SU(m) 

Since gl(m, R) is a real form of gl(m, 6) there is a 1-1 relationship between 
reps of these two Lie algebras. Every analytic rep of the complex Lie group 
GL(m) restricts to an analytic rep of the real Lie group GL(m, R) .  Conversely, 
an analytic rep of GL(m, R)  uniquely extends to an analytic rep of the com- 
plex Lie group GL(m). Thus, the irred reps of GL(m, R )  can be denoted 

(3.1) [f,,*..,f,l, f, 2f22 . . .  2f,. 
These are the restrictions of the corresponding reps of GL(rn) to GL(m, R).  
Every finite-dimensional analytic rep of GL(m, R )  can be decomposed into 
a direct sum of irred reps. 

(3.2) GL(m, R)+ = { A  E GL(rn, R ) :  det A > 01 

is slightly different because some Lie algebra reps of gl(m, R )  induce global 
reps of GL(m, R)+ which do not extend to GL(m, R) .  Indeed, the irred reps 
of GL(m, R)+ are of the form 

(3.3) 

Next we consider SL(m) = SL(m, E), where m 2 2. The restriction of 
the tensor rep T E [f,, . . . ,f,],f, 2 f, 2 . . . 2 f, 2 0, of GL(rn) to SL(m) 
yields a matrix rep of SL(rn) whose matrix elements are homogeneous poly- 
nomials of order f, + . . . + f, : s in the matrix elements of A t SL(m). 
If T' = TI SL(rn) then for any B E GL(rn) we have T ( B )  = (det B)" "T'(A), 
where B = (det B)*lmA. Note that det A = I ,  so A t SL(rn). Since T is irred, 
it follows from the Schur lemmas that T' is irred. Thus, the tensor reps 
[f,, . . . ,f,] of SL(m) are irred. 

The rep theory of the group 

(det A)' @ [f,, . . . , f,], c t 6 ,  0 I Re'c < 1. 
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However, these reps are no longer pairwise nonequivalent. Indeed we have 
shown earlier that 

( 3.4) [fI -t ~2 . * .  9 L n  + PI [ ~ “ l  0 [fl, . . .  7 fml 

for GL(m), where [ p ” ]  is the rep 

(3.5) [ p ” ] :  B -+ (det B)p,  B t GL(m), 

and p is an integer. Clearly, on restriction to B E SL(m) we have [ p ” ]  LO]. 
Thus, the reps with signatures [f, + p ,  . . . ,fm + p ]  and [f,, . . . , f,] are 
equivalent for all integers p .  By choosing p = - f ,  we can always assume 
that the irred reps take the form [ g ,  , . . . , g , , _ ] ,  01, g ,  2 g ,  2. . . 2 g,_ 2 
0. We shall adopt a Lie-algebraic approach to verify that these are the only 
analytic irred reps of the complex Lie group SL(m) and that they are pairwise 
nonequivalent. 

The rep theory of the Lie algebra d ( m )  is almost identical to the theory 
for gl(m) developed in Section 9.1. As we mentioned earlier, d ( m )  is the 
(m2 - I)-dimensional Lie algebra of all m x m complex matrices with trace 
zero. The set of all diagonal matrices 

forms an ( m  - 1)-dimensional maximal commutative subalgebra t%,- , of 
s/(m). Let E,, be the m x m matrix with a one in row / I ,  column j and 
zeros everywhere else. The m2 - I matrices E,,, 1 5 h , j  2 m, h # j ,  and 
X, - X , , j  = 1,2, . . . , m - I ,  form a basis for sl(m). We easily obtain the 
commutation relations 

(3.7) 

Just as in Section 9.1, we consider the adjoint rep X + ad X of !an2-, on 
sl(m). According to the second of expressions (3.7) the element E,, is a simul- 
taneous eigenvector for all operators ad X ( A , ,  . . . , A,) with eigenvalue 
a ( X )  = A ,  - A,. As before we call the linear functional a(%) a root and the 
corresponding eigenvector E,, = E,  the branch belonging to root a. Set 
X, = X, ~ X, t A, , for a = Ak ~ A,.  Then the E,  and X, span d ( m )  
as a runs over the m(m - I )  distinct roots. 

3 b ~ k E h l  - 8 1 h E k ~  1 [X? X’] z, 
X, X’ E lant- ,  . [X, &,,I ~ (1, - A,)&,,, 

Lemma 9.8. 
(a) 
(b) 

If a is a root then -a  is a root. 
[E, ,  E- , ]  = X, # Z .  
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(c) [ E , ,  E,] = Z if a + /3 is not a root and a # -p. 
(d) [ E , ,  E,] = & E , + ,  if a + p is a root. 
(el [X, &,I = a(X)Ea, [%a, &,I = 28,. 

This lemma and its proof are identical with Lemma 9. I .  The only differ- 
ence between these results and the corresponding results for gl(m) is that 
A ,  + . . . + 1, = 0 in (3.6). We can consider A , ,  . . . , I , - ,  as independent 
variables while 1, = -1, - . . - A,-, . 

Let p be a finite-dimensional rep of sl(m) on the vector space I/ and set 
p ( X )  = H, p(E,) = E, .  Then the operators { H ,  E,} satisfy the commutation 
relations given above. Furthermore, the proof of Theorem 9.1 shows that V 
has a basis of weight vectors. The construction of a-ladders of weights and 
Theorems 9.2 and 9.3 carry over immediately to reps of sZ(m). In particular 
each irred rep p is uniquely determined by its highest weight A*(1,, . . . , 
A,,-,) which has multiplicity one. (We write each weight in the unique form 
A = q,1,  + . . . + 4,- ,A,-, and adopt the usual lexicographic ordering.) 

Let us determine the possible weights 

If A is a weight then 2A,la, is an integer for each root a = 1, - A,, where 
A, = A(%,) = p k  - p l ,  a, = 2. For 1 < k, I I m - 1 we find pk - p ,  
= q, - q, is an integer. However, if k = 1, . . . , m - I ,  I = m then pk - 

p ,  = qk is an integer. Thus, the possible weights take the form A = C q J , ,  
where the q j  are integers. 

Now supppose A* = C qjAj is a highest weight vector. Then A,* 2 0 
for all positive roots a. The positive roots are a = 1, - A,, 1 2 k < I I 
m - 1, and a = A ,  - 1, = 1, + A ,  + . . . + A,-, . Thus, if A* is maximal 
then q, - q, 2 0 for k < I and qk 2 0, i.e., q ,  2 q2 2 . . . 2 q m - ,  2 0. 
We shall show that each such linear form actually is the maximal weight of 
an irred rep p of sl(m) which defines a global rep of SL(rn). 

Consider the irred rep [f, , . . . ,f,] of GL(m). Its highest weight is A* = 

f,1, + . . . + f,1,. It is characterized by the fact that A* + a is not a weight 
for any root a > 0. If we restrict the rep to SL(m) the weights A = p , A ,  + 
. . . + p,A, on Pa,,, will restrict to weights A’ = ( p ,  - p,)A, + . . + 
( p , -  , - pm)Am- , on Pa,-, . Furthermore, the positive roots a of gl (m)  restrict 
to  the positive roots of sl(m). Thus, (A’)* + a is not a weight for any root 
01 > 0 of sl(m) and 

(3.9) 
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is the maximal weight belonging to [ , f l ,  . . . , f m ]  I SL(m). Since this rep is 
irred we see again that 

and q , A ,  + . . . -t 4,- ,L,,-, for integers q ,  2 q2 2 + * .  2 q,n-l 2 0 is the 
highest weight of the rep [ q , ,  . . . ,9,- , ,  01. 

The Lie algebra su(m) is a real form of sl(m) and there is a 1-1 relationship 
between analytic reps of the complex group SL(m) and those of SU(m). Since 
SU(m)  is compact we can use the unitary trick to  conclude that every rep of 
SL(m) can be decomposed into a direct sum of irred reps. Furthermore, the 
irred reps of SU(m)  are just the restrictions of the reps [f, , . . . , f,- , , 01 to 
SU(m). 

The simple characters yfi"'f* of SLl(m) are the restrictions of the charac- 
ters (2.23) to SU(m), i.e., yf1"'f" = X f i - . f m  with e ,c2  . . . E ,  = 1 .  It follows 
from remarks made above that y f i . . . f m  = y f l + p a  . , f m ' p .  For example, we 
compute the simple characters y f i f 2  of SU(2). Here c = E ,  = 6 ; '  and 

[ f l ,  . . . > f m l  [ f ,  - f m  9 . . > f m  - 1 ~ f m  3 01 

(3.10) 

)/(€ ~ 6 -  I )  
= ( & f t - f ? + I )  - € - ( f , - f z i  I )  

~ (sin[(f, - f, -t 1 )z/2ll/sin(.r/2), 

D(1fi-f21 2 1 .  

where E = e" 2 .  This is in agreement with (2.24), Section 7.2, and shows that 
(3.1 1) 

We can also consider SL(rn) as a real 2(m2 ~ I)-dimensional Lie group. 
In analogy with the theory of the real group GL(m) one can easily show that 
the analytic irred reps of the real group SL(m) are 

[ f ,  , f , ]  z [ f ,  -- f,, 01 

(3.12) [ f ,  3 .  . . , f m -  ,901 (8 [K. . . 9 g m - ,  3 01. 
Finally we note a general method for decomposing reps of the complex 

group SL(m) into irred parts. Let p be an analytic rep of SL(m) such that 
(3.13) 
where the reps on the right-hand side are listed in lexicographic order. Then 
p contains the highest weight . f , A ,  + . . . + f m -  ,A,,- I with multiplicity a , .  
Suppose we have a list of the weights of p,  each weight listed as many times 
as its multiplicity in p.  Remove all the weights corresponding to  a ,  copies 
of [f,, . . . , f m - , ,  01 from the list. Then the highest weight remaining will be 
g l l ,  + . . . + g, , - ,Am- , with multiplicity a,. Next remove all weights corres- 
ponding to a, copies of [ g , ,  . . . , g,_ ,, 01. We can continue in this manner 
until all the weights of p have been removed. The process is useful when we 
know the weights of p and want to derive the decomposition (3.13). 

p Z a,[fl, . . . , f m -  ,, 01 0 a 2 k 1  . . . , g m -  01 0 . . . , 
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As an example we rederive the Clebsch-Gordan series for reps of SL(2). 
The weights of[f , ,Ol  a r e n l ,  + Cf, - n>n, = ( 2 n - f f , ) l , ,  n =o, 1 , .  . . , f l ,  
as we see from (1.41) and A ,  + A, = 0. By Lemma 9.6, the weights of p 2 
[f,, O ] @ [ g , ,  01 are (2n + 2p -f, - g , ) l , ,  n = 0, 1, . . . , f,, P = 0, 1, . . . ,g,. 
Assumingf, 2 g ,  we see that the weight 2s - f, - g, has multiplicity s + 1 
i f O ~ s ~ g , , g , + l i f g , + l I s ~ f , , a n d f , + g l + l  - s i f f , + l I  
s gf, + g , .  The highest weight of this rep is (f, + g , ) l ,  with multiplicity 
one. Thus, p contains [f, + g ,  , 01. If we remove the weights of [f, + g , ,  01 
the highest remaining weight is (f, + g ,  ~- 2)1, with multiplicity one. Thus 
p contains [f, + g ,  - 2, 01. Continuing in this manner we obtain the reps 
[f, + g ,  - 2k, 01, 0 k I g , ,  each with multiplicity one. At this point all 
weights of p are used and the process ends. Thus 

(3.14) 

which is the Clebsch-Gordan series (2.26), Chapter 7. 

9.4 The Symplectic Groups and Their Representations 

Recall that the symplectic group Sp(m) consists of all 2m x 2m complex 
matrices A such that 
(4.1) A'JA = J ,  

where J is the skew-symmetric matrix (4.1), Section 5.4. (More generally, 
we can consider Sp(m) as the set of all linear operators A on a 2m-dimensional 
complex vector space V such that (Au, Av) = (u, v) for all u, v E V ,  where 
(-, -> is a nonsingular skew-symmetric bilinear form on V :  see Weyl [3].) 

From Theorem 5.15, the Lie algebra sp(m) of Sp(m) is the space of all 
2m x 2m complex matrices a such that 
(4.2) a' = JCt J .  

Setting 

where the aj are m x m matrices, we find 
a,' = -a4, a,' = a,, a3t = u 3 .  

Thus, sp(m) is (2m2 + m)-dimensional. Denoting by E j k  the matrix with a 
one in rowj ,  column k and zeros everywhere else we obtain the basis 

(4.3) ' j k  - & k + m , j + m ,  ' j , k + m  ' k , j + m ,  ' j + m , k  + ' k + m , j ,  

l S j , k < m .  
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The set A, of all diagonal matrices 

(4.4) 

forms a maximal abelian subalgebra of sp(m). Here X j  = E j j  - &,+,,,,+,,,. 
The adjoint rep of Am on sp(m) is 

IX> ‘ j k  - ‘ k + m , j + m l  = ( n j  - l k ) ( E j k  ~ ‘ k + m , j + m )  

lX? & j , k + m  t- ‘ k , j  i m1 = ( l j  4 l k ) ( E j . k + m  f ‘ k , j + m )  

L X ?  & j + m , k  + & k + m , j ]  ( - A j  ~ lk)(Ej+m,k & k i - m , j ) ‘  

(4.5) 

Thus the roots are a = A j  - Lk ( j  # k )  with branches E, = ‘ j k  - E k + m . j + m ,  
a = + 1, ( j  I k )  with branches E, = E j . k + m  + E k , j + m .  and a = -1, - 
1, ( j  5 k )  with branches E, = & j + m , k  + E k + m , j .  There are 2mZ distinct roots 

a = * A j  & A,, j < k ,  a = f2Aj.  
By tedious computations we can verify the relations 

[X, X’] = 2, [X, E,] = a(X)E,, 

z if a + p is nonzero and not a root, 
[E,, EBJ = N,,8 , , ,  if a + p f 0 is a root, 

Here N , ,  is a nonzero constant depending on a and p, and 

(4.6) c. if a = -p. 

It follows from (4.6) that the proofs of Theorems 9.1-9.3 go through 
virtually unchanged for reps p of sp(m). If A = Cpillj is a weight then 

f p j & p k  if a = & A j &  j < k  
if a = f21,. 

(4.8) A, = A(%,) = 

In particular, 

for all roots a. 
If A is a weight then 2A,/a, is an integer and S a A  = A - (2Aa/aa)a is 

a weight. Writing A = C p j l Z j ,  we see 2A,/a, = An and from (4.8) the 
p j  must be integers. Furthermore, S a A  = C p J ,  - ( i p ,  * p,)(&Aj + A,), 
so S a A  is obtained from A by interchanging I Z j  and 1, if a = l j  - 1, or  by 
replacing A j  with -1, and 1, with -Ai if a = *(Ai  + A,), j < k .  If a = 

f 2 A i  then SnA = C p I l i  - 2pj1 , ,  so SaA is obtained from A by replacing 
l j  with - A j .  The Weyl group has order m!2” .  

From Theorem 9.3 an irred rep p of sp(rn) is uniquely determined by its 
highest weight A* which occurs with multiplicity one. Furthermore, An* 2 0 

(4.9) a, = a(X,)  = 2 
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for all positive roots a. With the usual lexicographic ordering, the positive 
roots are I j  - A,, A j  + I k , j  < k ,  and 21,. From (4.8), A* is a highest weight 
only if p ,  2 p ,  2 . + .  2 p ,  2 0. Thus, the possible irred reps of sp(m) 
can be denoted 
(4.10) ( P I , .  . . , p , h  p, 2 * - *  2 P,20. 
We will show that there exists an irred rep corresponding to each signature 
(4.10). Furthermore, we will show that each Lie algebra rep induces a global 
group rep of Sp(rn). 

Since Sp(m) is a subgroup GL(2rn), we can construct the rep [f,, . . . , f,,,,] 
of Sp(m) by restriction from the corresponding rep of GL(2m). However, 
the restricted reps may not be irred. 

First we consider the natural action of Sp(m) on the2rn-dimensional vector 
space V, i.e., the rep [l]. The weights of this rep are easily see to be + I j ,  
1 < j  m, each with multiplicity one, and the highest weight is I ,  .'This 
rep is irred since, applying the Weyl reflections Sa to I , ,  we get all of the 
weights * I j .  Thus, (1,0,. . . ,0) = (1) r [I]. Similarly, it follows from (4.4), 

(1.19), and (1.33) that the -dimensional rep [I,], I = I ,  2, . . . , rn, has 

weights 
(4.11) I i L + A i 2 +  * . - + I i , ,  1 < i , < i z < . . . < i , < 2 r n ,  

each with multiplicity one. Here A ,  = -Ak if ij = m + k ,  
highest weight is clearly 

r) 
k > 0. The 

(4.12) A ,  + I ,  + ' . .  + A,. 

At this point we assume that every finite-dimensional analytic rep of 
Sp(rn) can be decomposed into a direct sum of irred reps. (We will prove 
this later.) Then from (4.12) there exist irred reps of Sp(rn) with signature 
(ll), 1 15 rn. (Note that we use the reps [I,] of CL(2m) only for 1 < I < 
rn. The reps for rn + 1 < I < 2rn have been omitted.) 

Now consider the rep 
(4.13) 

where k ,  , . . . , k ,  are nonnegative integers. The highest weight of p isp,A, + 
. . . + p,A,, where 

[ l ]@i" l  @ [ 1 2 ] @ , 2  0 . . . 0 [l,]@,", r p ,  

pi  = k ,  i- k z  + * .  . 4- k, 

Pz = k ,  - 1 -  . . . -1- k,,, 

(4.14) 
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and this weight occurs with multiplicity one. We can construct the irred rep 
with signature ( p , ,  . . . , p,) by choosing k ,  = p ,  - p 2 ,  k ,  = p 2  - p 3 ,  
. . . , k,- = p, -  I - p , ,  k ,  = p m .  Thus all our candidates for highest weights 
actually occur in the irred reps of Sp(m). 

Our construction has several gaps. We have not shown that every rep of 
Sp(m) can be decomposed into a direct sum of irred reps. Second, using 
Lie-algebraic methods we have computed only reps of the connected compo- 
nent of the identity in Sp(m). If Sp(m) has more than one component [like 
O(m) or  L(4)] then there are more irred reps than those we have listed. 

If A E Sp(m) then A'JA = J .  Taking the determinant of both sides of 
this equation, we have (det A ) ,  = 1, or det A = i l .  If there exist group 
elements for which det A = - 1 then such elements are not in the connected 
component of the identity. We will show that Sp(m) is connected and det A 
= +1 always. 

The group USp(m) = Sp(m) n U(2m) is a subgroup of Sp(m). Further- 
more, as the reader can verify, its Lie algebra usp(m) is a real (2m2 + m)- 
dimensional subalgebra of sp(m). Thus, usp(m) is a real form of sp(m) and 
there is a 1-1 correspondence between complex reps of these Lie algebras. 
It follows that the irred reps ( p  I ,  . . . , p, )  of Sp(m) constructed above, restrict 
to irred reps of USp(m). We will soon show that IISp(m) is connected, so its 
irred reps are uniquely determined by the irred reps if usp(m). Since USp(m) 
is compact, every analytic rep of this group or every finite-dimensional com- 
plex rep of its Lie algebra decomposes into a direct sum of irred reps. This 
proves that every rep of sp(m) decomposes into irred reps. 

We now examine the structure of USp(m). The elements A of this group 
are both symplectic and unitary. Thus A preserves the forms 

(4.15) y'Jx,  I"x 
simultaneously, where x is the column vector ( x l , .  . . , x,, x I ' ,  . . . , x,'). 
Indeed (Ay)'J(Ax) = y'(A'JA)x = y'Jx with a similar proof for y'X. Since 
A is unitary, i t  has 2m eigenvalues c,,  . . . , c,, each of modulus one. Let 
x be an eigenvector of A with eigenvalue c:  A x  = cx. Now (A- ' ) 'J  = J A  
since A is symplectic and (A-I) l  = 2 since A is unitary. Thus, 2 J  = J A  and 
JAx ~= eJx = ~ J x .  Taking the complex conjugate, we obtain 

(4.16) A ( J X )  = F(JX). 

Thus, if x is an eigenvector of A with eigenvalue c then JX is an eigenvector 
with eigenvalue F. 

Let x"), . . . , x") be an ON basis for the eigenspace C?, of A (usual scalar 
product [x'j1It.V) = d j k ) .  Then the J P ,  1 I, form an ON set in C?, 
since ( J X ( j ) ) t ( J X l k ) )  = - [ X c j ) ] t J 2 x ' k J  : [ X c j ) ] t ~ c k )  = d j k .  Similarly, an O N  
basis {y(jl} of C?, is mapped into an ON set ( J j l j ) ]  in e,. I t  follows that dim 
e, = dim ef = I and { J P ]  is an ON basis for ei. 

j 
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If E is a complex eigenvalue then C # E ,  {x(j)), 1 < j  I I, is an ON basis 
of (9, and { J P }  is an ON basis of ei. Now suppose E is real, i.e., c = f I .  
Let x(I1 be an element of (9, with length one. Then JZ"' is a unit vector in (9, 
which is perpendicular t o  x"'. Indeed ( x ' ~ ) ) ~ ( J ~ ~ ) )  = (x"')'Jx"' = 0 since J 
is skew-symmetric. Thus {x"', J.?I') is an ON set in (9, . If this set is not a basis 
we can find a unit vector x ( ~ )  E e, orthogonal to the above set. A simple 

1, 2) is an  ON set. Continuing in this fashion we eventually obtain an ON 
basis ( x ( j l ,  J P : j  = 1, . . . , I }  for e,. In particular, the dimension of (9, 

is even for E real. 

computation shows that J 2 2 1  is also a unit vector in e, and {x'jJ, J.?j" . J =  ' 

Lemma 9.9. The 2m eigenvalues of A E USp(m) occur in pairs: c l ,  . . . , 

J P 1 ' ,  . , . , J P 1  of eigenvectors. 
E , ,  C l ,  . . . , F , .  There exists a corresponding ON basis x'l), . . . , X ' m )  , 

Let f,, f,' be the vectors in V with components x"', -Jj?), respectively, 
for 1 < j  < m. Then the If,, f,') form an ON basis for V with respect to the 
usual inner product, and 

(4.17) x )  

( ~ ( l ) ) t J ~ ( k )  = ( x 0 ) ) t m  = 0 

( - J - ( J l  t J ( - J x ( k ) )  = ( X ( / ) ) t J X [ k J  = 0 

( - p ) t J ( - J p )  = ( X o ) ) t p c k '  6 
ik ' 

It follows from this that the 2m x 2m matrix U with columns ( x " ) ,  . . . , 

USp(m). With this matrix and relations (4.17) it is straightforward to verify 
the following result. 

