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TRANSLATOR’S PREFACE.

—_—

1 pore this work may contribute towards supplying the
« pressing need of text-books upon the higher branches of
mathematic,” of which Dr. Glaisher has recently spoken in
his presidential address to the London Mathematical Society.

I must here express my deep sense of obligation to Pro-
fessor Klein for his permission to publish an English trans-
lation of his work. The chief difficulty has been to choose
proper equivalents for technical expressi in the text, and
here Professor Cayley has kindly allowed me to refer to him.
I have also consulted Cole’s review of the book in Vol.
ix. No. 1, of the American Journal of Mathematics, and bor-
rowed his expression ¢ self-conjugate subgroup” for  ausge-
zeichnete untergruppe.”

As regards the translation itself, I have been most fortunate
in obtaining the help of Miss Borchardt, who, notwithstand-
ing many other engagements, has most kindly gone over most
of the manuseript with me.

It would be out of place to speak here of the book itself;
a glance at the table of contents will suggest that ‘ tract
of beautiful country, seen at first in the distance, but which
will bear to be rambled through and studied in every detail
of hill-side and valley, stream, rock, wood, and flower.”

G. G. M.



PREFACE.

—

TaE theory of the Ikosahedron has during the last few years
obtained a place of such importance for ncarly all departments
of modern analysis, that it d expedient to publish a
systematic oxposition of the same. Should this prove accept-
able, I propose to continue in the same course and to treat in
a similar manner the subject of Elliptic Modnlar Functions, and
tho gencral investigations newly made of Single-valued Func-
tions, with linear transformations into themselves. Thus a
treatise of several volumes would grow, in which I should
expect to promote science, at least in so far as it inight
introduce many to realms of modern mathematics rich in far-
stretching vistas.

Referring generally as to the limitations of the material, which
I have observed in this publication, to the futurs exposition
itself, I would here only draw attention to the second part, which
treats of the solution of equations of the fifth degree. It is
now fully twenty-five years since Brioschi, Hermite, and Kro-
necker in joint labours created the modern theory of equations
of the fifth degree. But though these iuvestigations are now
and again quoted, the mathematical world at large has hitherto
failed to grasp their true import. By giving the first place in
the following pages to the subject of the Ikosahedron, and by
treating this as the true basis of the processes of solution, a
view of the theory is brought forward than which a simpler
and more lucid one cannot well be desired.

A special difficalty, which presented itself in the execution
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of my plan, lay in the great variety of mathematical methods
entering into the theory of the Ikosahedron. On this account it
secmed advisable to take for granted no specific previous know-
ledge in any direction, but rather to introduce, where necessary,
such explanations and references as might suffice as preli~
minary landmarks on the field under immediate survey. What
I, however, do expect in my reader is a certain ripeness of
mathematical judgment, which shall enable him to interpret
concise, brief statements, so as to see in them the gemeral
principle involved in the particular case. This is the same
method I have ever pursned in my more advanced lectures;
indeed I have introduced into the details of these expositions
the practices of my lecture-room. It is in this spirit I would
have the title interpreted which I have given to my dis-
quisition.

I cannot close these short prefatory remarks without express-
ing my special thanks to my h ed friends Profe Lie
in Christiania and Professor Gordan in Erlangen for mani-
fold suggestions and assi My indebted to Prof
Lie dates back to the years 1869-70, when we were spending
the last period of our student-life in Berlin and Paris together
in intimate comradeship. At that time we jointly conceived
the scheme of investigating geometric or analytic forms sus-
ceptible of transformation by means of groups of changes.
This purpose has been of directing influence in our subsequent
labours, though these may have appeared to lie far asunder.
Whilst I primarily directed my attention to groups of discrete
operations, and was thus led to the investigation of regular
solids and their relations to the theory of equations, Professor
Lie attacked the more recondite theory of continued groups
of transformations, and therewith of differential equations.