9 , . . . , - J P " )  satisfies U'JU = J and U t U  = Ez,, i.e., U E 
X(ml  -Jz(l) 

Theorem 9.5. If A t USp(m) then there exists U E USp(rn) such that 

U-lAU = D(E) = t USp(m).  

This shows that every A E USp(m) is conjugate in the group to a diagonal 
matrix D(E).  Since A = U D ( E ) W '  it is clear that A can be connected to the 
identity element by an  analytic curve A ( t )  in USp(rn) with A(1)  = A ,  A(0) = 

E2,,, . [Let the eigenvalues ~ ( t )  approach + 1 as t - 0.1 Thus USp(m) is con- 
nected. 
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(4.19) H 2  -- AA" ~ W 

We now sketch a proof of the fact that Sp(m) is connected, leaving many 
of the details to the reader. As a byproduct we obtain a parametrization of 
Sp(m). 

Any nonsingular matrix A can be written uniquely in the form A = H U  
where H is a positive-definite Hermitian matrix and U is unitary. (This is 
the polar decomposition of A ;  see Lancaster [l]) .  Here H 2  = A A *  and H is 
the unique positive-definite square root of A A * .  

If A t Sp(m) then A* = 2 E Sp(m) and AA* E Sp(m). Since the Her- 
mitian matrix A A *  = H 2  is positive-definite it can be diagonalized by a 
unitary similarity transformation. Furthermore, the eigenvalues of H2 are 
positive. Let E be an eigenvalue of H 2  with eigenvector x.  Now H 2 x  = E X  

and f i - 2 J x  = ( H d Z ) ' J x  = J H z x  = eJx since H Z  E Sp(m) and (1?2)t = H 2 .  
Thus. 
(4.18) H Z ( J i )  = 6 '(Ji) 

and JX is an eigenvector of H Z  with eigenvalue 6 - l .  Proceeding almost ex- 
actly as in the proof of Theorem 9.5, we can show that the eigenvalues of H 2  
take the form E , ,  . . . , E,,  . . . , € ; I ,  E ,  > 0. Furthermore, there exists 
W c USp(m) such that 

Z 

6," 

Z 

It is clear that the matrix H i s  given by 

.-  

€ ; I  

_c( z"' 

Since D(6) belongs to Spfm) we have H E Sp(m). Hence U 2 H - ' A  E 

Sp(m) n U(2m) = USp(m). so every A E Sp(m) can be written uniquely 
in the form A = HU, where H is given by (4.20) and U t USp(m). Since 
USp(m) is connected, so is Sp(m). I n  particular det A = 1 ,  as follows direct- 
ly from det A = det H d e t  U and Theorem 9.5. 

We have shown that the irred reps ( p  , , . . . , p,) of Sp(m) are all tensor 
reps. For an explicit description of the irred tensor spaces see Weyl [2, 31. 
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The construction of simple characters for USp(m) is analogous to that 
for U(2m) so we present only the results. From Theorem 9.5 the conjugacy 
class in which A E USp(m) lies is determined by the eigenvalues c I ,  . . . , em, 
F l ,  . . . , ern ( F j  = €;I)  of A .  Writing c j  = exp(ipj), --a < pj < -a, we see 
that a character x of USp(m) can be written ~ ( p , ,  . . . , p,). Here x is invari- 

for any k ,  i.e., under the Weyl group. In analogy with (2.14), the simple 
characters satisfy the orthogonality relations 

ant under any permutation of the pj and the transformations pk --* - p k  

where 

Now A is skew-symmetric with respect to the Weyl group, so r = xA is 
skew-symmetric, i.e., changes sign under a transposition ej H ek and under 
the exchange ej  H €7 for fixedj. Proceeding as in (2.17), we find the possible 
choices for t which give simple x are 

(4.23) t(l1, . . . , I,) = I € / I  - € - / I  , . . . ,  &* - E-'" [ 

where the integers l j  satisfy I ,  > I, > . . . > 1, > 0, and the determinant 
1 . ] is defined by (2.19). In particular 

t ( m , m -  1 ,..., 2 , l ) = A .  

The ratio x = C/A is a finite sum of terms e{l . . . ck. The term with highest 
weight is $;-m€?-m+l . . . €2-1 and it occurs with multiplicity one. Thus 
p j = l j - m f  j -  1. 

Theorem 9.6. 

I < j < m .  

Corollary 9.4. The dimension of ( p , ,  . . . , p,)  is 
N p , ,  . . . , p, )  = P ( l , ,  . . . , I,)/P(m, m - 1, . . . , 11, 

We can use the characters of USp(m) to determine how a symmetry class 
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of tensors [f, , . . . ,f,,] of GL(2m) decomposes into irred reps ( p ,  , . . . , p,) 
when GL(2m) is restricted to Sp(m) or USp(m). One need only restrict the 
character ~ ~ ‘ 3  . s f r m  of U(2m), (2.23), to USp(m) and then write it as a sum of 
simple characters of USp(m). See Weyl [3] for more details. 

The reader can check that the analytic irred reps of Sp(m, R )  are just the 
restrictions of the reps ( p ,  , . . . , p,) of Sp(m)  to Sp(m, R).  Furthermore, the 
analytic irred reps of the real 2(2m2 + m)-dimensional Lie group Sp(m, 6 )  
are (PI > . . . 9 P,) 0 ( P I ’ ,  . . . 5 Pm’ ) *  

9.5 The Orthogonal Groups and Their Representations 

The usual realization of the complex orthogonal group O(m, 6) is the set 
of all m x m complex matrices A such that 
(5.1) A‘A = E,,,, 

However, we can also consider O(m, 6 )  as the set of all linear operators A 
on an m-dimensional complex vector space V such that (Au, Av) = (u, v) 
for all u, v t V,  where (-, -) is a nondegenerate symmetric bilinear form on 
V. There always exists a basis f ,  , . . . , f, for V such that 

(5 .2 )  (fJ,f,) (f , ,fJ)  ~ d,k, I < j , k  i m ,  

(see the book of Cullen [I]) .  Writing u - C uJfJ, v = C v,f, we find 

Furthermore, if A is the matrix of A in the f-basis a simple computation yields 
A t O(m, 6 )  if and only if A‘A - E m .  

The realization (5.1) is not very convenient for a study of the irred reps 
of O(m, 6) via the Lie algebra route, for the Lie algebra o(m) in this realiza- 
tion consists of skew-symmetric matrices. Such matrices have all zeros on the 
diagonal and this is inconvenient since we have become accustomed to the 
use of a maximal abelian subalgebra /ak of diagonal matrices. We get around 
this difficulty by choosing a new basis for V. 

(5.3) e j  = 2 - 1 ’ 2 ( f j  4- ej‘ Y 2-I z ( f j  ~ if”, j ) ,  1 < j <  n .  

Then 

(5.4) 

and if u = C (ujej + uj’ej’) and v = C (vjeJ + vj’ej’) we find 

( 5 . 5 )  

I f  m = 2n, n = 1, 2 , .  . . we set 

( e j ,  e,) = (e j ’ ,  e ,’)  = 0,  (ej, e,’) = d j ,  

(u, v) = c ( U j V j ’  -+ Uj’Vj ) .  
J -- 1 



352 9 REPRESENTATIONS OF THE CLASSICAL GROUPS 

If m = 2n + 1, n = 1, 2 , .  . . , we define e,, ej',  1 I j  < n, by (5.3) and 
set e ,  = fzn+, . Then if v = C (viej + vj'ej') + woe, we find 

(5.4) 

From (5.5) the matrices A of orthogonal transformations A E 0(2n ,  6 )  
with respect to the {e , ,  ej ')  basis are those which satisfy 

(5.7) A'KA = K ,  
K = (z: 2). 

where En is the n x n identity matrix and 2, is the n x n zero matrix. 
Similarly the matrices A of operators A E O(2n + 1,  0)  must satisfy 

where K is a (2n + 1) x (2n + I )  matrix. Clearly our new realizations of 
0(2n, K) and 0 ( 2 n  + 1, 6 )  are isomorphic (even unitary equivalent) to the 
old ones. The justification for handling odd m and even m differently is that 
the rep theory for these two classes is distinctly different. 

In our new realization the Lie algebra o(m) is the space of m x m complex 
matrices such that 

(5.9) 
We consider the case m = 2n first. Writing 

atK + K a  = Z , .  

where the aj are n x n matrices, we obtain 
(5.10) a,t = -a 4 ,  azt = - a,, a3t = - a 3 .  
It follows that the dimension of o(2n) is 2n2 - n. Denoting by E j k  the matrix 
with a one in row j ,  column k and zeros elsewhere, we find the basis 

(5.11) 

The set An of all diagonal matrices 

& j k  - Ek+",,+", j ,  k = 1,. . . , n,  

' j + n , k  - ' k + n , j ,  ' j , k i n  - G k , j + n ,  j * k .  

(5.12) 
" 

X ( I , ,  . . . , I,) = c I j X j  
j =  1 

is a maximal abelian subalgebra of o(2n), where X j  = E j j  - E j + n , j + ,  
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A straightforward computation shows that the adjoint rep of Pa, on o(2n) 
is given by 

L X ,  ' j k  - ' k + n , i i n l  = ('1 ~ ' k ) ( ' , k  ~ & k + n , j + n )  

(5.13) [x, ' , + n , k  - & k + n , j ]  = (-'J - 'k)(',+n,k - ' k + a , j )  

L X ,  ' j , k + n  - ' k , ,  kn1 ('1 + Ak) ( ' , , k+n  - ' k , i + n ) ,  

where j # k and 1 I j ,  k i n. Note the close relationship between (4.5) 
and (5.13). Clearly the roots are a = A, - A,, j # k ,  a = - I ,  - I,, j < k ,  
and a = I ,  + I k , j  < k .  There are 2n(n ~ 1) distinct roots: 

a = & I ,  A,, j <  k .  

By straightforward computation one can verify the formulas (4.6) and (4.7). 
If m = 2n + 1 then a t o(2n + 1)  takes the form 

- a z l  - a l t  

a=(;;  z; z: 
where a ,  and a ,  are n x 1 matrices and a, ,  . . . , a, satisfy (5.10). Thus, the 
dimension of o(2n + I )  is 2n2 + n. If we consider the top row of a as row zero 
and the left-hand column as column zero then a basis for o(2n + 1)  is given 
by the matrices (5.1 1) plus the matrices 

(5.14) & k ,  - ' O , k + n ?  ' 0 ,  - ' k + " , o ,  k = . . 9 

The set Pa,,' of diagonal matrices 

(5.15) x(n,, . . . , I , )  = c I j X j  
j =  I 

is a maximal abelian subalgebra of o(2n + 1). 
The adjoint rep of An' on o(2n + 1) is given by expressions (5.13) plus 

iX, ' k 0  - ' O , k + n l  

fx9 '0, - ' k + n , O l  

' k ( ' k0  - ' O , k + n )  

- I k ( ' O k  - ' k + n , O ) '  

(5.16) 

Thus o(2n + 1)  has the same roots and branches as o(2n) plus the simple 
roots &Ak with corresponding branches, In summary, the roots of o(2n + 1) 
are 
(5.17) I k l j Z k  A k ?  j <  k ,  

Again formulas (4.6) and (4.7) can be verified by direct computation. 

and o(2n + I). Here 
It follows that the proofs of Theorems 9.1-9.3 apply to reps p of o(2n) 

*xj* X, if a = f l j f  I k 3  j <  k ,  

if a = & I j .  f X j  
(5.18) Xa = { 
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For example, if a = A j  then -u = - A j  and 

& p , * p ,  if u = i A , * A , ,  j < k ,  

if a = & A j .  
(5.19) Aa = A(XJ = 

In particular a, = 2 if a = & A j  f A ,  and ae = 1 if a = & A j .  Note that the 
latter case occurs only for m = 2n + 1. 

By Theorem 9.2, 2Aa/a,  is an integer for every root CI of o(m) and SaA = 

A - (2AJa,)a is a weight of p. Thus * p i  p , ,  j < k ,  are integers for all 
o(m) and *2pj  are integers for m = 2n + 1 .  If A is a weight then the p i  are 
either all integers of all half integers. If p is irred then the weights of p either 
have all integer coefficients or all half-integer coefficients, since any weight 
A' of p can be obtained from a single weight A by adding suitable sums of 
roots, A' = A + a, + . . . + us .  The roots are weights with integer coeffi- 
cients. 

Let A* : C p j A j  be the highest weight of p. Then A,* 2 0 for all roots 
a > 0. The positive roots of o(m) are l j  + A,, 1, - A,, 1 < j  < k < n, 
and A j  (if m is odd). Thus p i  f p k  2 0 f o r j  < k,  and p i  2 0 (if m is odd). 
The possible highest weights satisfy 

where the p j  are either all integral or all half-integral. In the case m = 2n 
we have implicitly assumed n 2 2 and omitted the abelian algebra 42) .  
Note that p ,  need not be positive for even m. 

We will show that each signature (5.20) does correspond to the highest 
weight of an irred rep of o(m). However, we will have some difficulty in using 
these results to determine the irred reps of O(m, 6). First of all, O(m, 0) 
is not connected. Indeed one can easily prove from the defining relations 
(5.7) and (5.8) that if A E O(m, 6) then (det A ) 2  = 1 or det A - & 1. Fur- 
thermore, both signs occur. Thus O(m, 6) has at least two connected com- 
ponents. (We will prove that there are only two.) The Lie algebra a(m) only 
furnishes us with information about the connected component of the identity 
SO(m, 0). Therefore, we have to look at more than the Lie algebra to deter- 
mine the rep theory of O(m, 6). The examples O(3) and SO(3) which we have 
treated earlier illustrate the problem to be solved here. 

A more serious difficulty is that the half-integral Lie algebra reps do not 
induce global group reps of SO(m, 6). Indeed, the matrix X E A n ,  (5.12) 
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or (5.15), exponentiates to (in case ni = 2n + I ,  say) 

(5.21) ex = E SO(m,E).  

355 

If p is irred, then in a weight basis the matrices p(ex)  of the induced local 
group rep take the form 

(5.22) 

where A , ,  . . . , Aq are the weights of p .  If we replace A, by 1, + 2ni in (5.21) 
then ex remains unchanged. However, if we make these replacements in 
(5.22) for eachj, p(e“) will remain unchanged only if the weights Ak all have 
integer coefficients. If the weights have half-integer coefficients then p does 
not induce a single-valued rep of SO(m. (I). If we replace A, by A, + 4ai, 
however, then p ( e X )  remains unchanged even for half-integral p .  This suggests 
that such p define double-valued reps of SO(m, (I). We will see that there is 
a group Spin@), locally isomorphic to SO(m, 6) and a homomorphism 
v :  Spin(m) - SO(rn, Cr) which covers SO(m, 6 )  exactly twice. The double- 
valued reps of SO(m, 6 )  are single-valued reps of Spin(m). 

Keeping these difficulties in mind, we return to the construction of the 
irred reps of o(m). Since O(m, U) is a subgroup of GL(m) we obtain reps 
[f, , . . . ,f,] of O(m, E) by restriction of the corresponding irred reps of 
GL(m). Most of these reps will no longer be irred, however. 

The rep belonging to the symmetry class [I] is just the natural action of 
O(m, Cr) on an m-dimensional vector space. We see immediately from (5.12) 
and (5.15) that the weights of the induced Lie algebra rep are & I , ,  1 2 j i  
n, each with multiplicity one, plus the simple weight zero if m is odd. The 
highest weight is clearly I , ,  so p ,  = 1, pk = 0, 2 k 5 17. This rep is irred, 
as the reader can easily check. Thus, [ I ]  

The weights of the Lie algebra reps induced by the symmetry classes 
[I‘], 1 < 1 < m - I, are 

(5.23) A(, -I I , ,  I . . . ’ I , , ,  O i i ,  < i ,  < . . .  < i r < m ,  

where & = 0 ( m  = 2n + 1) and I ,  = - A k  if I ,  = n + k ,  k > 0. The high- 

( I ) .  
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est weight of this rep is 
(5.24) 1, + 1, + .. .  + 1,. 

Assuming that every rep of o(m) can be decomposed into a direct sum of 
irred reps (which will be proved later) we have shown the existence of irred 
reps of o(m) with signature (l,), i.e., p l  = p 2  = ...  = p l  = 1, P,+~ = . . .  
=p" = 0. 

Now suppose m = 2n + 1. In Section 9.6 we will construct a spinor rep 
of o(2n + 1) with signature (Jn). Then the highest weight of the rep 
(5.25) (I)@kl @ (1 2)@kn @ . . . @ (1"- I)@- @ ($n)@k.  

is plA1 + . . + p J ,  with multiplicity one, where 
n -  I 

h = j  
(5.26) p j  = f k ,  + C k,, 1 < j <  H - 1, p ,  = f k n .  

Here the p i  are integral or  half-integral depending on whether k,  is even or 
odd. We can obtain any highest weight (5.20) by choosing the integers k j  
such that k, = 2 ~ " , k , - ~  = p n - ,  - p p ,  , . . . ,  k ,  = p z - p 3 , k l  = p l  -P,. 
Thus we can find an irred rep of o(2n + 1) for each set of integers or half- 
integers p i  satisfying (5.20). 

In the next section we will show that o(2n) has irred spinor reps with signa- 
tures (y)  and ($-I, -$). The highest weight of the rep 
(5.27) (I)@"' @ (IZ)@" @ . * * @ (1n-2 )@km-z  @ ($)@kn-l @ ($''-I, - f ) 8 k n  

is pill + . . . + p J ,  with multiplicity one, where 

p i  = k j  + k j + l  + . . . + k,-z + f ( k n -  + kn),  

(5.28) 1 =  1 , 2  ,..., n - 2 ,  

p , -  I = a<k,- + k,J, P, 1 f(k- 1 - k,). 

The p j  are all integral or half-integral depending on whether k n - l  + k ,  is 
even or odd. We can obtain any highest weight (5.20) with the choice 
(5.29) k ,  = pn-l - pn,  k n - I  = ~ n - 1  + P n l  kj = Pj - Pj+t 9 

j =  1, . . . ,  n - 2 .  

The group SO(m, R) = SO(m, 0) n U(m) is a compact subgroup of 
SO(m, a). In the realization (5.1) of O(m, 0) this is the group of real ortho- 
gonal matrices with determinant + 1. In the realization (5.7) or (5.8) the mat- 
rices of SO(m, R )  are unitary equivalent to real orthogonal matrices with 
determinant + 1 where the unitary equivalence is determined by (5.3). In the 
following we use the second realization of SO(m, R). It is easy to verify that 
the real Lie algebra o(m, R)  is a real form of o(m, 0). 
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Theorem 9.7. If A E SO(m, R )  then there exists U E SO(m, R )  such that 

1 o . . .  0 

f,, 

<I 

Z 

E SO(m, R),  = I .  

0 C" 

The first row and column occur only for m = 2n + I .  

The proof of this theorem is analogous to that of Lemma 9.9 and theorem 
9.5, so we omit it. Since A = U D ( c ) U - '  i t  is clear, by the same argument 
as used for USp(m), that A can be connected to Em by an  analytic curve in 
SO(m, R).  Thus, SO(m, R)  is connected. 

To show that SO(m, 6 )  is connected we mimic the corresponding proof 
for Sp(ni), leaving the details to the reader. If A t SO(n1, 6) then by the 
polar decomposition, A = H U ,  Where H is Hermitian and positive-definite, 
and Uis unitary. Now His the unique positive-definite solution of H Z  ~ AA* 
t SO(m, 6). Since H 2  is Hermitian it can be diagonalized within SO(tn, E): 

/ 1  0 " .  0 1  

\O 

Z 

VC(c)V- ' ,  V t SO(m, G ) .  

The eigenvalues f, are positive, and the first row and column occur only if 
tn = 2n + I .  It follows that H is given by 
(5.30) H = VC(c' 2 ) V - 1  r SO(m, E). 

Thus, U = H - ' A  E SO(m, 6) n U ( m )  = SO(m, R).  Since SO(m, R )  is 
connected and H is given by (5.30) we see that SO(m, G )  is connected. Thus 
any group rep of SO(m, 6) or SO(n7, R) is uniquely determined by its induced 
Lie algebra rep of o(m). Furthermore, since SO(m, R )  is compact and o(ni, R )  
is a real form of o(m) every finite-dimensional analytic rep of SO(n1, E) 
[and of O(m, 6)] can be decomposed into a direct sum of irred reps. 

We have seen earlier that some of the irred reps ( p ,  , . . . , p , , )  of SO(m, 6) 
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and o(m) can be obtained from tensor reps. We clearly cannot obtain the 
(double-valued) half-integral reps in this way, but we can obtain all of the 
integral reps. In the case m = 2n + I the rep [ I " ]  has highest weight 1, + 
. . . + 1, [see (5.24)]. It is easy to verify that the rep ( p ,  , . . . , p J ,  integral p , ,  
is contained in the tensor rep 
(5.31) (])@k1@(12)@ka@ . . .  @(]n-l)@knl @ ( l " ) @ k n  

exactly once, where k, = p , ,  k,- , = p n -  - p , ,  . . . , k ,  = p ,  - p z .  A similar 
argument shows ( p , ,  . . . , p , )  is contained in the symmetryclass[p,, . . . , p , ]  
exactly once. 

For m = 2n the highest weight of [I"] is still A = 1, + . . . + 1,. From 
(5.23), A' = 1, + 1, + . . + I , _  , - I ,  is also a weight of [ I " ]  and occurs 
with multiplicity one. Furthermore, if a is a positive root 1, + 1, or 1, - 
A,, 1 < j  < k In, then A' + a is not a weight of [I"] .  (This is false for 
m = 2n + I . )  Thus A' must be the highest weight of the irred rep ( I n - , ,  - I )  
contained in [I"] with multiplicity one. This shows that (1") and ( I n - , ,  - 1 )  
are tensor reps. Finally the integral rep ( p ,  , . . . , p n )  is contained in the tensor 
rep 
(5 .32)  (])@,I @ ( ] 2 ) @ k ~  @ . . , @(]n-1)@)'k" I @ ( I " - ' ,  -1)":"@(1")""+1 

with multiplicity one, where k, = p ,  - p , + , ,  I < j  < n - 2, and 

k,-, = pn-l - P,, k ,  = 0, k n j , = p n  if p , > O  

k,-, pn-I + ~ " 9  k ,  = - p  ,,, k,,, = 0 if p ,  < 0. 
(5.33) 

By counting dimensions one can show 
[I1] z (IL), 1 5 I n - 1 ,  

(5.34) (1") if m = 2n -1- I 
[I"] z {(1,)G(ln-l, - 1 )  if m = 2n. 