It was in the auturnn of 1874 that I first came into real
contact with Professor Gordan. I had at that time already
commenced the study of the Ikosahedron for myself (without
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then knowing Professor Schwarz’s earlier works, to which we
shall hereafter frequently have occasion to refer); but I con-
sidered my whole manner of attacking the question rather
in the light of preliminary training. If now a far-reaching
theory has grown from those beginnings, I attribute this result
primarily to Professor Gordan. I am not here referring to his
trenchant and profound labours, which shall be fully reported
upon hereafter. 1n this place I must record what cannot be
expressed in quotations or references, namely, that Professor
Gordan has spurred me on when I flagged in my labours and
that he has helped me with the greatest disi over
wmany difficulties which I should never have overcome alone.

F. KLEIN.

Lerrzic, May 24, 1884,
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THEORY OF THE IKOSAHEDRON ITSELF.



ERRATA

Page 78, line 7 from bottom, for **dienigen,” read ** diejenigen.”
77, line 8 from bottom, for “singular,” read ** similar.”

,» 88, line 20 from top, for - square root,” read “quadrature.”
89, line 26 from top, for ““travel,” read “ traverse.”

96, last line but one, for “even if,” read “namely if.”
97, line 9 from top, for “ unaltered,” read “altered.”
*+ 98, line 4 from bottom, for “unaltered,” read “altered,”



CHAPTER L

THE REGULAR SOLIDS AND THE THEORY
OF GROUPS.

§ 1. STATEMENT OF THE QUESTION.

WHEN we speak, in the following pages, of the ikosahedron,
or in general of a regular solid, this expression is to be under-
stood in an extended sense ; namely, we do not actually operate
with general constructions in space, but confine ourselves essen-
tially to the sphere which is described through the summits of
the regular solid, and to which we suppose the edges and sides
of the regular solid transferred by linear projection from the
centre of the sphere. The nearer object of our consideration
is therefore a determinate partition of the sphere, and we only
return for greater conveni of expression to the phrases,
and in part to the constructions, of the geometry of space.

To the regular solids, as the ancients knew them, are usually
added in modern times the Kepler solids (whose sides mutually
interpenetrate one another). If we wished to transfer them,
in the manner explained, by central-projection on to the
sphere, a multiple envelopment of the sphere would result.
1t is, indeed, not hard to see that there is an infinite number
of such envelopments of a regular type.* But comparatively
complicated relations of this nature shall be set aside in the
following pages. We only inv those ple figures
which correspond in the sense mentioned to the regular fetra-
hedron, the octahedron, the cube, the tkosahedron, and the
pentagon-dodekahedron. 'To these we will then add a sixth
configuration, which corresponds to the plane regular n-gon.

* Cf. in this respect the new work of Hess : * Introduction to the Theory of
the Partition of a Sphere, with Special Reference to its Application to the Theory
of Equilateral and Equiangular Polyhedra.” Leipzig, 1883.
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In fact, we can denote this latter by considering the portion
of the plane limited by the sides of the n-gon to be doubled,
as a regular solid—a dihedron, as we will say: only that this
solid, trary to the el tary notion of such, encloses no
space. If we transfer the dihedron by central-projection on
to the surface of the circumscribed sphere, we have first, cor-
responding to its # summits, » equidistant points on a great
circle (which might be called the equator), between which
lie, as projections of the edges of the dihedron, the n pieces
into which this circle is divided by the n points. We then,
a8 is natural, make the two half-spheres bounded by the
equator to correspond to the two planes which we have just
distinguished, and which bound the dihedron.

But—and this must be emphasised from the first—it is not
actually the figures th lves here ted which, in the
following pages, form the object of our consideration, but rather
those rofations or reflexions, or, shortly, those elementary geome-
trical operations by which the said figures coincide with them-
selves. The figures are for us only the material by means of
which we survey the totality of certain rolations or other defor-
mations. Therefore the individual regular solids will for us
be inseparably connected with their polar figures, which, like
themselves, remain unaltered by these operations. In this
sense the octahedron belongs to the cube whose summits cor-
respond to the mid-points of the sides of the octahedron,
the ikosahedron to the pentagon-dodekahedron, which has an
analogous position.

Starting from the same principle, we will consider with the
tetrahedron the allied counter-tetrahedron (whose summits are
diametrically opposite to the summits of the original tetra~
hedron); we will, finally, in the case of the dihedron, mark
the two poles of the sphere corresponding to the two sides
thereof.* There are thus four different forms which lie at the
root of our considerations. We will, in what follows, briefly
characterise them by the names dihedron, tetrahedron, octa~
hedron, and ikosahed. If, in our later developments, we
bring the case of the ikosahedron in many r into espe-

* The configuration of the dihedron is therefore the same as has been elsewhere
termed the double-pyramid.
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cial prominence, and if we have, in accordance with this,
mentioned the ikosahedron alone in the title of this part, it
is because the case of the ikosahedral configuration is in all
respects the most interesting of them.

As soon as we enter upon the task of studying the rota-
tions, &c., in question, by which the configurations which we
have mentioned are transformed into themselves, we are com-
pelled to take into account the important and comprehensive
theory which has been principally established by the pioneering
works of Galois,* and which we term the group-theory.t Ori-
ginally sprung from the theory of equations, and having a
corresponding relation with the permutations of any kind of
elements, this theory includes, as has long been recognised,
every question with which we are concerned in the case of
a closed manifoldness of any kind of operations. We say of
any opermons that t.hey form a group, if any two of the

duce an operation included
amongst those first glven. In this sense we have at the outset
the proposition :—

The rotations which bring one of the regular solids into coin~
cidence with itself collectively form a group.

For it is clear that any two rotations of this kind, applied
one after another, generate again & rotation of the same nature.
It is otherwise with the reflexions by means of which a regular
solid is transformed into itself. ZThese taken by themselves in
no way form @ group. For two reflexions applied one after
another give not a reflexion but a rotation. True, a group
will be again formed if we take these reflexions in conjunction
with the rotations just mentioned, and certain other operations
derived from them by compounding. We shall only further
consider these groups incidentally in the following pages, and
shall describe them as the extended groups.

* 1829, Cf. “(Euvres de Galois” in Liouville’s Journal, Series 1. tome 3.,
1846.

+ Though the explanations in the text are limited almost entirely to considera-
tions of the theory of groups, the geometer will be interested, apart from these,
in the remarkable relations of position which arise in an individual case on the
basis of group-theory properties, and are governed by them. I should like to
call attention here to the researches which Herr Reye and M. Stephanos have
devoted in this sense to the theory of the cube (Acta Math., t. L p. 93, 97 ; Math.
Aonn,, xxii, p. 348, 1883).
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§ 2. PRELMINARY NoTIONS oF THE GROUP THEORY.

Before we turn to the special groups which occur in con-
nection with the regular solids, it will be useful to make
mention of certain general notions which have been worked
out in other directions in the theory of groups. I beg the
reader, who is as yet not conversant with these theories, to
make himself acquainted, in conjunction with the short expo-
sition which is to be given here (and which on later occasions
will be further completed in various directions), with one of
the more detailed expositions® which the theory of groups
has lately received. In what follows we consider, with certain
exceptions,only finite groups. Such a group is first characterised
by the number N, of the operations which it embraces, where
we always count the so-called *identical” operation as one;
we denote this number as the degree of the group. Further,
we shall give the periodicity of the individual operations, ..,
the number of repetitions which the individual operation needs
in order to return to identity; and, moreover, we shall give
the totality of the sub-groups, i.c., all such combinations of
a part of our operations as, taken together, possess the char-
acter of a group. The degree of a sub-group is always a
factor of the degree NV of the principal group. The simplest
sub-group (and we may say generally the simplest group) is
always that which arises from the repetitions of an individual
operation, whose degree, therefore, is equal to the period of
the operation in question ; such may be called respectively
cyelic sub-groups and groups.