We have now determined all single-valued irred reps of SO(m, 6). For 
m odd it is easy to extend these results to compute the irred reps of O(m, 0). 
Indeed, if m = 2n + 1 then -Em E O(m, 6) and det(-Em) = - I .  Thus, 
O(m, 6) has the coset decomposition {SO(m, 0), -E;SO(m, 6)).  

Let T be an irred rep of O(m, 0). Since -Em commutes with all elements 
of O(m, 6) it follows from the Schur lemmas that T(-Em)  = I E .  The 
property ( -Em)2  = Em implies I = 1 .  Thus T I SO(m, 6 )  must still be irred. 
The irred reps of O(2n + I, 6) are 

(5.35) 

For reps of 0(2n ,  6)  the situation is somewhat more complicated. In 
this case det(-Em) = + 1, so -Em belongs to the connected component of 



9.5 The Orthogonal Groups and Their 

the identity. We choose the element 

(5.36) s = 0 I 0 

Representat ions 

d e t S =  - I ,  Sz = Em. 

3 59 

Clearly, S a n d  S0(2n ,  6) generate 0 ( 2 n ,  6). Let T be an irred rep of 0(2n ,  U) 
and set S = T(S). Then T' = T 1 S0(2n ,  6 )  decomposes into a direct sum of 
irred reps. Let W be a subspace of the rep space V transforming irreducibly 
under T'. Then the subspace S W also transforms irreducibly under T'. Indeed 
if w* = Sw E S W  and A E S0(2n ,  Q) then S - ' A S  E S0(2n ,  6) [since 
det(S-'AS) = + I ]  and 

T(A)wY = SS-'T(A)Sw = S(T(S'AS)w) E S W ,  

so S W  is invariant under T'. If W' is a nonzero invariant subspace of S W 
then S W '  is a nonzero invariant subspace of S(S W )  = W. Since W is irred, 
S W '  = W, so W' = S W  and S W  is irred. 

The space W + S W is invariant under T and nonzero. Thus W + S W 
is the entire rep space V .  

From (5.12) and (5.36) we have 

3 t ! ( A I , .  . . , In-, ,A,)S -- S X ( A , ,  . . . , A,-, , -An), E,S = SEE 

(5.37) 0: = p J ,  t . . . I Pn-lAn-, t PJ, ,  

& = p l l ,  t . . . + p"- 11,- I ~ P"A". 

If w is a weight vector in W with weight A = p l l ,  + . . .  + p J ,  then Sw 
is a weight vector in SW with weight A' = plAl + . . . + p,-  l A n -  I - p,,1,,. 
It follows that the weights of W and S W are related by a change of sign in 
1,. Let p l l ,  + . . . + p, -  , A n - l  + pnAm be the highest weight of W, p I  2 . . . 
2 p , -  I 2 Ip, 1. I t  is straightforward to show that plAl + . . . + p , -  ,A,- ,  - 
p , l ,  is the highest weight of S W. If p ,  f 0 then Wand  S Ware linearly inde- 
pendent and 

(5.38) 

Note that W and S W have the same dimension. If p ,  = 0 we define h' = 

w + Sw, h -  = w - Sw, where w is the highest weight vector of W. Note 
that S w  is the highest weight vector of S W a n d  w, S w  correspond to the same 
w e i g h t A * = p , ~ , + . . . + p "  -I1n-I. NowSh'=fh'.  It followsfrom (5.37) 
and (1.14) that the spaces H' spanned by all vectors of the form E,,E,;.- 

T r" (PI 7 .  . . 1 P,)  0 (PI 9 . . . 1 P,- I > -P,>. 
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E,,h' are invariant under T. Since T is irred, either H +  = V, H -  = {O)  or 
H +  = {e}, H -  = V. In the first case we denote the rep by 
(5.39) 

(p,, . . . , p , - , ,  O)+,  

and in the second case by 
(5.40) 

This completes our catalog of irred reps of 0(2n, 0). 
We have mentioned earlier that the Lie algebra of the compact group 

SO(m, R) is a real form of the complex Lie algebra o(m). Thus there is a 
1-1 relationship between reps of SO(m, a) and SO(m, R). Using the same 
techniques as in Section 9.2 we construct the characters for the irred reps 
( p l , .  . . , p n )  of SO(m, R). We assume that the p j  are integral, although the 
results are virtually unchanged for half-integral p j .  Most results will be 
given without their straight-forward proofs. 

From Theorem 9.7 a character x of SO(2n + 1, R) can be considered 
as a function x(pl ,  . . . , p"), e j  = eiVi, -n I pj < n. If { v , ,  . . . , vs} is a 
weight basis for the corresponding rep and the weights are A , ,  . . . , A, then 

S w  = w, T I W 2 n ,  ( p , ,  . . . , p.- 1, 0)  

( p l , .  . . , p n - , ,  0)-, Sw = -w, TIS0(2n,  0 )  z ( p l , .  . . ,pn-,, 0). 

where A j  = qlpl + . - . + q,pn and c~,...~. is the multiplicity of this weight. 
Since x is defined on conjugacy classes it follows from Theorem 9.7 that we 
can permute the pj or replace any subset of the p, by -pj without changing 
the value of the character. Thus the character admits a symmetry group of 
order 2%!. This is just the Weyl group. From (5.41) we see that the weights 
A and SuA must have the same multiplicity for each root a. 

The inner product on L2(0(2n + 1, R)) for functions constant on con- 
jugacy classes is 

where 

and 

Here A is skew-symmetric in its arguments and double-valued (due to the 
occurrence of c;'~). Thus if x is the character of ( p ,  , . . . , p,) ,  the function 

= x A  is skew-symmetric and double-valued. Furthermore, the substitution 
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q j  + -q j  for a single j causes < to change sign. Note that r is a finite sum of 
the form (2.17) whose highest-order term is 

(5.44) €2'  

Because of the symmetry properties, since the sum for < contains (5.44) it 
must also contain 

1 . ~ p ~ t n - C I , ' Z )  p r t n - ( 3 / 2 )  . . . c;ntil!2) 

&,, - E - ' " j  ( ( l , ,  . . . , I " )  = \ € I 1  - €-'I , . . - ,  (5.45) 
where I - 1 is defined similarly to (2.19) and l j  = p j  + n - j  + f. Here, 
A ( c l , .  . . , E, )  = ( ( n  - 3, n - 4, . . . , 4). 

Continuing in this fashion we obtain the expansion ( = <(/, , . . . , I,,) 
+ c'((Zl', . . . , Z,,') + . . .. However, the requirement (x, x) = 1 implies 
1 =- 1 + Ic ' I2  + . . ., so c' -1 . . . = 0 and r = ( ( I , ,  . . . , I n ) .  

Theorem 9.8. The character of the rep ( p l ,  . . . , p , )  of SO(2n + I ,  R )  is 

where I j  = p j  + n - j + &, l jo  = n -- j + 3. The dimension of this rep is 

N ( p , ,  . . . , p, )  = Q ( / , ,  . . . , I n Y Q ( ~ l o ,  . . . , In"), 
where 

I f  m -- 2n then (5.42) holds with 

Here A is skew-symmetric and single-valued. I f  x is the character of ( p ,  , . . . , 
p , )  then < = x A  is skew-symmetric and invariant under an even number of 
sign changes q j  - +  - q j .  Indeed from Theorem 9.7 it follows that we can 
perform an arbitrary permutation of q,  , . . . , q,, in D(ei') and still get a dia- 
gonal matrix in the same conjugacy class of S0(2n,  R). Furthermore, if we 
make the replacement pj + - - q j  for an even number of angles we stay in 
the same conjugacy class. However, as the reader can check, the diagonal 
matrix obtained from an odd number of replacements p j  --, -q j  is not 
conjugate to D(ei') in S0(2n,  R ) ,  although it is conjugate in 0(2n ,  R ) .  We 
see that Lemma 9.7 holds also for o(2n) since from (5.19) the above symme- 
tries generate the Weyl group of order 2"-In!. 

The term of highest weight belonging to ( is 
] . 6 q l l n - l e P r t n - Z  . . .  E , P " ,  

25 - I € '1  .! € - ' I  , . . . ,  </" 1- c-/,, I I I € / >  - € - / I  , . . . ,  .- €-/', I. 
The symmetry requirements and the condition (x, x) = I yield 
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Theorem 9.9. The character of the rep ( p ,  , . . . , P,) of S@2n, R) is 

where /, = p j  + n - j ,  ijo = n - j .  The dimension is 

Note that the reps ( p l ,  . . . , p , - ] ,  i p , )  have the same dimension. This is 

For more detailed proofs of the above theorems see the work of Boerner 
also a consequence of the remark following (5.38). 

[ I ]  or Weyl [3]. 

9.6 Dirac Matrices and the Spin Representations 
of the Orthogonal Groups 

In an attempt to formulate a relativistic theory describing electrons Dirac 
considered systems of equations of the form 

d d d d 
( L I Z  + L2- + L, -  dz -1- L 4 - ) Y  dt = K Y ,  

dY 

where the Lj are square matrices, K is a constant, and 'Y is a spinor field. He 
required that this system be compatible with the Klein-Gordon equation 
(5.37), Section 8.5. Using the same notation as in Section 8.5, we see from 
(6.1) that 

If we choose K = mo, the mass of the electron, then (6.2) becomes 
4 d2\Y 

j ,  c k =  1 L j L k d X , d X ,  
m 0 2 Y *  

This is equivalent to the Klein-Gordon equation 

provided 

(6.4) 
where G is given by ( I .  I), Section 8. I .  We have already seen that the 4 x 4 
matrices (5.33) Section 8.5, are solutions of (6.4). There are many other solu- 
tions and we shall compute all of them. 

LiLk $- LkLj = 2 G j k ,  1 I j ,  k 5 4, 

For convenience we modify (6.4) by defining matrices ai such that 
a, = L,, j = I ,  2,3, a4 = iL, ,  i = n. 
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Then the relations become 

(6.5) 
~ e . ,  
(6.6) aj2 = 1, ajak = -aka, if j ; t  k .  

Finally we generalize our  problem by allowing the indices j and k to run 
from 1 to m. The associative algebra generated by a , ,  . . . , a, is called the 
Clifford algebra C,. We shall not study C, but rather the multiplicative 
group G, generated by 5 1 and a , ,  . . . , u,. A general element of G, has the 
form 

(6.7) h a j , a j 2  . . . a,". 

Making use of (6.6), we can always write this element in the standard form 
(6.8) +u,,a,; . .al8,  I, < I , <  ' . .  < I 3 ,  s l r n .  

Indeed the relation ajak = -akaj,  k # j ,  permits a reordering of the factors 
of (6.7) in the normal form (6 .8) .  If two factors in (6.7) are equal one simply 
reorders the terms such that the two factors are adjacent and then uses aj2 = 

1 to reduce the length of the group element by two factors. Note that no ele- 
ment in standard form can have more than m factors since then two factors 
would have to be equal. Furthermore, the only elements with rn factors in 
standard form are *a,a,  . . . a,. Thus the distinct elements in G, are 
(6.9) I ,  a,,, aj la j , ,  . . . , a,a, . + .  a,: 1 I j ,  < j ,  < . .  . <jm-,. 
and their negatives. The order of the group is 

ajak -i akaj  =: 26,,, 

It is obvious that every matrix rep of (6.5) determines a matrix rep of G , .  
Furthermore every matrix rep T of G, such that T(1) = E and T(- 1 )  = - E, 
where E is the identity matrix, determines a solution of (6.5). Thus our prob- 
lem reduces to the determination of the irred reps T of G, such that T(& 1) = 

i E .  Every rep with this property will be a direct sum of such irred reps. 
The number of irred reps is equal to the number of conjugacy classes 

in G,. I t  is straightforward to check that for m even, the classes [ + I } ,  {- I }  
contain one element each, while the remaining classes are of the form {*a,, 
. . . a,,} and contain two elements each. Thus the total number of conjugacy 
classes is [(2"+' - 2)/2] + 2 7 2" +- I .  For odd m the results are the same 
except that the two elements with m factors each determine a conjugacy class 
with one element: 

{a,a2 . . am), j-a,a, . . . a,}. 

Thus the total number of conjugacy classes is 2" + 2. 
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The elements 1 form a normal subgroup of G,. Furthermore the factor 
group G,' Gm/{fl} of order 2" is abelian since ajak = -akaj ,  and & I  
correspond to the identity element in Gm'. Thus G,' has 2" irred reps T,' 
all one-dimensional. The composed mappings 

G, - G,' A 0  7' 

determine 2" equivalence classes of one-dimensional irred reps of G ,  . 
Consider the case where m = 2n is even. Here G, has 2" + 1 irred reps of 

which 2" are one-dimensional. Since the sum of the squares of the dimensions 
of the irred reps equals 2"+l = NG we have 

2 2 "  + 4 2  ~ 2 2 " + 1  or q = 2" = 2 m 2 ,  

where q is the dimension of the remaining irred rep T. The one-dimensional 
reps map 5 1 to the identity operator, so they are not acceptable as solutions 
of (6.5). 

We will construct an explicit matrix realization of T. Suppose first that 
m = 2,  so T is two-dimensional. The matrices 

0 1  O i  ,). 052 = ( - i  oj  
satisfy the relations aj2 = 1,  a,az = -a,a, # 0. Thus, these matrices neces- 
sarily determine a two-dimensional irred rep of G, equivalent to T. 

In the general case for m = 2n we form the 2" x 2" matrices 
(6.10) 

j -  I n - j  

1 < j < n .  

It is straightforward to check that these matrices satisfy relations (6.5). Since 
the matrices do not commute they cannot be obtained as a direct sum of one- 
dimensional reps of G, .  Thus, (6.10) defines a matrix rep equivalent to T. 
It is easy to verify that T is a 1-1 rep of G , .  

Remark. 
C = A 0 B is the mn x mn matrix with matrix elements 

Recall that if A ,  B are m x m, n x n matrices, respectively, then 

C j k , l s  = 
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It is easy to verify the relations 

( A ,  0 B J A ,  0 B,) = AlA2 0 BIB, 
for m x m matrices A j  and n Y n matrices B,. Furthermore, 

c ( A  0 B )  = ( c A )  @) B = A @) (cB). 

for any scalar c. These relations are easily extended to C ,  @ . . ' @ C,. 

Using the basic theorems on the rep theory of finite groups we can say 
more about the matrix realizations of (6.5) for even m. First, every irred 
matrix realization has dimension 2" and any two such realizations a j ,  a,' 
are equivalent, i.e., there exists a nonsingular matrix S such that aj' = S - ' a j S ,  
I <,i < m. In particular, every realization is equivalent to (6.10). Further- 
more, if the a j  form a realization and S is nonsingular then the S-'cl ,S form 
an equivalent realization. All reducible realizations are direct sums of copies 
of the single irred rep. 

Taking m = 4 we obtain all solutions of (6.4) which lead to the Dirac 
equation. The only irred realizations are in terms of 4 x 4 matrices and all 
such realizations are equivalent. All reducible realizations are given by 
4k x 4k matrices, where k 2 2. 

The case tn = 2n + 1 is a little more complicated. There are 2,"' I -!- 2 
equivalence classes of irred reps. Furthermore, since C,/( I ,  - 11 is abelian 
of order 2,"' I there are 22"' I one-dimensional reps. This leaves two irred reps 
of dimensions 4 ,  and q 2 .  Since the sum of the squares of the dimensions equals 
22n ' we have 

22nt I - 1  4 1 2  -f 422 ~ 2 2 n l  2 or q , z  -t q z 2  22"t1. 

A solution of this diophantine equation is q l  = q, = 2'. Indeed, we can ex- 
hibit two nonequivalent irred reps of dimension 2". For n = I the matrices 

satisfy (6.5). (These are the Pauli spin matrices.) One can use the Schur lemmas 
to check the irreducibility. A second irred rep is a,' = -  -a,, j = I ,  2, 3, 
where the a, are defined by (6.1 1). These reps cannot be equivalent because 
ia,a,a, = E,  = 1 for (6.1 I ) ,  while fa,'a2'a3' -E,  = - 1 .  This also shows 
that neither of these reps is faithful ( I - ] ) ,  although their direct sum is faithful. 

For general m = 2n + 1 the 2" x 2' matrices a,, a,,,,, I < j  5 n, defined 
by (6.10) and the matrix 

(6.12) 

satisfy relations (6.5) and, by Schur's lemmas, define an irred rep of Gzn+ , . 
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Furthermore, the matrices a,' = -a,, 1 I k < m, where the a, are given 
by (6.10) and (6.12), also define an irred rep of G2,,+, . These reps are not 
equivalent because i"a, - . . a, = E,. for the first representation, while ifla,' 
. . .an' = -Ez. for the second. Neither rep is faithful, but their direct sum 
is faithful. These results suffice to describe all realizations of relations (6.5) 
by matrices. 

We have related the Clifford algebra Cm to the reps of a finite group G,. 
We shall now show that C, is also related to the reps of a Lie group. Suppose 
the quantities aj satisfy the relations 

We define elements ajk , j # k,  I 

(6.13) 

aja, + cz,aj = 2 a j k ,  1 i j ,  k I m. 

j ,  k I m + I ,  by 
2aju,  if j #  k ,  I i j ,  k I m, 

ajk  = a, if j = m + l ,  l < k < m ,  1 -aj if k = m + l ,  l < j < m .  

Furthermore, we set a j j  = 0. It follows that ajk = -akj and there are 
m(m + 1)/2 independent quantities a jk ,  j < k .  The { a j k ]  form a Lie algebra 
under the commutator bracket 

[ a j k 7  = a jkahl  - & h / a j k *  

Indeed a straightforward computation yields 

[ a r n + l , k ?  C C m + l , l l  = [ a m + l , k ?  = 48kham+1,1 - 4aklarn+l ,hy  

(6.14) [ a j k ,  ah,] = 4(akhajl + 8 j l a k h  - S k l a j h  - 8jhakl)? 
1 2 j ,  k, h, 1 I m. 

Rklations (6.14) are the commutation relations of an m(m + 1)/2-dimensional 
Lie algebra. 

Let us compare these results with the commutation relations of the Lie 
algebra so(m + 1). It will be convenient to consider so(m + 1)  as the space 
of all (m + 1) x (rn + 1) skew-symmetric matrices. Then a basis for so(m + 1)  
is provided by the matrices aj, = E j ,  - E k j ,  I < j  < k < m + 1.  Taking 
account of the rules ajk = -akj for all j ,  k we easily derive the commutation 
relations 
(6.15) 

Setting aj, = $ajk and aj,m+l = - i ia j ,m.cI  = +iaj we see that relations 
(6.14) and (6.15) coincide. Thus, the {a jk )  span a Lie algebra isomorphic to 
so(m + l) ,  so any matrix realization of (6.5) determines a rep of so(m + 1 )  
via the relations (6.14). Furthermore, the nontrivial irred reps of G, computed 
above determine irred reps of so(m + 1 ) .  We can determine which irred reps 
of so(m + 1) we have obtained by computing the highest weights. 

[ a j k ,  a h ) ]  = d,+hajl + djiakh - d$jh - djka,,,  1 < j ,  k ,  h,  1 < m + 1 .  
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The maximal abelian subalgebra of so(m + 1) obtained from (5.12) 
by the change of basis (5.3) can be chosen to take the form 

(6.16) 

i l  I 

- il, 
. . .  

0' 

iL, . 

0. 

. m + 1 = 2 s + I ,  

in the space of skew-symmetric matrices, where the last row and column are 
missing if rn + I = 2s. A basis for As is given by X, = ia,,,,, = i&,,,+, - 
i & s + , , J ,  I I j I s. 

Now consider the rep of G,, or so(2n + 1) given by (6,lO). The corres- 
ponding operators H ,  are 

H ,  = $iu,,"+, = $iu,u,+,, 1 I j I n, 
or 

(6.17) H , = t E z @ - . . @ E 2 @ ( '  0 - I  ) @ E 2 @ . . . @ E  z .  

The eigenvalues of the H ,  are +t.  In  particular, a weight basis for the rep 

j'l n - j  

is given by 
(6.18) 

where 

Clearly, 

and e ( k ,  . . .  

e(k ,  . . . k,) = ek ,  @ ek2 @ . . @ ek, ,  k ,  = 4=$, 

H j e ( k ,  . . . k j  . . . k,) = k j e ( k ,  . . k j  . . . k"), 

k,) is a weight vector with weight C k jL j  since 

H ( A , ,  . . . , A,) = C AiHj.  
j =  I 

The highest weight is f C A j  so we have constructed a realization of the 
fundamental spin rep (4.) of so(2n + 1). 

Next we consider the rep of Gin-, = G 2 ( n - , ) + l  or so(2n) determined by 
(6.10) and (6.12). The operators H j  are 

1 H .  L l i u  j , f m - l ) + j + l ,  l l j l n  - 1, H ,  = = -2Zln- I ) +  I 
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Since the matrix S,  has eigenvalues It I we can perform a unitary similarity 
transformation on the H j  to obtain 

Again these matrices have eigenvalues if and the e (k ,  . . . k,_ ,), k,  = &+, 
form a weight basis. We have 

H,e(k, . + .  k n - , )  = 2 k , k , , , e ( k ,  . . .  k , - , ) ,  

(6.20) 1 < j < n -  1, k , = i ,  

H,e(k, . . .  k n - , )  - k , e ( k ,  a . 7  k n - , ) .  

We get the highest weight vector for k ,  : . . . = k n - ,  = 1. Thus the above 
construction yields a model of the spin rep (4") of so(2n). 

A second model is obtained by making the replacements a, --t -a,, 
1 < j  I n - 1. This leaves the operators H,,  1 5 j I n - 1, unchanged 
but causes H ,  to be replaced by - H n .  Again we get the highest weight vector 
for k ,  = ' .  . = k n - ,  = 4, but this time the highest weight is $(Al  + ...  + 
A,,-, - An). Thus we have constructed a model of the spin rep ( + " - I ,  -4). 

As we demonstrated in the preceding section, the spin reps of so(m) do 
not extend to single-valued reps of SO(rn, G) .  It is shown explicitly by Boerner 
[ I ]  and Freudenthal and De Vries [ I ]  that these reps exponentiate to single- 
valued reps of a compact Lie group Spin(rn). Here, Spin(rn) is locally 
isomorphic to SO(rn, 6) and there is a 2-1 analytic homomorphism of 
Spin(m) onto SO@, 6). 