But a mere enumeration of the things here required is not

sufficient ; we desire rather to take cogni of the positi
of the several operations, sub-groups, and so on, within the
main group. In this ction let us consider the following

* Of. J. A Serret, “ Traité d'aigdbre supérieure” (Paris, 4th edition, 1879), in
German by Wertheim (Lelpdg, 2ntl edmon, 1878-79) ; C. Jordan, “Traité des

bstitations et des & i iques” (Paris, 1870); E. Netto, “ Substitution
theorie und ihre Anwendung auf die Algebra” (Leipzig, 1882). Particularly
should reference be made to the articles which Herr Dyck has published in the
20th and 22nd volumes of the * Mathematische Annalen” (1882-83), a8 * Grup-
pentheoretische Studien,”
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definitions. Let us agree first that by the product of two
operations § and 7':
ST

we will understand that operation which consists in first allow-
ing S and then 7' to operate. In general

8T is not = T'S.
If this occurs in a special case, we call the two operations
8 and T permutable. 'We construct now in general

STS='=T*
(where S~ denotes that operation which compounded with §
produces 1, .., identity). If S and T are not permutable, 7"
is different from T'; we say, then, that 7" proceeds from 7' by
transformation, and call 7' and 7” associates within the main
group. In fact, 7% will correspond with 7' in all essential
properties, e.9. (as we see at once), it has the same periodicity.

Now let T be replaced by the operations 7y, T, . . .
T, .. . of any sub-group. Then the same thing happens
(as we apply each time the said S to every T') to the corre-
sponding 77, so that, in fact, 7";7", = 7”,, when T;T) coincides
with 7.1 We say that the groups of 7 and 7 are then
themselves associates within the main group.

‘We must consider now in particular the case where two
different sub-groups (the original and the transformed) coin-
cide with one another. If this occurs in the case of a set of
operations, which we may choose from the entire group for the
transformation of our sub-group, and if our sub-group thus
shows itself only associated with itself, then we call it a self~
conjugate sub-group.  Every group contains, if we like to
press the definition so far, two self-conjugate sub-groups: viz.,
in the first place, the totality of all its operations, i.c., the
group itself, and, in the second place, that simplest group
which ists of the identical operation alone. If a group
contains, apart from these improper cases, no self-conjugate
sub-groups, it is called simple, otherwise it is called composite.

In the case of composite groups we seek especially their
decomposition. We effect a decomposition of a group by giving

* I T'= STS—1,(T') = STS—1 STS—1=ST?S—1; generally (T'y=8T:S—*
If, then, 7= 1, (*)*=1 also and conversely, g.e.d.
+ For we have again 7. T+=87\8~1, ST.S-'=STT.§~1=8T.8-.
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1), e |
>

a self-conjugate sub-group, as extensive * as p
in it ; then, again, a new ome, self-conjugate within the sub-
group so obtained, &c., and so on till identity is reached. It
need hardly be said that this decomposition process admits of
much variation according to circumstances.

Beyond these simplest definitions, which come under our
notice in the case of individual groups, I must consider that
relation between two groups which is described as isomorphism.
Two groups are called isomorphous if their operations can be
so exhibited that S, S, always corresponds to 5'; &', provided
that S; is made to correspond to §’; and S, to &,.

The isomorphous relation can be a mutually unique one; we
then speak of holohedric isomorphism. In this case the two
groups, from an abstract point of view, are in general identical,
and it is only in the significance of the two sets of operations
that a difference can exist. The sub-groups of the one group,
therefore, give directly the sub-groups of the other group, &c., &c.

But the co-ordination may also be an ambiguous one, and
then we describe the isomorphism as merihedric. Here again
to every sub-group of the S group corresponds one of the S’
group, and vice versa, but the two sub-groups need not possess
the same degree. At the same time, associate sub-groups of
the one give similar sub-groups of the other. Therefore, also,
self-conjugate sub-groups of the one group are transformed into
similar ones in the other. In particular to identity, if we
attribute it to the S group, corresponds a self-conjugate sub-
group within the S’ group and conversely.t

In what follows we shall have principally to do with ex-
amples of merihedric isomorphism, in which to each S corre-
sponds one &', but to every S’ two S’s are co-ordinated (so that
the number of the S’s is double as great as the number of the
8”s). We shall then simply speak of hemihedric isomorphism.

§ 8. Tae Cvouic RoTaTioN GROUPS.

Turning now to the closer consideration of the groups which
are formed by the rotations which bring one of the configura-

* That is, one which is not contained in a sub-group more compreheusive and
at the same time self-conjugate.

+ Cf. besides the publications already joned, in particular : ** Capelli, sopra
Tisomorfismo . . .” in Bd. 16 of “ Giornale di Matematiche " (1878).
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tions mentioned in § 1 into coincidence with itself, we must
give precedence to the simplest rotation groups, those which are
obtained by the repetition of a single periodical rotation. Evi-
dently, for such a group, two points on our sphere remain
unaltered, which points we will call the two poles; and the
group consists, if it contains on the whole = rotations, of the
n rotations through an angle
R (1
n ” ®

round the axis joining the two poles.

‘We agree in the first place that any two rotations of this
group are permutable with one another. Therefore every indi-
vidual rotation, as well as every sub-group which can be com-
posed with individual rotations, is only associated with itself.
But whether such sub-groups exist depends on the character
of the number n. If n is a prime number, the existence of a
proper sub-group is a prior: excluded (because its degree must
be a factor of n) ; if » is composite, there is, corresponding to
every factor of n, one and only one sub-group whose degree is
equal to this factor.®* We shall obtain a decomposition of our
group if we first seek the sub-group which in this semse cor-
responds to the highest factor contained in n, and then further
treat the sub-group thus obtained in the same way.

If we like to familiarise ourselves with the idea of isomor-
phism here directly, we observe that our group is holohedrically
isomorphous with the totality of the * cyclic” permutations of
any n elements taken in a definite order :

G T P ) )
In fact, we can establish a correspondence between the per-
mutations alluded to and the rotations which we have been
considering most simply by geometrical means. We have only
to construct the n points :

[ N
which are derived from an arbitrarily given point a, by our
rotations, and now remark how these points are permuted
amongst themselves by the rotations.

* I make these and similar statements in the text without proof, hecause they

will either be self-evident to the reader, or must he apparent to him, without
further proof, on a little reflection,
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It is superfluous to spend more time over such obvious
matters. 'We had to introduce them because the cyclic groups
are, so to say, the elements from which all others are con-
structed.

§ 4. ToE Group oF TEE DiEEDRAL ROTATIONS.

Turning now to the configuration of the dihedron, I beg the
reader—here and in the similar developments of the following
paragraphs—to make the corresponding diagrams, or to think
out for himself directly by aid of a model—which is easily
constructed—the properties under consideration. For we are
treating of concrete matters, which may easily be conceived
with the assistance of the suggested aids, but which may occa-
sionally offer difficulties if these are neglected. I should also
have had throughout to lay down these developments much
more in detail, had I not wished to take for granted the
reader’s co-operation in the manner explained.

We have already named that great circle on our sphere
which carries the # summits of the dihedron the equator, and
have also already marked the two corresponding poles. Then
it is clear from the first that the dihedron is transformed into
itself by the cyclic group of n rotations for which these poles
remain unch:mge&. But the group of the rotations belonging
to the dihedron is mot thereby exhansted. We will mark a
new point on the equator, bet some two conse-
cutive dihedral points; the points s obtained we call the mid-
edge points of the dihedron. We then further denote that
diameter which contains a summit or a mid-edge point of the
dihedron as a secondary axis thereof. There are n secondary
axes of the dihedron ; if n is odd, each of these contains one
summit and one mid-edge point; if n is even, the secondary
axes separate into two categories, according as they connect
two summits or two mid-edge points. In every case the dihe-
dron remains unaltered if it is turned right round on any one
of these secondary axes; i.e., if it is rotated through an angle
7 round the secondary axis. Thus, by the side of the cyclic
group of n rotations already explained, there are arrayed n
other rotations, each of the period 2.