9.7 Examples and Applications 

We present several examples showing how the classical groups appear in 

Consider a family of linear operators a j ,  a,*, 1 < j  < m, on an inner 
physical theories. 

product space V ,  satisfying the commutation relations 

(7.1) [a,, a,] = [a,*, ak*] = 0, [ a j ,  ak*]  1 bjkE, 
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where E is the identity operator. [Such operators appear in the method of 
second quantization in quantum mechanics where they are defined on a Hil- 
bert space X. There aj* is called a creation operator for bosons and its adjoint 
a, is called an annihilation operator. These operators are closely related to the 
harmonic oscillator problem in quantum mechanics and will be treated in 
detail in Chapter 10. Here, we consider only the abstract commutation rela- 
tions (7. I).] 

Now V must be infinite-dimensional for (7.1) to hold. For, if A and B 
are matrices such that [ A ,  B] = 1E then tr([A, B ] )  = 0 implies 1 = 0. If V 
consists of analytic functions in m variables z i  , . . . , z ,  then a realization of 
(7.1) is provided by the assignment 
(7.2) a, = d / d z , ,  aj* = z,. 

E j k  = aj*ak satisfy relations 
It follows directly from the commutation relations (7.1) that the operators 

(7.3) [Ej, 9 Ehi] = 8 k h E j i  - 6 j i E h k  9 
1 i, k ,  h,  I < m, 

in agreement with (1.1). Thus, making the identification Ej, f--1 E j k  one can 
easily construct reps of each of the classical Lie algebras in terms of annihila- 
tion and creation operators for bosons. Furthermore one can use the models 
to decompose V into subspaces transforming irreducibly under these reps. 

j _I n, 
on a finite-dimensional vector space V satisfying the anticommutation rela- 
tions 
(7.4) 
where [a, b], = ab + ba. Setting 
(7.5) 
we obtain the relations 
(7.6) ujuk + akaj  = 2djkE,  1 < j ,  k 2n. 

Conversely, if the uk satisfy (7.6) and aj, a,* are defined by (7.5) then the anti- 
commutation relations (7.4) hold. Operators satisfying (7.4) are called annihi- 
lation and creation operators for fermions. 

It follows from the preceding section that V can be decomposed into a 
direct sum of irred subspaces under the aj and a,*, each subspace trans- 
forming as the 2"-dimensional rep ($") of so(2n + I ) .  A basis is given by (6.18) 
which we rewrite as 

For our next example we consider a family of operators aj, a,", 1 

[aj, a,], = [a,*, a,*]+ = 0, [a,, ak*]+ = djkE, 1 < j ,  k 5 n, 

aj = $(aj  - ia,,,), a,* = $(aj  + iu,,,), 

(7.7) IP1 . . .  P , > = f p , O . * * O f p , ,  p j = 0 , 1 ,  
where 
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Then from (6.10) and (7.5) we obtain 
a , ( p ,  . . . pi . . . p,) = ( - 1 ) ~ l + . . * + p ~ - t p ~ / p  . . . p .  - 1 . . . p,) 

aj* I p ,  . . . pi . . . p,) (- l)Pc+"'+PJ-I (1 - pj) I ~1 * * * pj + 1 . . P,>. 
(7.8) 

The physical interpretation of these relations will be given in the next section. 
It has been found experimentally that for many nuclear interactions (the 

strong interactions) one can consider the proton p and the neutron n as two 
states of the same particle. In particular the masses of p and n are approxi- 
mately equal. Of course there is a small mass difference and p has charge + 1 
while n has charge zero. However, the mass and charge differences can be 
ascribed to so-called electromagnetic and weak interactions, which are con- 
sidered as perturbations of the charge-independent strong interactions. 

In the theory of strong interactions one considers p and n as two states of 
the nucleon N described by the state space X = X,/, @ 9,. Here X,,, is the 
state space for a particle with spin t as described in Sections 7.8 or 8.4 (for a 
relativistic theory) and 9, is a two-dimensional space with basis 

called isobaric spin space. A general element of X can be written uniquely 
in the form 

I = Y p @ p  + I n @ n ,  

where I,, I, are themselves two-component spinors. Here I, @ p is a pure 
proton state and Y,@n is a pure neutron state. In general, I is a superposi- 
tion of proton and neutron states. The inner product in X is given by 
(7.10) <y('J, I(2J >x = (I:', 'ya">Xl * + (F", YP'>X, ? .  

X@k = (X,,, @ B 2 ) @ k  g (XI J@Jk @ (9,)@,. 

The state space for k nucleons is 

An element I of X B k  is determined by the spinor 
(7.1 I )  y s , . . . s * , f l . . . I , ( X 1 ,  . * * > xk)? s j  = *i 1 f, = *$. 
Here x , ,  . . . , x, are the position coordinates of the k particles, the s, are the 
ordinary spin indices, and the t ,  are isobaric spin indices. For example, if 
all components of Y are zero except that component for which s, = . . . 
= sk = -4 and t ,  = . . . = t ,  = t ,  then Y is a state of k protons each with 
3-component of ordinary spin equal to -&. 

If this k-particle system interacts with itself we demand as usual that the 
interaction admit the symmetry &, , (8.21), Section 7.8,  where the group 
acts on the position vectors x, and the spin indices s,. [In a relativistic theory 
we demand that the interaction admit 6 as a symmetry group, (4.22), Section 
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8.4.1 Furthermore, for strong interactions we also require that the operators 
I(A), A E SU(2), commute with the interaction Hamiltonian, where 

(7.12) 

[ I (A)YI~ , . . .~~ , r , . . . r~ (X l  7 . . . > X,> = ,C , A,,r,* . Ar,r*,yS,...I*,r,,..1,.(~1 9 . * * > x,). 
I ,  ... f ,  

Note that I(A) acts only on the isobaric spin space g2 and does not affect 
the position vectors or ordinary spin indices. Thus for a relativistic theory of 
strong interactions the symmetry group is assumed to be 6 x SU(2) .  (Actual- 
ly one also requires invariance under space and time inversion, but we will 
not discuss this here.) Since we have already examined the implications of 
invariance with respect to symmetry groups acting on the position vectors 
and ordinary spin indices, we restrict the following discussion to the rep 
(7.12) of SU(2)  acting on the isobaric spin indices. Under this action (9JBk 
transforms according to the rep (D" 2 ' )@k .  We can use the CG series, Section 
7.7, to decompose this rep into irred components. If the system is in a state 
transforming as the canonical basis vector fk'  of D'"' in isobaric spin space 
at some time I,, then the isobaric spin invariance of the system implies that 
at any later time t the system still transforms as fk) .  The mathematical analysis 
which exploits this invariance is similar to that leading up to expression 
(8.10) in Section 7.8, but the physical interpretation is different. As an example 
we consider an interacting two-nucleon system such that the result of the 
interaction is again a two-nucleon system. The isobaric spin space 9, 9, 
for this problem transforms as Do 2' 0 D" 2 1  D") @ D'O' under SU(2). 
The canonical basis vectors are 

f: I )  = p @ p, 
(7.13) 

fbo) = 2-IJ2(p 0 n - n @ p). 

Since isobaric spin is conserved by the interaction a p-p system ends up as 
ap-p system and, similarly, an n-n system ends up as an n-n system. Further- 
more, the transition probabilities between corresponding eigenstates of 
orbital and spin angular momentum are exactly the same for p-p and n-n 
systems. Both of these systems belong to D"', while a mixed system belongs 
to both D"' and D'O'. 

The Hamiltonian describing strong interactions between the two nucleons 
commutes with the action of the isospin group. However, if one takes into 
account the electromagnetic interaction between nucleons the perturbed 
Hamiltonian no longer commutes with the isospin operators and it becomes 
possible to distinguish between p and n. Thus the electromagnetic interaction 
breaks isospin symmetry. 

The concept of isospin symmetry can be applied to other elementary 
particles. As an example we consider a family of eight baryons, all with 

f b ' )  = 2-l z(p @ n t n @ p), f(l) = n @ n, 
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(ordinary) spin 3 and approximately the same mass. Two of these particles 
arep and n which transform as a canonical basis for the rep D" 2 1  in isospace. 
The sigma hyperons C+, Co, C -  have charges + 1,0, - 1, respectively, 
and transform as a canonical basis f ( l l ) ,  fb'), fL1j for D"' in isospace. (Thus 
the Hilbert space describing a single sigma hyperon takes the form 0 
g,, where 9, is the rep space for D"'.) The Ao hyperon has charge zero and 
transforms as a scalar D'"' under isospin. Finally, the cascade particles EO, 
E- have charges 0, - I ,  respectively, and transform as the canonical basis 

It is required that the isospin group SU(2) be an invariance group for the 
strong interactions of these particles. Thus for nucleon-sigma hyperon scat- 
tering the isospin space transforms as D" 2 J  @ D"' G DI3 2 ,  @ D"/z), and 
the isospin space has a basis consisting of a canonical basis for D', 2 1  and 
a canonical basis for D" 2 1 .  The basis vectors can be determined from the 
CG series, e.g., fi3i2) = p @ Z+. Isospin invariance implies that a system 
transforming as fk)  before the scattering must transform the same way after 
the scattering even if particles are created or destroyed by the interaction. 
This leads to selection rules and conservation laws in analogy with those 
derived in Section 7.8. Again, electromagnetic effects break the isospin 
symmetry, so the conservation laws are only approximately correct. For a 
detailed examination of these rules and their physical significance or validity 
see the standard textbooks in elementary particle physics. 

We now introduce one more concept important in the theory of strong 
interactions: the hypercharge Y. Let I ? ,  Z3 be the generators of isospin satisfy- 
ing relations (1.23), Section 7.1. (We use the notation I rather than J to dis- 
tinguish isospin from angular momentum.) The eight elementary particles 
listed above correspond to eigenvectors of I 3  and the eigenvalues of Z3 are 
conserved by strong interactions. We know that the charge of a quantum 
mechanical system is conserved under strong interactions, and each of the 
canonical basis vectors for isospin space listed above has definite charge. 
Thus we can uniquely define a charge operator Q by 

(7.14) Qr = qr, 

where q is the charge of the particle r and r runs over a canonical basis for 
isospin space. For example, 

f ( l / 2 )  f ( 1 / 7 )  O f D ' l ' 2 )  
1/2  9 - I / Z  

(7.15) =e ,  QP = P  
for the nucleon pair n andp. We define the hypercharge operator Y by 

(7.16) Q = I 3  + + Y  or Y = 2(Q - 1,). 

it follows easily from (7.9) and (7.15) that Y = 1 for the pair n, p .  A similar 
computation shows that the hypercharge of the Striplet and AO-singlet is 
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Y = 0 and the hypercharge of the cascade doublet is Y = - 1. Thus there is 
a close relation between the charge and the third component of isotopic 
spin, and this exact relation is determined by the hypercharge. Since charge 
and the eigenvalues of f 3  are additive quantum numbers conserved by strong 
interactions, hypercharge must also be an  additive conserved quantity. (By  
additive we mean that a two-particle system consisting of particle a with 
hypercharge Y, and particle b with hypercharge Y ,  has total hypercharge 
Y, + Y,. The sum Y, + Y,  is conserved under strong interactions, though 
not Y, or Y,  separately.) 

With the success of the concept of isospin in providing some order in 
elementary particle physics, attempts were made to find a larger symmetry 
group G for strong interactions which included the isospin group SU(2)  
as a proper subgroup. The most successful attempt to date is the “eightfold 
way” of Gell-Man and Ne’eman [ I ] ,  in which the symmetry group is SU(3). 

Before describing this theory we discuss the irred reps of SU(3). These 
reps can be denoted [ f ,  , f z ]  = [ f , ,  f z ,  01, wheref, 2 f z  2 0 are integers. The 
simple characters are given by Theorem 9.4 and the dimensions by 

(7.17) N(f l , f , )  = j(f l  - f ;  + INf, + 2 ) ( f ,  + 1). 

We list some of the irred reps of low dimension. 

[fl, f z l  N f ,  I f;) [ f l ? f Z l  N f , ,  fz) 
1 [O, 01 1 8 12, 11 8 

Here, we have adopted the notation in elementary particle physics where a 
rep is denoted by its dimension. (Using Young symmetrizers the reader 
should be able to  show that 3,6,  and are the complex conjugate reps 
of 3,6, and 10, respectively.) 

Clearly, 3 is the usual matrix realization of SU(3).  The weights are 
A , ,  A,, A ,  = -A, - A, .  The r e p 3  is defined by the matrices x, A E SU(3).  
The weights are -A,, -Az, -A, = A ,  + A,. The rep 8 [2, I ]  is just the 
adjoint rep of SU(3) acting on su(3). Indeed, su(3) is eight-dimensional and 
the weights of the adjoint rep are just the roots of su(3) plus the weight zero 
with multiplicity two. Thus the nonzero weights are & ( A ,  - A z ) ,  &(A, - 
I , )  = &(2A, + A2), * ( A 2  - A,) = &(A, + 22,). The highest weight is 
212, + A,,  so the adjoint rep contains [2, I]. Since dim [2, 13 = 8 it follows 
that the adjoint rep is irred. 
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We can identify SU(2) with the subgroup 

of SU(3). Clearly [f, ,f2] I SU(2) decomposes into a direct sum of irred reps. 
We determine this decomposition for [2, I]. On restriction to SU(2), we find 
1, + A 2  = 0 = A, .  Thus, the weights of p SlSU(2) are & 2 l , ,  fl, 
(multiplicity two), and 0 (multiplicity two). The highest weight is 21, ,  so p 
contains [2] D"'. (Recall [2u] D'"'.) Removing the weights 1 2 1 , ,  0 
of [2] we see that 1, (multiplicity two) is the highest remaining weight. There- 
fore, p contains [ I ]  @ [l]. Removing the four weights * A , ,  f l l  correspond- 
ing to these reps we are left with the single weight 0. Thus, 
(7.19) 8 I SU(2) 2 D"' @ 2D" 2 ,  0 D'O' z [2] 0 2[ 11 0 [O].  

In the eightfold way the eight baryons introduced above are identified 
with a basis for 8 which is canonical with respect to the decomposition (7.19). 
The Striplet with hypercharge Y = 0 forms a canonical basis for [2], the 
two doublets with hypercharge Y = 1 and Y = - 1  form canonical bases 
for the two occurrences of [l], and the Ao with hypercharge Y = 0 belongs 
to [O]. The assignment 

(7.20) f f ( A , ,  2,) == A I Q  I 12(y - Q) 
defines the eight baryons as a weight basis for 8. We shall not be concerned 
with the exact normalization of this basis. 

Now consider these eight baryons as distinct states of a single particle 
with spin f. The Hilbert space describing such a single-particle system takes 
the form X, @ W,, where W, is the eight-dimensional rep space for 8 con- 
structed above. For very strong interactions involving this particle it is requir- 
ed that the interaction Hamiltonian commute with the action of SU(3). Since 
the isospin group SU(2) is identified as a subgroup of SU(3). this requirement 
implies conservation of isospin, However, S U ( 3 )  invariance clearly leads to 
additional selection rules and conservation laws. These rules can be obtained 
from the Wigner-Eckart theorem. 

Other particle multiplets can be fitted with irred reps of SU(3).  In addi- 
tion to the baryon octet there is an octet of pseudoscalar mesons which also 
transforms according to 8. There is also a baryon decouplet transforming 
according to 10. For very strong interactions involving a particle from the 
baryon octet and a particle from the pseudoscalar meson octet the space 
on which SU(3) acts transforms according to 8 @ 8. To make full use of the 
SU(3)  symmetry it is necessary to decompose 8 @ 8 into irred reps. The result is 
(7.21) 8 0 8 2 27 @ 10 @ 28 @ 1 
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If the system is in one of the irred subspaces on the right-hand side of (7.21) 
before the interaction, it will lie in the same subspace after the interaction. 
The analysis is very similar to that given in Section 7.6. The weight vectors 
corresponding to irred reps on the right-hand side of (7.21) can themselves 
be considered as particles or “resonances.” If such a resonance decays into 
a baryon and a meson the possible decay modes and their relative probabil- 
ities are given by expressing the resonance as a linear combination of weight 
vectors from the “natural” baryon-meson basis for 8 0 8 via the Clebsch- 
Gordan coefficients. The Clebsch-Gordan coefficients for SU(3)  have not 
been computed in the general case. The’principal difficulty is that the tensor 
products may contain an irred rep with multiplicity greater than one, as 
illustrated by (7.21). However, the CG coefficients have been tabulated 
for all tensor products of importance in the eightfold way model, such 
as (7.21) (Dyson [l]). 

The eightfold way model is presumed to be exact only for extremely strong 
interactions. The other possible interactions between particles are considered 
as perturbations which break the SU(3)  symmetry. We can imagine turning 
on these perturbations in sequence. First we reduce the symmetry from SU(3)  
to SCr(2), the isospin group. This causes the baryon octet to split into a triplet, 
two doublets, and a singlet via (7.19). At this point we still have isospin 
symmetry. Now we turn on the electromagnetic and weak interactions to 
break the SU(2) symmetry. The electromagnetic interactions conserve I ’  
and Q, but the weak interactions conserve only Q. If the perturbing interac- 
tions are “small” with respect to the very strong interactions then we expect 
this model to yield experimental predictions which are at least qualitatively 
correct. Furthermore, we expect to explain the observed mass differences of 
the particles in the baryon octet in terms of the perturbing interactions. In 
fact, there is a great deal of experimental evidence validating the predictions 
of this model and the observed mass differences can be explained rather well 
by the Gell-Mann-Okubo mass formula (Dyson [I]) .  The model has no firm 
theoretical basis and may be disgarded in  time, but it is certainly a useful 
means of classifying elementary particles and a beautiful application of syni- 
metry groups. 

The classical groups have been used extensively in  atomic spectroscopy 
and nuclear physics. For a detailed study of these applications see the work of 
Hamermesh [ I ] ,  Loebl [ I ,  21, or Tinkham [I] .  In many cases the mathematical 
content of the application is the determination of multiplicities of irred reps 
T‘ belonging to a subgroup K of G in the restricted rep T I K.  Here T is an 
irred rep of G. The formulas for the multiplicities are called branching laws. 
Throughout this book we have computed branching laws for various groups 
of physical interest. Some of the most important laws for the classical groups 
are given by Boerner [ I ] .  
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The group SO(4, R) is of special importance in physics because of its 
relationship to the hydrogen atom. For a (spinless) particle in a spherically 
symmetric field the Hamiltonian takes the form 

H = -(1/2 m)A + V(r), r = [x' + y 2  + ~ ' 1 ~ ' ~ .  
For most choices of the potential V the (connected) symmetry group of H 
is just SO(3). However, outside of the trivial case V a constant, there are 
two cases where the connected symmetry group of H is larger than SO(3): 

(7.22) V ( r )  = c /r ,  V ( r )  = c r 2 ,  c a constant. 
The hydrogen atom (a single particle in an attractive Coulomb field) corre- 
sponds to such a potential. Using appropriate units we can choose 

(7.23) H = - ' A  z - (I/ r ) .  
It can be shown that the eigenvalues of H are all negative (the boundstate 
energy levels) (Helwig [l]). Let A be an eigenvalue of H and C?, the correspond- 
ing eigenspace. We look for symmetric operators on C?, which commute with 
H. Since r - l  is spherically symmetric the angular momentum operators L = 

(L , ,  L,,  L 3 )  [(6.24), Section 7.61 commute with H. Furthermore, a tedious 
computation shows that the operators A = ( A l ,  A , ,  A 3 ) ,  

(7.24) A =  

are also symmetric and commute with H. Here p = ( - i d x ,  - id,, - id,), 
r = (x, y,  z),  and L x P is the cross-product. For the physical significance of 
A (the Runge-Lenz vector) see the book by Pollard [l]. Note that A depends 
on A. The six operators L and A satisfy the commutation relations 

where cjkl is the completely skew-symmetric tensor such that E , ~ ~  = + l .  
These commutation relations are valid only on the domain e,. Setting 

c . = -  , 4 I '(Lj + Aj), D . = -  , 4 2 ' (L j  - A j ) ,  j = 1,2, 3, 

we obtain 
(7*26) [c j  9 c,l = c f j k l C l  5 [Oj 9 Okl = c EjklDI  2 [ c j  9 Ok] = O .  

Clearly the complexification of the Lie algebra generated by the operators 
(7.25) is isomorphic to $42) x $42). In particular, the commutation relations 
(7.26) and (3.1), Section 8.3, are identical. Thus the irred reps of the Lie 
algebra (7.25) can be denoted D(',u). The reps are defined by (3.2) and (3.3), 
Section 8.3. In particular, C.C = u(u + I ) ,  D - D  = w(w + l) ,  and dim 
D ( u , v )  - - (2u + 1)(2w + I ) .  It follows directly from (7.24) that A - L  = L - A  
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7 0 and L - L  + A - A  = - [ I  + (l/2A)]. Thus 
17.27) C * C  = D - D  $(L .L  A - A )  p- - - + [ I  -!- (1/2A)] = U(U -1 I) ,  
so the possible irred reps on (3, obtainable from our model (7.24) are Dcu,"', 
where 
(7.28) ,I = --1/2(2u T : --1/2n2, 
The possible energy eigenvalues are given by the Baltner series 1, = ~ 1/2n2 
and the degeneracy of the eigenvalues An is n 2 .  Just as in Section 8.3, the 
restriction of this Lie algebra to the subalgebra su(2) generated by the angular 
momentum operators L ,  , L, ,  L ,  yields 

n : 2u - i ~  1 = I ,  2 , .  . . , 

(7.29) D'"~"' Is421 Z D'" 0 D'") D12" @) . * . @ D"' 0 D'O' 

The eigenspace corresponding to 1, is not irred under the angular momentum 
operators but decomposes into a direct sum of the irred reps D"', 0 I < 
n - I ,  each rep with multiplicity one. It follows from (7.29) that we can 
choose n2 vectors Ynlm as a basis for e,,,, where I = 0, I ,  . . . , n - 1, -1  
m < 1. 

The skew-Hermitian operators iL,, iA , ,  1 < j I 3, generate a real Lie 
algebra isomorphic to so(4, R ) .  Furthermore, the Lie algebra rep D('.u) on 
(3>." exponentiates to the irred rep (2u,  0) of SO(4, R). Note that so(4, R) and 
so(3, 1) are both real forms of sl(2) (& s42) Z so(4). The action of SO(4, R )  
on the coordinate space is rather difficult to compute because the A j  are 
second-order differential operators (Kursunoglu [ I ] ) .  

The harmonic oscillator in three dimensions corresponds to the potential 
k r 2 ,  k > 0. The symmetry group of the Hamiltonian is SU(3).  We will 

study this example in  Chapter 10. Outside of these two cases no examples of 
rotationally symmetric Hamiltonians with connected symmetry group larger 
than SO(3) are known. The high degree of symmetry of these two examples 
enables one to find the bound-state energy levels and their multiplicities from 
group theory alone. 

In conclusion, we note that the noncompact classical groups also have 
infinite-dimensional irred reps. These reps can be constructed using Lie 
algebras and weight vectors (Sherman [ l ] )  or using the method of induced 
reps (Gel'fand and Naimark [ I ] ) .  

9.8 The Pauli Exclusion Principle and the Periodic Table 

Consider a Hilbert space XSXN corresponding to a physical system of N 
indistinguishable particles (say electrons) with spin s and mass m. A typical 
Hamiltonian for this system is 
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where xi is the position coordinate of particlej, V is a potential function, and 

w = (W;;::::~",x,, . . . , x,)) 

is a spin-dependent interaction term. The Hilbert space consists of wave 
functions '4 = C Y, ,... p N ( x l ,  . . . , x,)e"[ 0 . @ eflN, where ,uj is the spin 
index of thejth particle (see Section 7.8) and the eCJ form a canonical basis 
in spin space. Here 

(8.2) 

Let ~7 be a permutation of the integers 1 ,  . . . , N and define the permutation 
operator a on K!:, by 

(8'3) (ay)#t..,pN(xI?. * * 9 xN) y~u-l(~),...,~,-~(~~(xU~l(~)~~ * ' > x U - l ( h ' ) ) *  

Here a is a self-adjoint operator on XFN, as can be seen from the inner product 
(8.20), Section 7.8. The indistinguishability requirement for the N particles 
means that H is symmetric in the coordinates of these particles, i.e., 
(8.4) aH = Ha 

for all Q E S,. Thus the permutation group S, is a symmetry group of H. 
To see the implications of this fact let I .  be an eigenvalue of H and W, the 
corresponding finite-dimensional eigenspace. If Y E W, we have aY E W, 
for each Q E S,. Thus we can decompose W, into a direct sum of subspaces, 
each subspace transforming irreducibly under S,  . This decomposition was 
studied in Sections 3.7 and 4.2, and the irred reps were labeled by Young 
frames ifl, . . . . ,fN}. 

It has been found experimentally that not all eigenvectors Y in W, are 
physically meaningful. In particular, if the spin s is half-integral, the eigen- 
vectors of H with eigenvalue I .  (corresponding to a physical system) can 
occupy only that subspace of W, belonging to the rep {l"} of S,. Indeed, the 
only allowed states Y permitted to such a system are completely skew-sym- 
metric: 
(8 .5)  aY = 6,Y. 

(Here 6, is the parity of Q E S,.) Particles with half-integral spins = &,$, . . . 
are called fermions. 

If s is an integer, the eigenvectors corresponding to a physical system can 
occupy only that subspace of W, belonging to the completely symmetric rep 
{ N } .  Thus, the allowed eigenfunctions Y must satisfy 
(8-6) a P  = P 

for all Q E S,. Particles with integral spin are called bosons. 
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All known elementary particles are either fermions or bosons. In the 

If the Hamiltonian is a sum of single-particle Hamiltonians 
following discussion we consider only fermions. 

(8.7) H =  j= 2 1 Hj, H, = -(1/2m)Aj + V ( x j )  

then the eigenspace W, is spanned by tensor products of single-particle eigen- 
functions, 

(8.8) Y(x,, . . . , x,) = 'I'(lJ(xl) 0 . . . 0 Y")(x,), HI'€"" = AJYi-", 

where A = I ,  + . . .  + A,. If Y E W, then a l  E W, for each a E S,. 
The vectors a l  span a subspace with dimension N !  if the {Y'J'] are linearly 
independent. However, only the one-dimensional subspace consisting of skew- 
symmetric tensors 

(8.9) \zI = c duYiIyxu(l)) @ . . . @ Y " ' ( X u ( N , )  
0 

is physically meaningful. Thus, for a system of N identical noninteracting 
fermions the skew-symmetry requirement allows us to discard all but one of 
our N !  linearly independent mathematical eigenfunctions. Furthermore, if 
two of the single-particle eigenfunctions YiJ1, YkJ ,  j # k ,  are linearly depen- 
dent then \zI = 8 in (8.9) and there are no permissible eigenfunctions. This 
yields the Pauli principle: A system of identical fermions cannot exist in a 
state in which two of the fermions are in the same single-particle state. The 
Pauli principle is a special case of (8.5) since it applies only to noninteracting 
systems. 

To show the significance of the Pauli principle we discuss the N-electron 
atom. (Electrons are fermions since they have spin i.) By neglecting the nio- 
tion of the (relatively) heavy nucleus we can consider an atom as a system of 
N electrons in a Coulomb field centered at x = 0. The Hamiltonian is 

(8.10) H = H ' O J  + H(11 + H ' Z J ,  

where 

Here the Hj are single-particle Hamiltonians 

(8.12) H, = -(1/2m) A j  ~ N q 2 / /  xj I 
and m, q are the mass and charge of the electron, respectively. The V(I xj - 
xk I) is the potential due to the Coulomb interaction between apair of electrons 
and HI2' denotes the interaction between the spin and orbital angular mo- 
mentum of the electrons. Only H'21 acts on the spin indices of the state func- 
tions. 
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We present a group-theoretic discussion of this system under the assump- 
tion that H“’ is “small ”in comparison to H‘O’ and H‘2’ is “small” in compari- 
son to H“’. The perturbation theory built on this assumption is called the 
Russell-Saunders approximation. It leads to useful results for most atoms, 
particularly the lighter ones. 

T o  a first approximation the system is described by the Hamiltonian 
H‘O’, i.e., the electrons d o  not interact with each other, but only with the 
nucleus. Since H‘O’ is a sum of single-particle Hamiltonians its eigenfunctions 
are tensor products of single-particle eigenfunctions. Furthermore, the single- 
particle Hamiltonian H, is exactly that of the hydrogen atom. Omitting spin 
considerations for a moment, we see from (7.29) that the single-particle eigen- 
functions can be labeled Yn,Jx), where the principal quantum number takes 
the value n = 1, 2, . . . , the orbital quantum number takes the values I = 

0, 1,. . . , n - I ,  and m = -1, --I + I , .  . . ,I. For fixed n and I the 21 + I 
vectors (Yn,m] correspond to an energy level nl of the hydrogen atom. The 
energy levels increase with increasing n. In the nonrelativistic idealized hydro- 
gen atom, levels nl and nl’ have the same energy for / # !‘. However, with a 
more realistic model of the atom it can be shown that this degeneracy is par- 
tially removed and the energy levels increase slightly with increasing 1. Thus 
we can label the distinct energy levels by nl and each such level has multiplicity 
21 + 1. In atomic spectroscopy the orbital quantum numbers I = 0, 1, 2, 3, 
. . . are denoted s, p, d , f ,  g ,  . . . . Hence, the levels of hydrogen in order of 
increasing energy are Is, 2s, 2 p ,  3s, 3p, 4s, . . . . 

We have not yet taken the electron spin into account. The spin space of 
the electron is two-dimensional and the single-particle Hamiltonian does 
not act on the spin indices. Thus, to each Wnlm(x)  there correspond two eigen- 
vectors Y,lm(x)eI’Z and Yn,Tn(x)e-l  z. We conclude that the multiplicity of the 
level nl is 2(21 + 1). 

Now we show that even in the rough first-order approximation where the 
electrons are noninteracting we can get useful qualitative information. In 
nature most atoms are found in the ground state (lowest energy state) rather 
than in some excited state. Using our model of the atom with Hamiltonian 
H‘O’ we will explicitly compute the ground state for each N .  

For hydrogen, N = I ,  the single electron must be in a Is state. For the 
helium atom, N = 2, the lowest energy level is obtained by choosing both 
electrons in a Is state. In the case of lithium, N = 3, it is tempting to choose 
all three electrons in a Is state, but this is forbidden by the Pauli principle 
since there are only two Is states. Thus, the lowest energy level of lithium is 
obtained by choosing two electrons in 1s states and the third electron in a 2s 
state. For N = 4 the ground state is formed by two electrons in Is states and 
two electrons in 2s states. Since there are only two 2s states the next electron 
must be in a 2p state to obtain the lowest energy level for N = 5. We can 
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continue adding electrons one at a time until the six 2 p  states are filled. This 
occurs for N = 10 (neon). For N 1 1  (sodium) the added electron must 
lie in a 3s state. We can continue in this manner adding electrons one at a time 
in the lowest possible eigenstates consistent with the Pauli principle. 

lt follows from our construction that electrons in an atom fall into electron 
shells labeled by the principal quantum number n. Electrons in the same shell 
have approximately the same energy, while the energy difference of electrons 
in different shells is relatively large. 

The first five experimentally observed shells ordered in terms cf  increasing 
energy are listed in Table 9.1. 

TABLE 9.1 

Shell number Electron states Number of states in filled shell 

1 Is 2 
2 2% 2 P  8 
3 3s, 3P 8 
4 4s, 3d. 4 p  18 
5 5s, 4 4  s p  18 

The observed composition of the first two shells is just as our simple model 
predicts. We would expect that the third shell would contain the ten 3d state 
as well as the eight 3s and 3p states. However, it has been found experi- 
mentally that in a complex atom the 3d states have higher energy than the 
4s states and fall in the fourth shell. Similarly the 4dstates lie in the fifth shell. 
(Our theoretical model ignores the mutual interaction between electrons. 
However, as the number of atomic electrons increases so does the electron 
interaction, so we would expect the model to be less accurate for many-elec- 
tron atoms.) 

As we have seen, for helium the first electron shell is filled, and neon 
contains exactly two filled shells. Similarly, exactly three, four, and five shells 
are filled for argon, krypton, and xenon, respectively. These atoms with 
filled shells all correspond to inert gases. On the other hand, the atoms of the 
alkali metals, lithium, sodium, potassium, and rubidium, consist of filled 
shells together with one electron in an s state of the next higher shell. Again 
these elements are observed to have similar chemical properties. Using the 
above ideas it is possible to divide the known elements into families with 
similar chemical properties, based on the structure of the electron shells. This 
theory provides a quantum mechanical derivation of Mendeleev’s periodic 
table of the elements. Indeed the nth row of the periodic table corresponds 
exactly to  the nth eleciron shell. For more details the reader should consult 
standard texts in atomic physics. 
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We now turn to the problem of analyzing the multiplicity structure of the 
eigenvalues of the Hamiltonian H, (8. I0)-(8.12), corresponding ' to  an N- 
electron atom. Following the usual perturbation theory technique we first 
consider the Hamiltonian H'O', a sum of single-particle Hamiltonians. It is 
clear that S, [whose action is described by (8.3)] is a symmetry group of H'O'. 
Furthermore, the group [SO(3)IN = SO(3) x . . . x SO(3) fN times) defined 
by (8.3), Section 7.8, is a symmetry group since each single-particle Hamilto- 
nian Hj separately commutes with the action of SO(3). [Actually H, commutes 
with O(3) but parity conservation contributes little to the following analy- 
sis.] Finally, since H'O' does not act on the spin indices any unitary transfor- 
mation in spin space commutes with H'O'. The spin space of an N-electron 
system is 2N-dimensional, so the spin transformations form a symmetry 
group isomorphic to U(2,). By forming all possible products of symmetries 
corresponding to S,, [S0(3)IN, and U(2,) we can generate a larger symmetry 
group Go. Unfortunately the structure of Go is so complicated that it is not 
very useful for perturbation theory. (Note that symmetries from S, and 
[SO(3)lN may not commute.) Therefore, we temporarily restrict our attention 
to the direct product K = [S0(3)IN x U(2,), a proper subgroup of the 
maximal unitary symmetry group. 

Let 1 be an eigenvalue of H'O' and W, the corresponding finite-dimen- 
sional eigenspace. Since K is compact, W, can be decomposed into a direct 
sum of K-irred subspaces. Each such subspace transforms according to an 
irred rep of the form 
(8.13) D('l) X o('2) X . . . X D ( I N )  X [ I ] ,  

where D"' is the (21 + 1)-dimensional irred rep of SO(3) and [ I ]  is the 2,- 
dimensional rep of U(29 equivalent to the usual 2, x 2, matrix realization 
of this group. Note that such an irred subspace is of the form 

V ( I I . . . I N )  (8.14) 0 Z@", 

where Z@" is the 2N-dimensional spin space with basis {eai  @ . . . @ eaNj,  
V ( I I . . . ' . ~ )  is the (21, + I )  . . . (21, + I)-dimensional space of scalar functions 
with basis 
(8.15) 
and Yntm is the hydrogen atom wave function with quantum numbers n, I, m. 
The group U ( 2 9  acts on Z g N  irreducibly and [SO(3)IN acts on V'I. Ih.) irre- 
ducibly. The dimension of this rep is 

y n l l t r n L ( X i )  . . . ' J ' n N I N m n ( ~ , ) ,  - l j  I mj S lj, 

(8.16) (21, - 1  1 )  . . .  (21, I 1)2,. 
The numbers (8.16) give information concerning the degeneracies of eigenval- 
ues of H'O', although, since K is not maximal, several irred subspaces corre- 
spond to the same eigenvalue. 



9.8 The Pauli Exclusion Principle and the Periodic Table 383 

Next we consider the effect of the perturbing potential H ( , ) ,  (8.11). Clearly 
the action of A ,  x . . . x A, E [S0(3)lN on configuration space commutes 
with H“ if and only if A , = . . . = A , .  These “diagonal” elements generate 
a subgroup of [SO(3)IN isomorphic to SO(3). The permutation group S, 
and U ( 2 N )  acting on the spin’indices are still symmetry groups of H“’. We 
can generate a much larger symmetry group G, by forming all possible finite 
products of symmetries associated with S0(3), S,, and U(2N) .  However, the 
symmetries from S ,  and U(2N) do not commute in general so the structure of 
this group is very complicated. To get more useful results we consider a sub- 
group of G ,  . The set of all matrices 

where B E U(2) ,  forms a group isomorphic to U ( 2 ) .  Under the action of 
this group each of the spin indices of Y is transformed identically under the 
usual two-dimensional realization of U(2). [If we restrict further to the sub- 
group SU(2)  we get the usual action of SU(2) in spin space.] It is easy to verify 
that the actions of S, and U ( 2 )  mutually commute. Thus, the symmetry group 
of HILJ generated by SO(3), S,, and U(2)  is the direct product group 
(8.17) 

The irred reps of K ,  are of the form 

K ,  = SO(3) X S, X U(2).  

(8.18) DIL’ x If, 7 . . . 9 f N 1  x [g, 9 s,l, 
where DCL’ is the ( 2 L  + I)-dimensional rep of SO(3), the Young frame 
(f, , . . . , f,},f, + . . . + f, = N ,  denotes an irred rep of S,  as determined in 
Section 4.2, and the Young frame [g, , g,] denotes an irred rep of U ( 2 ) .  Thus 
each eigenspace of the Hamiltonian HI0’ + H“’ decomposes into a direct 
sum of subspaces, each transforming according to reps (8.18). However, the 
only subspaces of physical interest are those for which If,, . . . , f,} { lN) .  
Furthermore, the rep [g, ,  g,] on restriction to S U ( 2 )  is equivalent to [g, ~ 

g,, 01 D((81-82) 2 ) .  We conclude that each irred subspace of physical interest 
is of the form 
(8.19) DfL’ x { l”] x [ M  1 s, M - S], 

where M and S are both integral or both half-integral. The dimension of this 
space is ( 2 L  + 1)(2S + I )  and the action of the subgroup SO(3) x S U ( 2 )  
on it yields the irred rep DfL’ x DCsJ. Such a space is called a term and desig- 
nated by the symbol 2 s + 1 L  in spectroscopic notation. Each wave function in 
the space has orbital angular momentum L and spin angular momentum 
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S .  (Recall that spin and orbital angular momentum are not coupled at this 
state of our perturbation procedure.) 

Our derivation of (8.19) is not constructive since it does not show how to 
actually compute such reps for a given physical system. We analyze this prob- 
lem in more detail by considering a configuration in which the N electrons 
are in states n, l , ,  . . . , nJ,. Ignoring spin for the moment, we see that the 
space Ycri I h )  of all possible coordinate wave functions describing this system 
is invariant under the group SO(3) x S $ ) ,  where SO(3) is related to orbital 
angular momentum and S g )  denotes the action of the permutation group on 
the spatial coordinates x, of the wave functions Y(x, ,  . . . , x,). Similarly 
the 2N-dimensional spin space 2%'" is invariant under U(2) x Sg), where 
U(2) [and its subgroup SU(2)]  are related to spin angular momentum, and 
S $ )  refers to the action of the permutation group on spin indices. Clearly, 
the elements of WA' = Y c f i  @ ZfaN form an eigenspace of the unperturbed 
Hamiltonian H(OJ corresponding to some eigenvalue 1. (Here, W,' may only 
be a proper subspace of the total eigenspace W,.) 

We will decompose WA' into terms by first decomposing Y c f l  I N )  into 
irred subspaces under SO(3) x S g )  and Z B N  into irred subspaces under 
U(2) x S $ ) .  For Ycli I N )  the results depend strmgly on I , ,  . . . , I,. All we 
can say in general is that the irred subspaces are of the form 

(8.20) DLJ x If,, . . .  ,f,), f, + . * .  + f N = N .  

Important special cases of this decomposition are treated by Hamermesh 
[ 11 and Lomont [ 11. ForZmN, on the other hand, we can proceed with complete 
generality. It follows from the results of Section 4.3 and Section 9.1 that 
ZON decomposes under U(2) x S $ )  into a direct sum of subspaces of the form 
(8.21) [g, f g21 x k, > g21, g, + g ,  = N .  

Indeed the U(2)-irred subspaces of ZRN consist of symmetry classes of tensors, 
each class belonging to a two-rowed Young tableau with N boxes. The space 
(8.21) is that spanned by all symmetry classes of tensors corresponding to a 
single frame [g,,g,]. The dimension of this space is (g, ~ g, + I).dim 
{g,, gJ, where dim {g, , g,} is given by Theorem4.2. Note that themultiplicity 
of the rep {g,, g,} of S $ )  in ZEN is g,  - g, + I .  Since [g , ,  g,] I SU(2) 
[g, - g,, 01 the action of S U ( 2 )  x S g )  on ZBN decomposes into irred reps 
(8.22) D"' x { $ N  + S, i N  - S}, D"' F [2S, 01, 
where S = 0, 1 ,  , , . , N/2 if N is even and S = $,+, . . . , N/2 if N is odd. 
Each irred rep occurs with multiplicity one. 

Thus, we can decompose Y c r i  I N )  @ Z R N  into a direct sum of irred reps 

(fi 9 . .  > f,) X { i N  + S, J N  ~ SI (8.23) D'LJ x D(SJ x 

under the action of the group 
(8.24) SO(3) x SU(2) x sg) x sg). 
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At this point we couple the actions of S, on the spatial coordinates and the 
spin indices, i.e., we restrict Sgl Y SF) to the diagonal subgroup {Q x Q :  

Q E S,}, isomorphic to S,. Then the action of the symmetry group 
(8.25) SO(3) i( S U ( 2 )  X S, = K ,  

on (8.23) is 
(8.26) D'L' X D'" X ( ( f l ,  . . . , f,] @ {$N + S, 4 N  ~ S}).  

The only possible term in (8.26) is 2 S + 1 L  and the multiplicity of this term is 
equal to the multiplicity of the alternating rep {I"} in the tensor product 

(8.27) {f,, . . . , f,} ( 4 N  . I -  S, - 5'). 

Let (g ,  , . . . , g,}I be the Young frame obtained by interchanging rows and 
columns in the Young frame (8, , . . . , g,]. In the next section we will show 
that the multiplicity of ( I N }  in (8 .27)  is zero unless 

(8.28) ( f , ,  . . . , f N )  = {$N $- S, $ N  - 5')' = {2" lS}, 

in which case the niultiplicity is one. 
Thus the only symmetry classes (8.20) that satisfy the Pauli principle are 

those whose Young frames consist of two columns. The space transforming 
according to (8.26) contains one or zero terms depending on whether or not 
(8.28) is satisfied. An explicit construction of the states in 2 s + 1 L  requires a 
knowledge of the Clebsch-Gordan coefficients for { I N }  in the tensor product 
(8.27), but this explicit construction is seldom necessary in physical problems. 

To recapitulate, our method of term analysis is to decompose the orbital 
and spin wave functions separately into symmetry classes. The terms are 
formed from tensor products of these two classes that satisfy the Pauli 
principle. 

We are now ready to consider the effect of the spin-orbit interaction 
H'2J. We assume that Hi*' does not commute with the orbital angular mo- 
mentum operators L, or the spin angular momentum operators S, but that 
it does commute with the operators J, - L, + S, of total angular momen- 
tum. Thus, H'z) couples the actions of SO(3) and SU(2) on the orbital and 
spin indices. (Compare the analogous discussion in Section 7.8.) 

Let z s b l L  be a term corresponding to a given energy level of H'O' + H"'. 
This space has dimension ( 2 s  + 1)(2L + I )  and transforms according to the 
irred rep W' x DL' x { I N )  of the symmetry group K ,  = SO(3) x S U ( 2 )  Y 

S,. The symmetry group of H',' is the subgroup 
(8.29) K ,  = S U ( 2 )  x S,, 

where the action of S U ( 2 )  is defined as in (8.21), Chapter 7 .  Decomposing 
the term z S + l L  into subspaces irred under K, ,  we find 
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The (2J + 1)-dimensional subspace transforming according to lYJ’ x { I ” }  
is called a multiplet and denoted 2s+1LJ.  Thus, under a perturbing potential 
H‘,) the term zs+lL splits into 2K + I multiplet levels where K = min (S, L). 
This completes our analysis of the Hamiltonian H = H‘O’ + H”’ + H‘,’ 
on the basis of Russell-Saunders perturbation theory. This method is based 
on the chain of groups Go 3 K ,  3 K , .  Although K ,  is uniquely determined 
as the symmetry group of H and Go as the symmetry group of a non- 
interacting system, the intermediate group K ,  is a function of our perturba- 
tion assumptions. Different perturbation schemes lead to different chains of 
symmetry groups G ,  3 . . . 3 C,. For some examples see the work of Hamer- 
mesh [l]  or Loebl [I]. 