Besides the rotations here ated the dihedron group con~
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tains no others. In fact,we recognise in the following way (which
will be again applied later on) that the number of the dihedral
rotations must be equal to 2n. 'We consider, first, that every
point of the dihedron can be transformed into every other point
by means of a dihedral rotation, which admits of n possibilities,
and then that, while we keep one summit fixed, the dihedron
can only be brought into coincidence with itself in two ways,
viz., by a revolution on the secondary axis, which passes
through the summit in question, and by the identical opera-
tion. Now the number of dihedral rotations must evidently
be equal to the product of the two factors; it will therefore bo
equal to 2n, g.e.d.

I will not now weary the reader by enumerating all the
sub-groups contained in the dihedral group. Let us rather
consider forthwith our first cyclic group of = rotations, and
prove that this, as & sub-group within the main group of the
dihedron, is self-conjugate. In fact, let us go back to the
definition of § 2. We denote by 7, 77, rotations round
the principal axis of the dihedron, and by S any other dihe-
dral rotation. Then our asgertion requires us to show that
STS—1=1'. But if § itself denotes a rotation round the
principal axis, this relation is self-evident; and if S is a
revolution round a secondary axis, then the effect of this
revolution, so far as the principal axis is concerned, will be
reversed by the operator S~ following, from which our relation
again results.

‘We can refer the proof here given to a general principle,
which we introduce here the more readily because in the sequel
it will be repeatedly applied. Let as agree first that we will
describe in our configurations all such geometrical figures as
proceed from one another by an operation of the correspond-
ing group as associates. We now construct all figures which
are associate with a given one. Let 7 be those operations of
our group which have the property of leaving unaltered every
one of the figures so constructed. Then the T, evidently form
a self-conjugate sub-group within the main group. For every
operation S7,8~ ! belongs itself to the 7', because S only effects
ap ion of the fund; tal figures, which will be reversed
by 8~ The application of this principle to our case is clear.
‘We haye only to consider the two poles of the dihedron as
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fundamental associate fignres. It is here incidental (as far as
the general principle is concerned) that those rotations, which
leave one of these poles unaltered, do not in g ] differ from
those which transform both poles together into themselves.

By similar reflexions we determine those among the dihe-
dral rotations which are associated with one another. I say
with regard to this, that now, of the rotations round the

principal axis, those two which rotate through * 2’" 25‘

and — 2kF

are associates, while the revolutions round the secondary axes,
for » uneven, are all associates, but, for n even, separate into
two categories of associates. The first statement corresponds to
the circumstance that, the two poles of the dihedron are respec-
tively equally affected by the two rotations round the principal
axis which we are comparing,* the latter statement to the earlier
theorem that the secondary axes of the dihedron are either all
associates, or, for 7 even, divide into two sorts of associated
lines. And further, in both cases we apply a general prin-
ciple, which we can express by saying: Those two operations
are always associates which transform respectively two associated
JSigures analogously into themsel I do not spend more time
over the proof of this principle.

If, fipally, a deoomposmon of the dxhedral group is required,
such an one is already implicitly contained in what has gone
before. As a sub-group at once the most comprehensive and
self-conjugate, we choose the group of « rotations round the
principal axis. This we treat further in accordance with the
th of the preceding paragraph. We define another group
of permutations of letters which is holohedrically isomorphous
with the dihedral group. For this purpose we will now denote
the n summits of the dihedron in their natural order by

[ T N

Then we have first, as in the preceding paragraph, corre-
sponding to the n rotations round the principal axis, those
cyclic permutations of the a,’'s which replace respectively a, by
a,,; (the indices being taken for the modulus n). We find,

* Inasmuch as a rotation through -—7{1—' round one pole coincides with a rota.

tion through +—ﬂ”1 round the other,
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further, that by a revolution round the axis which passes
through the point a,, a, will be replaced by a,_,. From both
operations together springs the metacyclic group,” which will
be represented by the following transformation of indices :

Y =44k (mod 7),

and this, therefore is holohedrically isomorphous with our
dihedral group, or—what is the same thing—is identical with
it in an abstract sense.