As the simplest nontrivial example of the Russell-Saunders scheme we 
consider a configuration of two electrons in an np state. Here N = 2, I, = 

I, = I ,  and the space Y(Illa) is nine-dimensional. Since the spin space ZN2 is 
four-dimensional there are 36 possible states belonging to this configuration. 
However, applying the Pauli principle we see that only 

of these states can be occupied by a physical system. (Note that a single np 
electron can occupy 3 x 2 = 6 states.) We will decompose this configuration 
into terms. Under the action of SO(3), Y c l l l  transforms according to D2’ @ 
D(1’ @ D‘O’. We want to reduce Y ‘ l l )  into irred subspaces under SO(3) x 
Si”. To do this we first split up the space into symmetry classes of tensors, 
i.e., irred subspaces under the action T of U(3) x Ski) [or GL(3) x Sil)]. 
According to the results of Section 4.3, 
(8.31) T z  [2,0] X (2,0}@[12] X {l’j. 
Thus, Y c 1 l 1  is decomposed into spaces of symmetric tensors (dimension 
six) and skew-symmetric tensors which carry the reps [2 ,  01 and [ 1 7  of U(3), 
respectively. It is easy to check that [I2] I SO(3) Z D(l), so we must have 
[2 ,  01 I SO(3) 2 D‘O’ @ D2’. Thus 
(8.32) TI SO(3) x Sil)  z (D‘O’ x {2, 03) @ (D2’ x (2, 0} )  @ (D“’ x (lZ)). 

According to our general analysis, the action of SU(2)  x Siz) on Z o 2  leads to 
(8.33) (Do) x { I 2 ] )  0 ( D ( I )  x { 2 , 0 ) ) .  

Now { 1 z]’ = {2,0) and {2 ,0] ‘  = { 1 2), so the possible terms 2s+LL transform- 
ing according to D‘L’ x DS’ x { I 2 ]  are IS, ID, 3P,  each term occurring 
once (we use spectroscopic notation for the value of L).  The total number 
of states in the three terms is I + 5 + 9 = 15, in agreement with our earlier 
result. The decomposition of each term into multiplets follows directly 
from (8.30). For more complicated examples of term analysis see the work 
of Hamermesh [I], Lomont [I], or Wybourne [l]. 
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9.9 The Group Ring Revisited 

Here we derive some theoretical results of great utility in atomic and nu- 
clear physics. Most of these results are related to the group ring of the sym- 
metric group S, .  

We start by proving a theorem used in the previous section. Let {A,}, 
{A,'} be Young frames with n boxes and let ~ ( a ) ,  ~ ' ( 0 )  be the corresponding 
simple characters of S,. The rep (1") 0 {A,] of S, has character v/x(o) = 

v/(a)x(a), where v/(a) = 6, and 6, is the parity of a E S,. 

Lemma 9.10. The rep {l") @ {A,} is irred. 

Proof. We us,e the results of Section 3.4 on group characters. By the Corol- 
lary to Theorem 3.7 a character p of S,  is simple if and only if (p ,  p }  = 1, 
where 

for characters xI, xz .  An elementary computation yields (yx, v/x> = (x ,  x> 
= 1 since x is simple. Therefore, v/x is a simple character. Q.E.D. 

Denote the rep {I") @ {A,} by { I j } .  

Lemma 9.11. The multiplicity m of the alternating rep {I")  in  {A,} @ {A,') 
is one if {A,') r {x,]; otherwise m = 0. 

Proof. We know rn = (xx', v/>. Since the characters of S,  are all real, 
(9.1) implies (xx', v/> = (x', xv/>. The characters x' and xv/ are simple, 
so by the orthogonality relations for characters, ( X I ,  xv/> = 1 if and only 
if x' = xv/. Otherwise (x', xv/) = 0. Q.E.D. 

Since the rep {I,} is irred, it must correspond to some Young frame 
{p,} of S,.  To identify this frame we need a few facts relating characters to 
the structure of the group ring of S, .  These facts turn out to be valid for all 
finite groups. Thus we consider an arbitrary finite group G with group ring 
R,.  The following discussion is based on results derived in Section 3.7. 

Let W be a subspace of R,, invariant under the left regular rep L: L(g)x 
= gx, g E G, x t R,. W is a left ideal of RG and there exists an idempotent 
c in R, such that W = RGc, c2 = c. Let x(g) be the character of L I W. Clearly, 
x(g) is uniquely determined once c is known. We shall derive an expression 
defining x(g) in terms of c. [Recall that every simple character x(g) can be 
obtained in this way from some primitive left ideal W.] 

Lemma 9.12. x(g) = ChEG c(lz-'g-'h), where c = ChEG c(h).h. 
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Proof. Let c' = e - c, where e is the identity element of R,. Then c' is 
idempotent and R, = W @ W ' ,  where W' = R,c' is a left ideal. By defini- 
tion, x ( g )  = t r  (L(g) I W ) ,  where L(g) I W is the restriction of L(g) to W. Let 
P be the projection operator Px = xc, x E R, .  Then P w  =* w for w E W 
and Pw' = 8 for w' E W'.  Clearly L(g)Px = L ( g ) w  for x = w + w' E R,. 
Thus x ( g )  = tr  (L(g)P), where L(g)P is defined on R,. We compute this trace 
using the natural basis { k :  k E G }  for R,. We have 

h t G  htG 

so the c(k1g-I/7) are the matrix elements of L(g)P in the natural basis. Sum- 
ming the diagonal elements we obtain the lemma. Q.E.D. 

We apply this result to S,. Let T be a Young tableau corresponding to 
the Young frame { A j } .  Then T defines a primitive idempotent 

c = c 6,P% 
P ,  9 

(9.3) 

where p runs over all row permutations of T and q runs over all column 
permutations. Thus, c = C c(s)-s, where c(p4)  = 6, and c(s) = 0 if s is not 
a p4.  Let be the tableau obtained from T by interchanging rows and 
columns (see Fig. 9.1). 

p F; 
T 

FIGURE 9. I 

Clearly, the row permutations p of Ta re  the column permutations l j  of i; and 
the column permutations 4 of T are the row permutations jj of 7. Thus the 
essential idempotent P corresponding to is 

(9.4) 

If s = p q  then s-l = q - l p - l ,  6p-l 7 d,, and C ( s - l )  = 6 , .  If s is not a p q  
then e(3-l) = 0. This proves the following: 

(9.5) c(s) = 6,6,i?(s-') = d , P ( s - l )  

for all s E S,. (Note that 6,6, = 6, if s = p4.)  
is a standard tableau 

with frame {I,] and this is a 1-1 relationship between standard tableaux 
corresponding to  these two frames. Hence, by Theorem 4.2 the reps {A,] 
and {I,} have the same dimensionf: By Lemma 4.6 the Young elements 
fc/n! and f ~ / n !  are generating idempotents for the reps ( I . , )  and {I,}, respec- 

If T is a standard tableau with frame { I . , }  then 
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tively. Applying Lemma 9.12 we obtain 

(9.6) ~ ( s )  = f C c ( t - l s - ' t ) ,  f ( s )  = f ( 3 - l )  : f' C r ( t - ' s t ) ,  
IES , ,  n .  I 

P(t- 'st)  & , s I c ( f - ~ s - ~ f )  

for the characters of these reps. But d,.,,, = d,, so 

This proves {A,) 

Theorem 9.10. The multiplicity of the alternating rep { I " )  in ( A j )  @ { p j }  is 
zero unless {p , )  z {A,), in which case the multiplicity is one. Here { I j }  is 
the frame obtained from (A,} by interchanging rows and columns. 

(9.7) f ( s )  = d,X(s). 

{l"] @ {Aj}. 

The frames { A j ] ,  { A j }  are said to be conjugate and their corresponding reps 
are conjugate reps. If (A,} r ( I j }  then ( A j }  is self-conjugate. 

Lemma 9.12, relating an  idempotent in the group ring to the character 
of the group rep it generates, is very useful in applied problems. To illustrate 
this we reexamine the meaning of an induced rep of a finite group G as de- 
fined in Section 3.5. If H is a proper subgroup of G we can regard R,  as a 
subspace (not a subalgebra) of the group ring R,. Let c be a primitive idem- 
potent in R,. Then under the action of the left regular rep of H the subspace 
R,c of R, determines an  irred rep T of H with character 

X(h)  = c c ( k - l h - l k ) ,  c' ~~ c c'(h)*/7. 
k c H  h c H 

(9.8) 

All simple characters of H can be so obtained. Now c is also an  idempotent 
in R,, though not necessarily primitive. Thus, under the action of the left 
regular rep of G the left ideal R,c determines a rep T' of G with character 

(9.9) 

where t ( t )  -7 c(r) if t E H and ?(t)  = 0 if t 6 H. Let 

x ' ( g )  c C ( t - ' g - ' r ) ,  
I t ,  

glH,  g , H , .  . . , R,H, n(G) y- m.n(H), 

be the distinct left cosets of H in G, where g ,  = e .  Then any t E G can be 
written uniquely in the form t gjh for some /7 i H .  Thus from (9.8), 



390 9 REPRESENTATIONS OF THE CLASSICAL GROUPS 

and 

(9.1 1 )  X ' k )  

where t - '  = g,h. This expression for f ( g )  is identical with expression (5.27), 
Section 3.5, for the induced character xG. Thus the rep of G defined by the 
primitive idempotent c in  R,  is equivalent to the induced rep TC. 

Certain induced reps of the symmetric groups are of great importance in 
atomic physics. We can consider the direct product group S, x S,  as a sub- 
group of s,,,,. ( I f  we think of s,,, as the permutation group on n $- m 
letters, then S, permutes the first n letters alone and S,  permutes the last m 
letters). The irred reps of S, x S ,  are of the form {A,i x {p, ) ,  where { A , ) ,  
{p,}  are irred reps of S,, S,, respectively. The rep {A , }  a {p,j of S,+, induced 
in the sense of Frobenius from {A,) x {p , )  is called the outer product of 
{A,] and {pkj (Hamermesh [I]). Theorem 3.9 yields the following result. 

Lemma 9.13. The multiplicity of the rep {p,j of S,,, in the outer product 
{A,) { p k )  equals the multiplicity of {A,} x { p k }  in the restriction of (p,)  
to the subgroup Sn x S,. 

Simple algorithms have been developed which enable one to decompose 
any outer product {A,) {pk} into a direct sum of irred reps of S,, ,. For a 
discussion of these procedures see the work of Littlewood [ I ]  or Hamermesh 
[I]. Here we merely show the importance of outer products for quantum 
mechanics. 

Outer products allow us to decompose a tensor product of irred reps of 
U(k)  [or GL(k) or SU(k)]  into a direct sum of irred reps, i.e., they enable us 
to determine the Clebsch-Gordan series for U(k) .  Consider the irred reps 
[ A , ,  . . . , A,] and [ p , ,  . . . , p,. of U ( k ) ,  where A ,  + a . .  + A ,  = n and pI + 
. . . + p, = m. We can regard the tensor product rep [A,] @ [p,] of U ( k )  
as defined on a subspace W of V@cn+m'  Pn 0 Pm, where V is a k-dimen- 
sional vector space. Here W = W ,  6 W , ,  W ,  is a symmetry class of tensors 
in Pn corresponding to a tableau with frame {A,] ,  and W ,  is a symmetry class 
of tensors in Pm corresponding to a tableau with frame (p,} .  It is a conse- 
quence of Theorem 4.11 that W ,  = c^, P:", W ,  = t 2 V B m ,  where c1 , c2 are the 
Young symmetrizers corresponding to {A,) and {p,) ,  respectively. (We can 
assume that the c, are primitive idempotents.) Now c, belongs to the group 
ring R, of S, and c, belongs to the group ring R,  of S, .  Since S, x S,  is a 
subgroup of S,+, we can also regard c , ,  c2 as commuting idempotents i n  
R,,,. Thus, (c,c,), = c ,2c22  = c,c, and c1c2 is an idempotent in R,, , .  

This proves W = C , C , V @ ( ~ + ~ )  and associates the U(k)-invariant space of 
tensors W uniquely with the right ideal 9 = c ,c ,R,+ , .  By Theorem 4.1 1 
again, the decomposition of W into U(k)-irred subspaces is equivalent to 

h 
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the decomposition of g into a direct sum of primitive right ideals in R,,,.  
We have observed above that B transforms under the right regular rep of 
S,,, as the outer product {A,} {p, ) .  (Our switch from left regular to right 
regular rep in no way changes this result.) Thus there is a 1-1 correspondence 
between irred reps ( p , }  of S,,, occurring in the outer product and U(k)-irred 
subspaces of W transforming according to [ p , ] .  (To this assertion we must 
add the proviso that ( p , }  contain at most k rows since otherwise the tensors 
in the symmetry class [p , ]  will all be zero.) 

Theorem 9.11. The U(k)-irred reps occurring in the tensor product [A,] @ 
[p,] ,  C 1, = M ,  C p, = m, are of the form [p , ]  where C p ,  = n + m. The 
multiplicity of [ p , ]  in [A,] @ [p,] equals the multiplicity of the rep { p , }  of 
S,,, in the outer product (1,) {p , ) .  

Corollary 9.5. 
of the rep {A,) x {p,j of S,  x S,  in { p , }  1 S, x S,. 

Pvoof. Immediate from Lemma 9.13. 

The multiplicity of [p,]  in  [A,] @ [p,] equals the multiplicity 

The above theorem and its corollary demonstrate the importance of the 
outer product in atomic and elementary particle physics. Use of the outer 
product enables one to work out the Clebsch-Gordan series for G L ( k ) ,  
U ( k ) ,  and S U ( k )  in a straightforward manner. For details concerning the 
applications see the work of Hamermesh [ I ]  or Wybourne [ I ] .  

9.10 Semisimple Lie Algebras 

In  this chapter we have investigated the rep theory of the classical groups 
and their  Lie algebras. The classical Lie algebras belong to a larger family 
of Lie algebras called semisimple. Semisimple Lie algebras have been widely 
studied and there is a vast mathematical literature on their structure and reps. 
Here we present a number of definitions and results, mostly without proof, 
to show the relationship between the theory of the classical Lie algebras as 
presented in  this book and the  more general theory of semisimple Lie algebras. 
All of these results are proved in detail in the textbooks by Freudenthal and 
De Vries [I], Hausner and Schwartz [ I ] ,  and Jacobson [ I ] .  With the orienta- 
tion provided here the reader should have no trouble understanding these 
texts. 

Let S be a Lie algebra. We define a sequence (S'" '}  of ideals in S inductively 
by S"' S, S ' n + ' '  = [S'"', 9"], / I  1 ,  2 ,  . . . . Clearly, S(n' G 9'"'. We 
say S is solvable if 9'") = (6 )  for n sufficiently large. We say S is semisimple 
if i t  contains no proper solvable ideals and dim S > I .  (An ideal is itself a 
Lie algebra.) S is simple (dim S > 1 )  if i t  contains no proper ideals. Clearly, 
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if $j is simple then it is semisimple. On the other hand, we have the following 
result. 

Theorem 9.12. A Lie algebra $j is semisimple if and only if it can be expressed 
as a direct sum of simple Lie algebras: 

S = S, 0 6, 0 . . . 0 S,, $ j j  simple. 
Simple Lie algebras are the building blocks out of which the semisimple 

Lie algebras are constructed. Another characterization of semisimple algebras 
is as follows. 

Theorem 9.13 (Cartan's criterion). 
the structure constants c;j by 

Let y ,  , . . . , y, be a basis for and define 

bi 9 r j l  = C cfjyi. 
I =  1 

(10.1) 

Then $j is semisimple if and only if det 3 # 0, where 3 is the matrix with 
components Ti ,  = C;,,= , c(jcii = 3,,. 

It is straightforward to determine which of the Lie algebras of the complex 
classical groups are simple or semisimple. The algebra gl(m, E), m > I ,  
is not semisimple, because the set of all multiples of the identity matrix forms 
a proper solvable ideal. However, the algebras sl(m, E), m 2 2 ,  are simple, 
as are sp(m, LJ), m 2 1 .  The one-dimensional algebra 342, 6) is abelian, but 
so(m, LJ) is simple for m 2 3 with the exception of so(4, 6 )  s42, 6) @ 
s42, a), which is semisimple. In the mathematical literature the simple classi- 
cal Lie algebras are denoted A , ,  E m ,  c,, D, according to the following list 

s/(m + 1,6) A,  m 2  1 m(m + 2) 
so(2m + 1,6) B ,  m 2 2 m(2m i- 1) 
d m ,  6) C,, m 2 3  m(2m + 1) 
so(2m, 6) D ,  m 2 4  m(2m - 1). 

The last number in each row is the dimension of the corresponding Lie alge- 
bra. The algebras E, , C ,  , C,, D, are also simple, but due to the isomorphisms 
E, z C, z A , , C ,  E,, D, G A , ,  they are already included on our list. 
No two algebras in the above list are isomorphic. 

The (complex) simple Lie algebras can be classified up to isomorphism. 
In addition to the four infinite families A," - D,,, there are exactly five simple 
algebras E,, E,, E ,  of dimensions 5 2 ,  78, and 133, respectively, F,  of dimen- 
sion 52, and G, of dimension 14. Thus, with the exception of these five alge- 
bras, the exceptional algebras, we have already studied all complex simple 
Lie algebras. The construction of the exceptional Lie algebras is by no means 
a trivial matter, but these algebras are rarely used in theoretical physics, so we 
omit their definition and rep theory. (The exceptional algebra G, has been 
applied in atomic spectroscopy, see the work of Racah [I]) .  
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I t  is an  elementary consequence of the Cartan criterion that any real form 
of a complex semisimple Lie algebra is itself semisimple. Furthermore, the 
complexification of any real semisimple algebra is also semisimple. By Theo- 
rem 9.12 any real semisimple Lie algebra can be expressed as a direct sum of 
real simple Lie algebras. The real simple algebras have been classified up to 
isomorphism. They are of two types. Each real algebra of the first type is 
obtained by considering a complex simple algebra with dimension n as a 
real algebra with dimension 2n. T ~ U S  every complex simple algebra A,n - -  

D,, E, ,  E , ,  E , ,  F,, G, is a real simple algebra of twice the dimension. The 
real simple algebras of the second type are real forms of the complex simple 
algebras. The Lie algebras of the groups given in Table 9.2 constitute all 
algebras of type two which are real forms of the classical complex algebras. 

TABLE 9.20 

Complex form Dimension Real forms 

B,,, m(2m + 1 )  

Ct" m(2m I 1) 
m 2 2 

m 2 3  

DVI m(2m - 1) 
m 2 4  

SU(m I 1) 
SU(m + 1 - q,y),y = 1, . . . , [ (m I 1) /2]  
SL(m I 1, R), m I 
SU*(m + I ) , m  + 1 even 

SO(2m 1 1 - y , q ) , 9  = I ,  . . . , m 
USp(m) 
S d m  ~ 9, (/), = 1, . . . , [mi21 
Sdm,  R) 
SO(2m) 
SO(2m - q,  y), (1 = 1, . . . , t v  

SO*(2m) 

SO(2u7 1- 1) 

Gee  Eqs. (l0.2)-(10.6). 
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(10.6) 
The symbol [k ]  is the largest integer I k .  

No two algebras in the above list are isomorphic. In  addition to the classi- 
cal algebras of type two there are 17 more algebras which are real forms of 
the exceptional Lie algebras. 

A Lie group G is locally simple if i t  contains no proper normal local Lie 
subgroups. The commutator subgroup G"' of G is the group generated by 
all elements of the form gl7g-'k-', g, 17 E G. Here G"' is a Lie subgroup of 
G with Lie algebra s<l1 = [s, 81. We define groups G'"' inductively by G'"+I) 
= (G("))"). Then L ( G ( n + l ) )  = $j"'+lJ = [s'"), 9"]. The group G is solvable 

per solvable normal Lie subgroup. 

S0*(2n) = { A  E S0(2n, 6): Z J A  = J ] .  

if G(n1 - - {el for n sufficiently large. A Lie group is semisimple if it has no pro- 

Theorem 9.14. 
only if 

A Lie group G is locally simple (semisimple, solvable) if and 
= L(C) is simple (semisimple, solvable). 

According to this result, Theorem 9.12, and our list of simple Lie algebras, 
the semisimple Lie groups can be classified completely, at least in a neighbor- 
hood of the identity. Moreover, use of topological methods enables one to 
list all global connected semisimple Lie groups. 

The real simple Lie algebras su(n7 + I )  (m  2 l), so(2m + 1) (m 2 2),  
usp(m) (m  2 3), and so(2m) (m 2 4) are called compact since the global 
connected Lie groups associated with these algebras are all compact. The 
groups associated with all other real classical simple Lie algebras are non- 
compact. Each simple algebra A ,  - D,, E , ,  E,, E,, F4, G, has exactly one 
compact real form. 

As a final comment on the theory we mention the Casimir operator C. 
Let 6 be a simisimple Lie algebra of matrices with basis a,, . . . , a, and let 
T be a finite-dimensional rep of s. If the {a,> satisfy the commutation rela- 
tions (10.1) then so do the operators TI = T(a,). The Casimir operator as- 
sociated with T is 

n 

(10.7) c = (s-')IkTITkT 
j,k= I 

where 5 is the symmetric nonsingular matrix defined in Theorem 9.13. To 
demonstrate the significance of C we introduce the Killing form for 6, 
(10.8) (a, 63) = tr(AdCtAd@), a, 63 E S, 
where (Ad a)(e) = [a, e] is a linear operator on (see Section 5.6). It is 
easy to show that (aj ,  a,) = TIk, so by Theorem 9.13 the Killing form of 
s is nondegenerate. Furthermore, 

([a, 631, e> t (a, [a, el) = 0, 
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or, exponentiating, 
(10.9) 
for all a, 63, e E S. 

We leave it  to the reader to show that C is defined independent of the 
basis in I;, i.e., if we introduce a new basis {aj), aj = c /qja,, = (aj, 
a,), and compute c (S'-*)j,T(a3j)T(a3,) we get C again. Now set aj = exp 
(Ad te)aj, where e E I;. The elements (a,} form a basis for 6 and 
(10.10) 
by (10.9). Thus, 

(eaa3e-a, eaCWa) = (exp(Ad a)@, exp(Ad a)e) = (63, e) 

S:, = (a j ,  a,) = (a j ,  a,) = S,,, T(a j )  = e'T'e)Tje-rT'e) 

C = (5-  l)j,efTle)TjTke~lT(e) = elT(e)Ce-fT(e) 
j .  k 

Differentiating with respect to z and setting t = 0 we find 
(10.11) T((?)C = CT((?) 

for all e E 6. Thus if Tis  irred, C must be a multiple of the identity operator, 
C = aE. The value of a is a function of T and can be used to label the rep. 
We have already observed the utility of Casimir operators for the semisimple 
algebras $42) [(3.2), Section 7.31 and so(3, 1)  [(3.2), Section 8.31. 

The algebras A ,  ~ D, are said to be of rank m and the irred reps of these 
algebras are designated by m integers [ A , ,  . . . , A,]. It can be shown that 
corresponding to each simple algebra of rank m one can find m independent 
invariant operators C, = C, C , ,  . . . , C, such that T(&)Cj = C,T(a) for 
each rep T of I; and such that the values of the Cj for each irred T completely 
determine A , ,  . . . , A ,  (Racah [2]). 

Problems 

9.1 Fill in the details of the proof in the text that Sp(rn) is connected. 
9.2 Prove Theorem 9.7. 

9.3 Prove Theorem 9.8 in detail. 
9.4 Using weights, decompose the reps 3 Q 3 , 3  Q 3,s 0 5 ,  and 8 Q 8 of SU(3)  into 
irred reps. 
9.5 Consider the electromagnetic interaction as an operator proportional to 1 3  which 
perturbs the strong interactions. Derive the selection rules I ---f I ,  I i I for the matrix 
elements of this operator relating states of different isobaric spin. This theory predicts that 
to a first approximation, electromagnetic interactions permit transitions only between states 
whose isobaric spins differ by zero or one. 
9.6 Compute the possible terms for the following configurations: ( I )  two electrons in 
an ndstate, (2) three electrons in an np state, (3) one electron in an ns state and one electron 
in an n'j~ state. 
9.7 Prove: The adjoint rep of a semisimple Lie algebra is faithful. The adjoint rep of a 
simple Lie algebra is irred. 
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9.8 Prove: A real compact semisimple Lie algebra has a negative-definite Killing form. 
(Conversely, a real Lie algebra with negative-definite Killing form is compact, but the 
verification is more difficult; see the work of Helgason [ I ,  p. 1221.) 

9.9 Show that the matrix rep 
1 lnlcl  

g(c) = (o ), c f 0, c r; (5, 

of GL(1) cannot be expressed as a direct sum of irred reps. Does this example contradict 
the results of Section 9.1 ? 

9.10 Let [ f i , .  . . , f m ]  be an irred rep of U(m) with character , y ( r l , .  . . ,em) given by 
Theorem 9.4. We can consider U(m - I )  as the subgroup of U(m) such that the character 
of [ f i ,  . . . , f m ] \  U(m - 1) is ~ ( € 1 , .  . . , f,, ,-l,  1). Derive the branching law [ f i  , . . . , 
fm] I U(m - 1) @ [h i ,  h z ,  . . . , h,-l]. where the direct sum is taken over all integers 
hj  such that f i  >hl > f i  > hz > f 3  2 . . .  >f,n-l 2h,,-1 > f m  (see the work of 
Boerner [l]). 



Chapter 10 

The Harmonic Oscillator Group 

10.1 The Harmonic Oscillator 

The two most important nonrelativistic systems whose Schrodinger 
equations can be completely solved are the hydrogen atom and the harmonic 
oscillator. We have seen that the tractability of the hydrogen atom is related 
to its high degree of symmetry and we shall reach similar conclusions for the 
harmonic oscillator. 

We start with a system in one-dimensional space. In suitable units the 
Hamiltonian for a spinless particle subject to a harmonic oscillator potential 
is 

The Hilbert space X consists of functions Y(x) square-integrable on the real 
line. The inner product is 

(Y,  a) = j"' Y(x)w) dx. 
- m  

(1.2) 

Although the eigenvalue problem 

(1.3) HY = J.Y 

can be solved with special function theory, we can achieve greater insight by 
adopting a formal Lie-algebraic approach. (Our approach can be made rigor- 
ous by careful attention to the domains of definition of H and other un- 

397 
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bounded operators on X which we shall define shortly; Helwig [I].) 
Consider the operators 

on X. It is straightforward to verify the commutation relation: 
(1.5) [J3, J'] = &J', [J+, J-] == -E, 

where E is the identity operator and 
(1 4 J3 = H .  

Furthermore, from the abstract relations (1.5) alone we can check that the 
operator 

C = J+J- - EJ3 = J-J+ - E - EJ3 

commutes with J' and J3. Thus J', J 3  and E form a basis for a four- 
dimensional complex Lie algebra s and C is an invariant operator for s 
(analogous to the Casimir operator for semisimple algebras). Corresponding 
to an irred rep of $j we expect C to be a multiple of the identity operator. 
In fact for the model of 9 defined by (1.1) and (1.4) we find 

(1 -7) 

(1.8) C = -&E. 

Under the assumption that Y(x), O(x), and their first derivatives vanish 
as I x I -----* 00, the formal relations 

(1.9) 
can easily be verified. (Integrate by parts.) Let Y be a normalized eigenvector 
of J3 = H with eigenvalue 2. The commutation relations ( I  .5) imply 

(Y, J'O) = (J'Y, O), (Y, J+@) = (J-Y, O) 

(1.10) J3(J'Y) = (1 & l)J'Y, 

so J' are raising and lowering operators in  the usual sense. Given an eigen- 
vector Y with eigenvalue 1 we can obtain a ladder of eigenvectors with 
eigenvalues 2 + n. We assume the vectors J'Y still belong to X. Then 
(1.11) (J+Y, J+Y) = (J-J+Y, Y )  = ({J' + +El", Y )  = 2 i 3. 
Similarly, 
(1.12) 0 5 1 1  J-Y 11' = 1 - 4. 
It follows that R 2 +, so the eigenvalues of J 3  are bounded below. 

If 2, is the lowest eigenvalue of J3 and Yo is a corresponding eigenvector 
then J-Yo = 0, since 1, - 1 is not an eigenvalue. By (1.12), 2, = 3. Using 
(1.4) we can solve this first-order differential equation for Y o  and obtain 
(1.13) Yo(x) = n-l exp(-x2/2), 
where the factor 
(J+J- + fE)Y, = +Yo, so J3 has a lowest eigenvalue 

is chosen so 1 1  Y o  1 1  = 1 .  From (1.7) and ( I  .8), J3Y0 = 

with multiplicity 
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one. From (1.10) and (1.11) we can define normalized eigenvectors Y n  with 
eigenvalues n + 3 recursively by 
(1.14) J+Yn = (n  + l) l’zYm+l,  n = 0, 1,2, .  . . . 
Thus we use the raising operator J+ to move up the ladder of eigenvalues. 
According to (1.1 l), / I  J+YnIl2 = n + 1 > 0, so this process never ends. 
Furthermore, the commutation relations imply the formulas 

(1.15) J3Y, = (n + &)Y,, J-Y,, = n”2Yn-, . 
We have shown that H has eigenvalues n + i, n = 0, 1, . . . . It is left 

to the reader to verify that there are no other eigenvalues and each eigenspace 
is one-dimensional. 

Substituting the operators (1.1) and (1.4) into (1.14) and (1.15), we obtain 
a second-order differential equation and two recurrence formulas for the 
special functions Y,(x). We can obtain a generating function from the first- 
order operator J’. A simple computation using Theorem 5.31 yields 

[(exp a J+)Y](x) = exp(-$c12 - 2-1/2ax)Y(x + 2-lI2a). 
On the other hand, (1.14) implies 

Comparing these equations, we have the identity (p = 2-%) 

In the special case n = 0, (1.13) yields 

(1.17) 7r1I4 exp(-pZ - 2px - $x2) = C 2k/2pk(k!)-1/ZYk(~), 

a simple generating function for the Yk(x). Comparing this with the well- 
known generating function 

exp(-PZ + 2 p x ) =  5 pk~,(x)/k! 

m 

k - 0  

k=O 

For the Hermite polynomials Hk(x) (Erdklyi et al. [2, p. 1941) we obtain 
(1.18) Y,(x) = n- 1/4(k !)- - l)k2-k/2 [exp(-x2/2)]Hk(x). 
The above series converge for all x and 8. Since the {Y,(x)] form an ON 
set in X we easily obtain the formula 

J Hn(x)Hk(x) exp(-x2) dx = n1/22”n! ank.  
-_ 

(1.19) 

Our Lie-algebraic analysis of the harmonic oscillator problem has not 
only determined the eigenvalues of H but also enabled us to derive the 
eigenfunctions and a number of their properties in a very simple manner. 
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The generalized Lie derivatives (1  . I )  and (1.4) determine the action of a 
connected four-parameter Lie group G on X called the harmonic oscillator 
group. Here G is nor a symmetry group of the Hamiltonian since J + do not 
commute with H. However, a knowledge of the rep theory of G enables us 
to determine not only the multiplicities of the eigenvalues but also the 
eigenvalues themselves. Such a group G is called a dynamical symmetry 
group of the quantum mechanical system. [To be more precise, we are 
actually interested in the real Lie algebra $ j r  generated by the skew-Hermitian 
operators 
(1.20) iJ3, E, J '  - J- ,  i(J+ { J-). 

These operators determine a unitary irred rep of the real dynamical symmetry 
group G' on X, where L(G') = 9'. However, for Lie-algebraic purposes it 
is more convenient to work with the complexified algebra 6 determined by 

The above analysis shows that the harmonic oscillator system iil one 
dimension forms a model of an irred rep of 9. (The proof of irreducibility 
is left to the reader.) Another model of this same rep is provided by the 
annihilation and creation operators for bosons. In this model the annihilation 
operator a and the creation operator a* act on a Hilbert space X and satisfy 
the commutation relations 
(1.21) [a*, a] = -E. 

Furthermore the number-of-particles operator N = a*a satisfies the com- 
mutation relations 

(1  -22) [N, a*] = a*, [N, a] = -a. 

There is an ON basis {In), n = 0, I ,  2, . . .) for X such that 

(1.51.1 

aln> = n ' t 2 ) n  - I) ,  a*ln) = (n 3- 1)' 21n -1 I) ,  
(1.23) 

N I n j -  nln>. 

The eigenstates In) of N are considered to be states of n bosons, which 
explains the names for a, a*, and N. Clearly, the operators a, a*, N, and E 
generate the Lie algebra $j and expressions (1.23) determine an irred rep of 
9 equivalent to that of the one-dimensional harmonic oscillator. 

The harmonic oscillator in three-space has Hamiltonian 

We can view this system BS composed of three one-dimensional noninteract- 
ing harmonic oscillators. Thus the eigenfunctons of H are of the form 
(1.25) 
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with eigenvalue 1, = n ,  + n, + n3  + $ = N + f, n j  = 0, 1, . . . . The 
multiplicity of 1, is equal to the number of ways we can select nonnegative 
integers n, such that n, + n2 + n3 = N .  A simple combinatorial argument 
gives the multiplicity ( N  + 1)(N + 2)/2. Here G x G x G is a dynamical 
symmetry group for this system, which enables us to compute the eigenvalues 
and their multiplicities. Xowever, to get a better understanding of the 
multiplicities it is useful to compute the ordinary symmetry group of H. 
From (1.24) it is clear that the angular momentum operators commute with 
H, so SO(3) [or SU(2)] is a symmetry group. However, the dimensions of the 
reps D"' do not coincide with the multiplicities ( N  + 1)(N + 2)/2. This sug- 
gests the existence of a larger symmetry group. 

To investigate this group we consider the annihilation and creation 
operators 

with commutation relations 

(1.27) 
From (1.24) 

[aj, a,*] = djkE, [aj, a,] = [a,*, a,*] = 0. 

(1.28) 
3 

H = 4 (aj*aj -t ajaj*> = c aj*aj + f ~ .  
1'1 j =  1 

It is easy to verify that the nine operators Ej, = aj*ak commute with H 
and satisfy the commutation relations 

(1.29) i E j k ,  Eh,l = - 

[see (7.3), Section 9.71. (Note that the E j ,  preserve N ,  while operators such 
as ajak do not.) Clearly, the Ej, generate a complex Lie algebra isomorphic 
to gl(3, Q). The skew-Hermitian operators in this algebra form a real Lie 
algebra isomorphic to u(3). -4 basis for u(3) is given by 

(1.30) i ( E j ,  + E k j ) ,  Ej, - E,;, k # j ;  i E j j ,  j ,  k = 1,2, 3. 

The angular momentum operators, given by Ej, - Ekj, k # j ,  generate a 
subalgebra isomorphic to so(3). 

Under the action of the Ej, the eigenspace of H corresponding to eigen- 
value 1, is decomposed into a direct sum of u(3)-irred subspaces. Using the 
results of Section 9.1 we can explicitly carry out this decomposition. The 
highest weight vector is easily shown to be the eigenfunction with n ,  = N ,  
n ,  = n3 = 0. Thus, the rep [N ,  0, 01 of 4 3 )  occurs exactly once. Moreover, 
from (2.24), Section 9.2, dim", 0, 01 = ( N  + 1)(N + 2)/2, which is the 
multiplicity of 1,. Thus, the eigenspace of 1, transforms as [ N ,  0, 01. As we 
have seen, the angular momentum operators generate a subalgebra so(3) 



402 10 THE HARMONIC OSCILLATOR GROUP 

of 243). To determine the branching rule for the subalgebra of angular 
momentum operators we could compute the weight vectors corresponding to 
the generator L3 = E l ,  - E,, (this is not easy). The results are 

Thus, for N even the reps D"' occur with I even. An alternate proof of (1.31) 
can be obtained from the character formula for U ( 3 ) .  The subgroup SO(3) 
is embedded in U(3) in the natural way and it is straightforward to expand 
xNo0 [ SO(3) as a sum of simple characters of SO(3). 

We say that U(3) is the symmetry group of the three-dimensional harmo- 
nic oscillator. The global action of U ( 3 )  on X is fairly difficult to determine 
in this case since the Ej, are second-order partial differential operators to 
which local Lie theory does not apply. The group action is expressable in 
terms of integral operators. For details see the work of Bargmann [ l ]  or 
Miller [I]. These references also give the action of the harmonic oscillator 
group on X. 

10.2 Representations of the Harmonic Oscillator Group 

The Lie algebra 9 of the complex harmonic oscillator group G is defined 
by the commutation relations 

(2.1) [g3, 3'1 = *3', [g', 3-1 = -8,  [E ,  3'1 = [ E ,  3'1 = 0. 

We present a brief survey of irred reps of 9 which occur in physical theories. 
Let p be a rep of 9 on a complex vector space Vand set 
(2.2) J' = p(3'), J 3  = p(33), I = p(E). 

These operators satisfy relations (2.1) again. 
The faithful irred reps of 9 are all infinite-dimensional. Indeed, if p is 

irred and finite-dimensional then I must be a multiple pE of the identity 
operator on V,  since I commutes with p(a) for all a E S. Thus 

(2.3) tr([J+, J - I )  = tr(pE) = p dim V 

and p = 0 because the trace of a commutator is zero. Hence, I = 0 and p 
is not faithful. (A rep p of a Lie algebra S is faithful if p(a) # 0 for every 
a # 0 in 9.) 

We make no attempt to classify all irred reps of 9 and simply examine a 
few reps of particular importance. An easy way to construct such reps of 9 
is via realizations in terms of generalized Lie derivatives in one complex 
variable. [We tried this same approach for d(2) in Section 5.10.1 Clearly, the 
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generalized Lie derivatives 

satisfy the commutation relations (2.1) for all constants 2, p ,  and r. 
For an arbitrary rep p the operator 

(2.5) C = J'J- - 1 J 3  

commutes with all p(a), a E 9, as the reader can check. If p is irred we 
expect that C is a multiple wE of the identity operator on V .  (However, we 
have not proved this since Theorem 3.5 applies only to finite-dimensional 
reps.) For our model (2.4) we find C = p ( c  - A ) .  

The operators (2.4) determine a local multiplier rep of G. To compute this 
rep we need an explicit definition of G. Recall that G is only determined local- 
ly by s. Among the linear Lie groups with Lie algebra s we select the one, 
unique up to isomorphism, which is simply connected. 

Definition. The complex harmonic oscillator group G consists of all matrices 

(2.6) g(a, b, c, 7) = i a , b , c , z E @ .  

Here G is a four-parameter complex linear Lie group. In terms of the 
parameters, 

(2.7) 
g(a, b, c, z)g(a', b', c', z') = g(a + a' + rb'el, b + b'e', c t c'e-', z + 7') 

g- ' (a ,  b, c,z) = g(bc - a, -be-?, -ce7, -7). 

The matrices d*, g3, E defined by 

(2.8) g(a,  b, c, 7) = (exp bdl+)(exp cdl-)(exp GJ3)(exp a&) 

form a basis for 8 satisfying the commutation relations (2.1). 

derivatives (2.4). The group identity (2.8) implies 

(2.9) T(g) = (exp bJ+)(exp cJ-)(exp rJ3)(exp a I )  

for I b 1, 1 c 1, I z 1, 1 a 1 sufficiently small. For simplicity we choose 1 = -0, 

( = 0 in (2.4). Applying local Lie theory to compute the factors of (2.9) and 
composing the result, we find 
(2.10) [T(g) f ] (z )  = exp[,u(bz + a )  - oz] f (e ' z  + e*c) 
forf(z) analytic in some neighborhood of z = 0. [Compare the analogous 

Let T be the local multiplier rep of G determined by the generalized Lie 
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computation for SL(2) in Section 5.10.1 Since T is a local rep we have 

(2.11) T(gg')f = T(g)[T(g')fl 
for g and g' in a suitably small neighborhood of the identity. Moreover, if 
we resrrictfto the space a of entire functions then (2.10) is defined for all 
g E G and T(g)f E a. In this case the identity (2.1 I )  holds for all g, g' E G, 
as the reader can prove directly from (2.7) and (2.10). 

Every f E a has a unique power series expansion 

which converges for all z E 6.  Thus the functions /z,(z) = z", n 2 0, form 
a basis for a. With respect to this basis we define matrix elements TJg) by 

(2.12) 

(2.13) 

The group property (2.11) yields the addition theorem 

[T(g)h,l(z) = 2 T&)Mz), k = 0, 1, . . . ; 
1 - 0  

{exp[p(bz i- a)  + ( k  - w)z])(z + c ) ~  = 2 T,,(g)z'. 
1-0 

(2.14) T,,(gg') = 2 T/j(g):)Tjk(g')r g, g' E G. 
1 = 0  

We can obtain the matrix elements explicitly by expanding the left-hand side 
of (2.13) in a power series and computing the coefficient of zr:  

where the sum is taken over all integers s such that the summand is defined. 
From Erdtlyi et al. [ I ,  p. 2681 we find 

(2.16) T,,(g) = {exp[pa -t (k  - o ) z ] } c " - ' l l k - ' ) ( ~ p b c ) ,  

where Lk)(x) is an associated Laguerre polynomial. Substituting this result 
into (2.13) we obtain the generating function 

e-*.(z 4- 1), = C Ljk-')(b)zl. 
r=o 

(2.17) 

Furthermore, the addition theorem (2.14) yields 
(2.18) 

e-'*'(c c')"Lj")[(b -1 b')(c 4 c')] = 2 c~-~L~'-"[~~'](c)'+"-'Lj'+"-1"6' c ' I, 
1 0  

where the integers I ,  1 + n are nonnegative and b, b', c, c' E (5. 

terms of their eigenvalues with respect to J 3  : 

(2.19) 

To exhibit the rep Tw,p  of 6 induced by T we label the basis vectors in 

f,(z) = h,(z) = zn, m = n - w.  
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Then 
(2.20) J 3  = -a + z(d/dz), J ‘  = PZ, J -  = d/dz,  I = p, 

and direct computation yields 

w h e r e m = - - w + n , n = O , l ,  . . . ,  a n d , u , o  E 6 w i t h p # O 0 . A s t h e r e a d e r  
can verify, the Lie algebra rep jw,, is irred on the infinite-dimensional vector 
space of all finite linear combinations of the basis vectors (f,]. 

The rep T o , ,  corresponds to the harmonic oscillator problem in one 
dimension. Indeed, setting w = 0, p = 1 ,  and n> = f , ( z ) ( n ! ) - 1 ’ 2  we obtain 
(2.22) 

~ 3 1 ~ )  = nlni, J + I ~ >  = (n  i i )1 /21n  + I), J - I ~ )  = n1,21, -- i;, 
in agreement with (1.23). [We have normalized our basis vectors { f , }  so no 
square roots appear in (2.21).] 

We have defined a class To,, of irred reps of S and used a simple model to 
compute the matrix elements T J g )  of this rep extended to  G. These matrix 
elements are uniquely determined by expressions (2.21) and are model- 
independent. Thus, the model of T o , ,  provided by the operators (l.4), (1.6), 
and basis vectors 
(2.23) f , , (x)  = (-1)”2-” 2(exp -$x2)H,,(x)  

must have matrix elements (2.16). From (1.4) we find 
(2.24) 

[ T ( g ) f ] ( x )  = (exp[a(c2 - bz - 2bc) - 2 I Z x ( h  t c ) ] ] f ( x  i ( b  -- c12-I ’) 

for g(0, b, c, 0) = (exp bJ+) exp cJ-. Substituting (2.16), (2.23), and (2.24) 
into 

(2.25) 

we obtain (after some simplification) 

T(g)f, = f: T/k(g)f; 
1 - 0  

This expression converges for all 6 ,  c, and x. 

Problems 

10.1 Prove (1.31). 

10.2 
which cannot be expressed as a direct sum of irred reps. 

Show that the 4 Y 4 matrices (2.6) define a rep of the harmonic oscillator group 
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10.3 
which result on application of the operators J t ,  J 3 ,  C (Section 10.1) to Yn. 

10.4 
group of matrices 

Compute the recurrence relations and differential equation for Hermite polynomials 

Show that E+(2), the proper Euclidean group in the plane, is isomorphic to the 

1 cos 0 -sin8 x 

0 1  
g(x ,y ,  e) = (si; e cos e y . 

Check that these matrices define a rep of E+(2) which cannot be expressed as a direct sum of 
irred reps. 
10.5 Show that the generalized Lie derivatives 

J, = ip cos a, J ,  = ip sin a, 

p a nonzero real constant, i = n, 0 < a I 2n (mod 2n), span a Lie algebra isomorphic 
to L(E+(2)). Compute the operators T(g) of the multiplier rep of E+(2) determined by the J k  . 
[Use the coordinates g[r, p, e] = g(x, y, e), where x + iy = reip, r 2 0, p real.] 
10.6 Verify that the T(g) computed in the preceding problem define a unitary rep ofE+(2) 
on the Hilbert space &[O, 2x1 (see Section 6.2). Compute the matrix elements T,,,(g) = 

<T(g)f,,f,) with respect to the ON basis &(a) = m = 0, & l ,  1 2 ,  . . . , and show 
that these elements can be expressed in terms of Bessel functions. What properties of Bessel 
functions follow from the unitarity of the T(g) and the group property T(g,)T(g,) = 

J 3  = -$Ida, 

T(g, g 2 ) ?  



Appendix 

Hilbert Space 

We present some basic ideas and definitions from Hilbert space theory. 
For a more detailed exposition see the work of Korevaar [ I ]  or Naylor and 
Sell [ I ] .  All vector spaces will be assumed complex, although the facts for real 
spaces are essentially the same. 