§ 5. THE QUADRATIC GRoUP.

The explanations of the foregoing paragraph, as also the de-
finition of the dihedron in § 1, assume that 7 is >2. I n=2,
the figure of the dihedron loses its definite character, inasmuch
as the summits of the dihedrom can then be connected by
an infinite number of great circles, In accordance with this
we obtain, in the first place, as the corresponding group
of rotations, a so-called continuoust group. Interesting and
supremely important as the theory of the continuous groups is
in many respects, it will be of little moment in the following
pages. We will therefore, in the case of 2 =2, make the
figure of the dihedron definite by selecting from among the
infinite number of great circles passing through the two
summits a determinate one as equator. The principal axis of
the figure then forms with the two secondary an orthogonal
triad, and we obtain, in exact accordance with the rules of
the preceding paragraph, a corresponding gronp of 2n=4
rotations. If we make the usual determination of co-ordinates
on the basis of this axial triad, the point z, y, # will be trans-
formed by these rotations into the other points :

* We thus denote generally with Kronecker every group of permutations of
@y @, . . . 6, which is given by ¥ =ecn+k (mod. n).

+ Cf. the extensive investigations of Lie in the Norwegian Archiv (from 1873
onwards) and in Bd, xvi. of Math. Ann, Latterly M. Poincar¢, in his investiga-
tions (which we shall often quote) of single-valued functions with linear trans-
formations into themselves, uses the word * continuous group” in another sense,
He describes as such every group of infinitely many but diserete operations, among
which infinitely small transformations cocur. This modification of nomenclature
appears, however, to me to be not to the purpose,
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% =y, —2;
-, Y —z;
-z, -y %

Clearly our new group contains, apart from identity, only
operations of period 2, and it is incidental that we have con-
nected one of these operations with the principal axis of the
figure, and the other two with the secondary axes. So I will
give the group a special name which no longer recalls the
dihedral configuration, and call it the gquadratic group. The
quadratic group has the special property, as is at once proved,
that all its operations are table.* Thus every operation
appears 83 only associated with itself.t We shall effect the
of the quadratic group by first descending to an
arbltrs.ry snb—group of 2 rotations, for which one of the three
axes remains fixed, and then passing from this to identity.

§ 6. THE Grour OF THE TETRAREDRAL ROTATIONS.

We remarked above that, for all rotations which bring a
regular tetrahedron into coincidence with itself, the counter-
tetrahedron will also be transformed into itself. These tetra-
hedra by their eight summits together determine a cube. If
we now mark those 6 points on the sphere which corre-
spond to the middle points of the sides, we obtain the 6
summits of & regular oclahedron. We thus recognise already
the close relation in which the group of the tetrahedral rota-
tions stands to the octahedral group which we are now going
to study. We will complete our figure by adding thereto
the rectangular triad of the diagonals of the octahedron, and
also the 4 cube-diagonals (passing through the centre of the
sphere).

Applying now the principles developed in § 4, we find,
first, that the tetrahedral group contains 12 rotations. 1In
fact, there are 4 associate tetrahedral points, and each of

* It is easily shown that two rotations ave only permatable if either (as in the
case of the quadratic group) their axes cross at right angles and each has the
period 2, or (as in the case of the cyclic group) their axes coincide.