Definition. 
with inner product (-, -) if (u, v) t Q for each u, v E 'u and 

A vector space 'u is an inner product space (pre-Hilbert space) 

(a) (u, v) = (6). 
(b) (alu, + azu,, V> a,(u, V) + aZ(u2, v>, aj E 6,  u,, v E 2). 

(c) (u, u) 2 0 and (u, u) = 0 only if u = 8. 
We define the length (norm) of a vector by (1u(( = [(u, u)]"~. Clearly, 

I l u l l 2 0  and IIuI) = O  if and only if u =8.  

Lemma A1 (Schwarz inequality). If u, v t 'u then I (u, v)l I Ilull-lIvll. 
Equality is obtained if and only if u and v are linearly dependent. 

Lemma A2 (Triangle inequality). If u, v E 'u then IIu + v/I  I IIuII t IIvII. 

Every finite-dimensional vector space with an inner product is a pre- 
Hilbert space. We examine some examples of pre-Hilbert spaces which are 
not finite-dimensional. 

Example 1. By I, we mean the set of all sequences x = (x, , x,, . . .) of 
complex numbers x, such that x;:, 1 x, 1, < 03. Here 1, is a vector space with 

407 
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operations 
(A.l) UX-(UX,,UX,, a * . ) ,  x + Y = ( ~ ,  + y I , x z  t - . V 2 , . . . ) ,  

where Cp=I 1 x, + y,Iz 5 
Cr I (IX,IZ + IY' I2  + 2IX,Y,I) I 2 C ; " = ,  (IX,l2 + IY,I2) < 00 for X , Y  E 1 2 .  

Here we have used the property (a - b)2 = a2 + b2 - 2ab 2 0 for all real 
numbers a, b. The space I ,  is a pre-Hilbert space with inner product 

x = (x , ,  x,, . . .), y = ( y , ,  y , ,  . . .). Indeed, 

(x, Y> = C x , J , .  
, = I  

(A.2) 

Indeed, the series for (x, y) converges for all x, y E I,.  

Example 2. Let [a, b], a < 6 ,  be a closed interval on the real line and let 
C[a, b] be the set of all functionsf(x) which are defined and continuous on 
[a, b]. Then C [ a ,  b] is a vector space with operations 

The expression 

('4.4) 

defines an inner product on C[a, b]. 

Example 3. Let 5n be a closed bounded connected subset of R,  whose 
boundary is piecewise smooth and let C ( n )  be the set of all functions 
f(x), x E R,, which are defined and continuous on 5n. Using the definitions 
(A.3) we can make C(MI) into a vector space. Furthermore if w E C(X) 
and w(x) > 0 for all x E 5n then the expression 

(A.5) 

defines an inner product on C(nZ). Here w(x) is a weight function. 

Cf, g) = J" f'(x)g(x)w(x)d~, dx = dx, . . dx, 
rm 

Example 4. Let G be a compact linear Lie group and let C(G) be the vector 
space of all continuous functions on G. Then C(G) is a pre-Hilbert space 
with respect to the inner product 

(A.6) Cf, g> = J f ( 4 g o G A  f, g E C(G), 

where 6 A  is the normalized invariant measure on G. 

Example 5. 
ous in R,  and such that 

Let C2(R, )  be the set of all functionsf(x) defined and continu- 

I I.f(x)Izdx < 00, dx = dx,  . . . dx, 
R, 
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(Note that continuous functions on R ,  need not be bounded.) Then C2(R,) 
is a vector space under the usual operations (A.3). Indeed, I2ab [ 5 a2 + b2, 
for a, b real, so 

for A g  E C2(R,). Thus the integrals I f g d x  and I R m l f g l d x  converge. 
This shows that 

R, 

and f + g E CZ(R,) .  Furthermore, by (A.7) the expression 

defines an inner product on C2(Rm). 

Definition. The pre-Hilbert spaces 'u, W are isomorphic (as pre-Hilbert 
spaces) if there is a vector space isomorphism T: 'u + 191 such that (v, , v,) 
= (Tv,, Tv,) for all v , ,  v, E 'u. Here the first inner product belongs to 'u 
and the second to W. 

Example. 
(Choose an ON basis for TI,.) 

Every m-dimensional pre-Hilbert space Urn is isomorphic to CS,. 

Let {v,], j = 1, 2, . , . , be a sequence of vectors in the pre-Hilbert space 
'u. The sequence {v,) is said to be Cauchy if for every E > 0 there exists a 
positive integer N ,  with the property I (  vk - v, ( 1  < E whenever k, j > N , .  
A Cauchy sequence converges in case there is a v t 'u such that lim, ,~ 1 1  v ~ 

vnII = 0. If a Cauchy sequence converges to both v and w then 1 1  v - w 1 1  = 

I(v - v, + v, - w(( < ( \ v  ~ v,((  + ( (v ,  ~ w ( ( - 0  as j -  00, so v = w. 
Thus the limit of a convergent Cauchy sequence is unique. If a sequence 
(v,] converges to v, lim, ,_ IJv, - v I I  = 0, then {v,} is Cauchy. Indeed, 
I( v, - v, ( 1  = ( 1  v, - v + v - Vk ( 1  I ( 1  v, ~ v I1 + \ I  v - v, I (  --f 0 asj ,  k --t 00. 

Definition. 
sequence {v,) in X converges to an element of X. 

Example 1. 
(Prove it !) 

Example 2. The space I ,  is a Hilbert space. 

Example 3. The pre-Hilbert spaces C(nt), C(G) and C*(R, )  are not Hilbert 
spaces. In each case it is easy to construct a Cauchy sequence of continuous 
functions which do not converge to an element of the pre-Hilbert space. 

A pre-Hilbert space X I S  a Hilbert space if every Cauchy 

Every finite-dimensional pre-Hilbert space is a Hilbert space. 
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The inner product in a pre-Hilbert space is continuous in its two argu- 
ments. 

Lemma A3. 
space '0. If vj  - v, uj -----f u as j - 00 then Iirnj+- (u j ,  vj) = (u, v). 

Let (uj} ,  (vj] be convergent Cauchy sequences in the pre-Hilbert 

In case uj = vj, Lemma A3 yields Iimj+- [ lvi[[  = [ivI[, i.e., the norm is 
continuous with respect to convergence in 'u. 

Let S be a subset of the Hilbert space X. The subset S is dense in X 
if for every u E X there exists a Cauchy sequence [u j )  in S such that u j  - u. 

Example. The set of all x = (x, ,  x,, . . .) in I, with only finitely many 
nonzero components xi is dense in I,. 

A subspace W of the Hilbert space X is closed in X if every Cauchy se- 
quence in W converges to an element of W. The closure of a possibly non- 
closed subspace W is the smallest closed subspace of X containing W. (We 
order the subspaces by inclusion.) 

Lemma A4. Let be the subset of X consisting of all u E X such that 
there exists a Cauchy sequence {uj}  in W with uj - u. Then Vv is the closure 
of w. 

Theorem Al .  Let W be a pre-Hilbert space. Then there exists a Hilbert 
space X (unique up to isomorphism) such that W is dense in X. Indeed 
32 =*. 

The proof of this theorem is not obvious since we do not know a priori 
that there exists a Hilbert space containing W as a subspace. Until X is 
constructed the meaning of * is not clear. To construct X one considers 
the Cauchy sequences (uj] in W which do not converge. Then one adds new 
elements u to W so that uj  + u. If {vj} is a Cauchy sequence in W such that 
lluj - vjl(  + 0 then also vj + u. It can be shown that W together with the 
ideal elements {u} forms a Hilbert space X. See books by Korevaar [ I ]  or 
Helwig [l] for the details. 

By Theorem A1 we can always assume we are dealing with a Hilbert space. 
(If W is not a Hilbert space we merely close it to obtain the Hilbert space G.) 
This is fortunate because Hilbert spaces have many nice features not shared 
by pre-Hilber t spaces. 

As stated earlier, C(3n) is not a Hilbert space. However, by the preceding 
theorem C('3n) is dense in a Hilbert space denotedL,(311). It can be shown that 
to each element f in the closure of C(m) we can associate a functionf(x) 
on 311. Heref(x) is in general not continuous. Iff(x), g(x) are in L,(311) then 
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there exist Cauchy sequences i f j ] ,  { g j )  in C(3TZ) such that fj - 
in the norm. We define the integral I , f g  dx by 

gj - g 

The integral s fg dx is called the Lebesgue integral and L,(311) is the space 
of Lebesgue square-integrable functions on 311. Iff(x) and g(x) are functions 
on 311 such that the Riemann integrals s I f l z  dx and lglz dx converge, 
thenf, g E L,(3n) and (A.9) is just the ordinary Riemann integral. However, 
there exist functions in L,(3n) which are so discontinuous that they are not 
Riemann square-integrable. The spaces of continuous and of Riemann 
square-integrable functions on 311 form pre-Hilbert but not Hilbert spaces. 
However, the closure of each of these pre-Hilbert spaces is the Hilbert space 

m 

m m 

L , ( W .  

Note: Actually the elements of L,(3n) are not functions but equivalence 
classes of functions. We say that two Lebesgue square-integrable functions 
.L g are equivalent if 5 1 f ( x )  ~ g(x) dx = 0. Equivalent functions cor- 
respond to the same Hilbert space element. This distinction does not arise 
on the subspace C(m) since iffand g are equivalent continuous functions on 
M thenf(x) = g(x) for all x E 3 2 .  

m 

The reader unfamiliar with Lebesgue integration need not despair. Since 
C(311) is dense in L2(3lZ) we will ordinarily be able to restrict our computa- 
tions to C(nZ). 

In complete analogy with the above discussion, the closures of the pre- 
Hilbert spaces C(G) and CZ(R,) are L,(G) and L,(R,), the Hilbert spaces of 
Lebesgue square-integrable functions on G and R,  , respectively. 

Definition. A Hilbert space X is separable if it contains a countable dense 
subset {u,, u, ,  . . .]. 

Example. The space I ,  is separable. Consider the subset S of all x = 

(x,, x,, . . .] such that each x, = aj + i b j ,  where the real numbers a j ,  bj  
are rational, and only a finite number of the x j  are nonzero. The set S is 
countable and dense in I,. 

It can be shown that L,(m), L,(G), and L,(R,) are separable. In fact 
every Hilbert space studied in this book is separable. Therefore, from now on, 
“Hilbert space” means “separable Hilbert space.” 

Let Em be a subspace of X. Then the set 

M’ = (u E X: (u, v)  = 0 for all v E n) 
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is clearly a subspace of X. Moreover, EmL is closed in X since if {uj] is a 
Cauchy sequence in EmJ- with u, + u and v E Em we have (u,v) = 

lim,+- (u,, v) = 0, so u E 312'. 

Theorem A2. Let 3K be a closed subspace of the Hilbert space X. Then 
X =5n OmL, i.e., every u E X can be written uniquely in the form 
u = v + w with v E Em, w E 3nl. 

For X finite-dimensional this theorem can be proved easily by introducing 
an appropriate ON basis. In the infinite-dimensional case the proof is not so 
obvious. The theorem is not true unless Em is closed. (A finite-dimensional 
subspace of X is always closed.) 

Definition. A countable set {u , ,  u2 ,  . . .] in X is orthonormal (ON) if 
(uj, u,) = d j k ,  j ,  k = 1,2, . . . . For any u E X the numbers a, = (u, u,) 
are the Fourier coefficients of u with respect to the set {u, , u2,  . . .]. 

Definition. Let {v, , v2,  . . .) be a countable set in X. We say x;= , v, con- 
verges in X if the partial sums s, = Cf= vj, k = 1, 2, . . . form a Cauchy 
sequence in X. The sum s of the convergent series is the limit of the Cauchy 
sequence {s,). 

Theorem A3. Let (u,] be an ON set in X and let aj  E Q, j = 1, 2 , .  . . . 
Then x7=l ajuj converges in X if and only if C;=, IajIZ < 00. 

This theorem is not true for pre-Hilbert spaces because there the partial 
sums of C;O=~ ajuj may form a Cauchy sequence which does not converge. 

Definition. An ON sequence {uj] in X is an orthonormal basis (ON basis) 
if every u E X can be expressed as u = Z;=, ajuj for some constants a, E 
Q. 

If {u j ]  is an ON basis then the constants aj in the expansion of u E X are 
uniquely determined. Indeed 

(u, u,) = lim C alul, uj  = lim a, = a,, 
k-x ( k  1 = 1  ) 

so a, = (u, u,), the Fourier coefficient of u with respect to u,. Thus, 
m 

u = C (u, Uj)Uj. 
j =  1 

(A.lO) 

Furthermore, 

(A. 11) 

This is the Parseval equality. 
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Theorem A4. An ON sequence [II,} is an ON basis for X if and only if the 
only vector v E X such that (v, uj) = 0, j = 1, 2, . . . , is v = 8. 

Theorem A5. Every separable Hilbert space X has an ON basis. 

Indeed X has an infinite number of ON bases if dim X > 0. 

Definition. Let X,, j = 1, 2 , .  . . , be Hilbert spaces, where j runs over a 
finite or countably infinite number of values. Let X = C7=l @ X, be the 
set of all sequences 

x = ( X I ,  x,,. . . ,XI,. . .), x, € X,, 
such that C;=l IIx,IIz < 00, where JIx,II is the norm of x, in X,. Then 
X is an inner product space with operations 

ax =(ax,, . . .,ax,, . . .), a, E cs, 
x + Y = (XI 47 Y , ,  . . . , x, + Y,,  . . .>, 

(x, Y) = c (x,, Y,)? 

x, y t x, 
m 

,I= I 

where (x,, y,) is the inner product in X,. Here X is called the direct sum 
of the Hilbert spaces X I , .  . . , X,, . . . . 

The verification that X is an inner product space under the above opera- 
tions is similar to the corresponding proof for /,. Moreover, by mimicking 
the completeness proof for I ,  one can show that C @ k, IS a Hilbert space. 

Let X be a Hilbert space A linear operator T: X + X is bounded if 

i.e., if the least upper bound of the set (IITulI: /lull = I }  is finite. If T is 
bounded the number / / T / /  is called the norm of T. The sum, product, and 
scalar multiplication of bounded operators are defined exactly as in the 
finite-dimensional case. 

Lemma AS. Let S, T be bounded operators on X. Then ( 1 )  IITul) i 
IITll-lI~ll, u t X;  (2) / IS + TI/ 2 IISII + IITII; ( 3 )  /ISTI/ i I /S/ / . / /T/I ;  
(4) JluTII = lal-llTll, u E 6.  In particular the sum and product of two 
bounded operators are bounded operators. 

The proof of these results is identical with the proof in Section 5.1 of 
the corresponding results for operators on finite-dimensional spaces. 

Lemma A6. 
is a bounded operator, then Ts = C Tv,. 

If s = C,:, v,, where C v, is a convergent series in X and T 
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A bounded operator T from X onto X is unitary if (Tu, Tv) = (u, v), 
all u, v E X, i.e., T preserves inner product. The operator T is symmetric 
or self-adjoint if (Tu, v) = (u, Tv )  for all u, v E X. 

The matrix T = (Tki) of a bounded operator T with respect to the ON 
basis {u j ]  is defined by 

m 

(A.13) Tuj = C Tkjuk ,  T k j  = (Tuj, u,), j ,  k = 1 , 2 , .  . . . 
k =  I 

To the sum of two operators S + T corresponds the sum of their matrices 
and to the product ST corresponds the matrix product: 

(A.14) (s  f T)kj = s k j  + Tkj, (sT)kj = SkiTij. 
I =  1 

The adjoint T* of the bounded operator T is defined by the relation 
(A.15) (Tu, v) = (u, T*v), all u, v E X. 

In particular, if T k j  are the matrix elements of T with respect to an ON basis 
{uj]  then the corresponding matrix elements of T* are 

Thus T* is a uniquely determined linear operator on X. Moreover, T* is 
bounded and 1 1  T 1 1  = 1 1  T* 11. Note that T is self-adjoint if and only if T = T*. 
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Symbol Index 

This index lists symbols used frequently in the text, followed by the sections in which 
they first appear. 

la1 Absolute value, 5.1. 
A* 
Ad A, Ad a 
B,  
a, a* 
A(G)  
3+, 3-, 33 or J + , J - , J 3  
d : l , S Z , C J  Basis for s0(3), 7.1. 
J,(z) = [(z/2p/n!] z;=o [(-z2/4)k/(n + I)&!], n = 0, 1 , .  . . , Bessel function, 10.2. 
A ,  
& k l ,  8, Branch, 9.1. 
r,, r n m  Bravais lattices, 2.8. 

Adjoint of the operator A ,  3.7. 
Adjoint rep operators, 5.1, 5.6. 
Algebra of permutation operators, 4.3. 
Annihilation and creation operators, 9.7. 
Automorphism group of G, 1.3. 
Basis for a rep of s/(2), 5.10. 

Bisymmetric transformations, set of, 4.3. 

Cartan subalgebra of a classical group, 9.1. 
Character of the group G, 3.4. 
Circle group, 2.3. 
Clebsch-Gordan, 3.5. 
Clebsch-Gordan (CG) coefficients, 3.5. 
Clebsch-Gordan coefficients for SU(2). 7.7. 
Clifford algebra, elements of, 9.6. 
Column permutations of a Young tableau, 4.2. 
Commutator bracket, 5.1, 5.3. 
Complex numbers, 1.1. 
Complex conjugate matrix, 3.1. 
Conjugacy class in a point group, 3.6. 

42 1 
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u x v  Cross product, 3.8. 
C" 
c m v ,  C-h 

f'(4, f (1)  

4,) 
det A 
IPl, . . . , d m  I = CIESDl 6se2(l) . . . &), Determinant, 4.4, 9.2. 
D" Dihedral group, 2.4. 
dim V 
G X H  
Ti @Tz 
V @  W 
D-h Symmetry group, 2.9. 
T Z T '  Equivalence of reps, 3.1. 
E M ,  
ia, 01 
(9,@, w )  Euler angles, 7.1. 
exp a: S --t G 
exp A = e A  = xy=o AI/j! Exponential of a square matrix, 5.1. 
GIN Factor group, 1.2. 
r (z)  = limn-- [n! n z / ( ~ ) ~ + ~ ] ,  r(z + 1) = zr(z), r(n + 1) = n!, n = 0, I ,  2, . . . , 

Cyclic group of order n, 2.4. 
Symmetry groups, 2.9, 7.6. 

Derivative of a function, 5.1. 
Derivative of a matrix-valued function, 5.1. 
Determinant of matrix A, 2.1. 

4 6 1 ,  ;. . 9 ern) = r j [ j > k  (e j  - €k)r 9.2. 

Dimension of vector space V, 3.2. 
Direct product of groups, 1.5. 
Direct sum of reps TI and Tz, 3.2, 3.5. 
Direct sum of vector spaces V and W, 3.2, 3.5. 

Euclidean group in n-space (proper Euclidean group), 2.2. 
Euclidean group element, 2.2. 

Exponential mapping, 5.5, 5.9. 

Gamma function, 7.5. 
GL(n, B), GL(n, R), GL(n) General linear groups, 1 . 1 ,  5.4. 
G Group, 1 .  1. 
RG Group algebra (ring) of the group G, 3.1, 3.3. 
x = CeEGX(g)*g Group algebra element, 3.1. 
dg,  h) Group product in local Lie group, 5.2. 
n?), W )  Group rep matrices, 3.1. 
T(d, T(A) Group rep operators, 3.1. 
H Hamiltonian operator, 3.8. 
ff&) = (-IF exp(x2)(dn/dx*) exp(--Xz), n = 0,1,2, . . . , Hermite polynomials, 10.1. 
x Hilbert space, 3.8, Appendix. 
p : G + C '  Homomorphism of groups, 1.3. 
r:S- ,S '  
2FI(a, b; c; z )  = ZF=,, [(a),(b),/(c),](zn/n!), I z  1 < I ,  

Y Icosohedral group, 2.4. 
4 Ideal, 4.3. 
oa,@= 

e 
E" 
E Identity operator, 2.1. 
TG Induced rep, 3.5. 
(u, v>, (4 v) 

J- f (4 dx 
dA, QA, drA, 6A 
I = - E  Inversion operator, 2.3. 
Irred Irreducible (representation), 3.2. 
T(#) 

Homomorphism of Lie algebras, 5.3. 

hammer symbol), 7.2. 
Hypergeometric series (see Poch- 

Ideals in the group ring of S,, 4.3. 
Identity element in a group, 1.1. 
Identity matrix, n x n, 2.1, 3.3. 

Inner product, 2.1, Appendix. 
Integral of f(x), 3.1, 3.8, Appendix. 
Invariant measures on a linear Lie group, 6.1. 

Irred rep of group G, indexed by the integer p,  3.3. 
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[ f l y . .  . ,f*l 
D(u.v) 
D ( U , Y )  D ( U . U )  

D(I) + ,  D“) - 

D(u) 
G Z H  
G x  
6 i j  = 1 if i = j, = 0 if i # j; 

Irred reps of GL(m), U(rn), and SL(m), 9. I .  
Irred rep of proper homogeneous Lorentz group, 8.3. 
Irred reps of L t ,  8.3. 
Irred reps of 0(3) ,  7.6. 
Irred reps of SU(2), SO(3, R), and SL(2, 6), 7.2, 7.3. 
Isomorphism of groups, 1.1, 2.4. 
Isotropy subgroup of G at x, 1.4. 

i 9 -  

Kronecker delta, 1 . I .  
L:)(z) = [r(a + n + i)/r(a + i)n!] z;”=o [(-nlj/(a + 1)~1(2j/j!), n = 0, I ,  2, . . . , 

Laguerre polynomial, generalized, 7.5, 10.2. 

Lebesgue square-integrable functions on the group G, 6.2, 
Appendix. 
Lebesgue square-integrable functions on domain 312, Appendix. 
Left regular rep, 1.4, 3.1. 

A Laplacian, 3.1. 
LAG) 

LZ(W 
Ug) 
PP(COS 0) = P~~-”’(cos O), Legendre function (associated), 7.2. 
Pn(cos 0) = 2Fl(n + 1 ,  - n ;  1 ; $(l - cos O)), n = 0 , 1 , 2 , .  . . , Legendre polynomial, 7.2. 
8 Lie algebra, 5.3. 
L(G) 
SOU, 1)  
L a ,  D a  Lie derivatives, 5.9. 
T: V-- .  V 
In A 
Lt Lorentz group (complete), 8.3. 
L(4) Lorentz group (homogeneous), 8.1. 
L’+  Lorentz group (proper), 8.1. 
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C n h r  C n v ,  D n h r  Dndr 

o h  = 0 u 10, Szn, Td, 
Th = T u IT, Y h  = Y u I Y, Point groups, 2.5. 
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