+ This is not contradicted by the fact that, in the more comprehensive group
to he now studied, the 3 rotations of the period 2, which the quadratic group
contains, appear as equivalent,
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these it i hanged by 8 rotations —by the
identical rotation, and by two rotations of the period 8 whose
axes are respectively the cube-diagonals which passes through
the tetrahedral point. We have ascertained at once, by what
has been said, that 8 of our 12 rotations possess the period
8. Of these (again in virtue of the principles enunciated
in § 4) four are associates, namely, all those sets of four

which appear to rotate in the same sense, through an angle of %‘-‘

(m- %' , round the it of the tetrahedron which they leave

fixed. To these 8 rotations and identity are then added 3
more associated rotations of pmod 2. These are revolutions

round the 8 mutually rectang di gonals of the octahe-
dmn which latter now ppear as i th Ives,
they are i hanged by each rotati ) of period 3.

Together with identity, the 8 rotations in question evidently
form a quadratic group.

We conclude at once that the quadratic group so obtained
18 self-conjugate within the tetrahedral group. For the 3
mutually associated diagonals of the octahedron all i
unaltered for the rotations of the quadratic group, and only
for them. We can therefore decompose the group of the tetra~
hedron by first descending to the quadratic group, and then,
treating this further in the sense of the preceding paragraph,
I omit the proof that any other decomposition of the tetra-
hedral group is not possible, and that generally, except the
quadratic group, there exist within the tetrahedral group no
sub-groups other than the simple cyclic groups which arise
from the repetition of a single rotation.”

Let us consider, further, the nature and manner of the
permutations which the 4 diagonals of the cube (which we
will shortly denote by 1, 2, 3, 4) undergo in virtue of the
tetrahedral rotations. First, we have the self-evident asser-
tion that by no one of the tetrahedral rotations (apart from
identity) are all the 4 diagonals of the cube left unaltered.

- 1:

we ge te all the nnb-gmnpl of & given group by
first ennltmctmg all the eyclio group mentioned in the text, and then combining
these with one another in sets of two, three, &c., in order. In each mdwld\u!
case such a process can of course be iderably shortened by appropriate con-
siderationa.
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There are, therefore, no 2 tetrahedral rotations which gene-
rate the same permutation of the four diagonals of the cube.
Therefore the group of the tetrahedral rotations is holohedrically
isomorphous with the gnmp of the corresponding permutations of
the diagonals of the cube.*

‘We see, in particular, that to the rotations of the self-con-
jugate quadratic group correspond the following arrangements
of the 4 diagonals:

1, 2 3, 4;
2 1, 4 3;
5 4 1, 2
4, 3, 2, 1;

To these are added, if we proceed to the remainder of the
tetrahedral rotations, 8 more which arise from cyclic permuta-
tions of 3 out of the 4 diagonals. We have thus, as we see,
obtained just those 12 permutations of the 4 diagonals which
wo are accustomed to call the even permutations.

§ 7. TEE GROUP OF THE OCTAHEDRAL ROTATIONS.

In the case of the group of the octahedral rotations, we
have as has been already pointed out, essentially the same
tion for a foundation as in the case of the tetra-

hedron. We will only further mark (on our sphere) the 12
points which correspond to the mid-edge points of the octa-

hedron, and construct the 6 di which contain a pair
of these points. These 6 diameters we call the cross-lines
of the figure.

Of course the octahedral group contains the 12 rotations
of the tetrahedral group, and indeed, as we can premise, as a
self-conjugate sub-group. For the 8 summits of the cube
admit of being distributed between the tetrahedron and coun-
ter-tetrahedron in only one way, and these latter remain both
unaltered by the twelve rotations in question. Moreover,

* Let us pare the behavie of the 3 octahedral di: \! Tbmnnu
they remain \ for the operations of the quadratic group, are p
by the 12 tetrahedral rotations only in 3 ways, viz., cyclically. With the group
formed of these permutations, the tetrubedral group is then merikedrically isomor-
phous,
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12 more rotations then arise which interchange the tetra-
hedron and ter-tetrahedron, so that the octahedral group
contains on the whole 24 rotations. These are: first, 6
rotations—mutually associate—through an angle 7 round the

6 cross-lines of the figure, than 6 rotations throngh X7 (there-
en 2

fore of period 4) round the 3 diagonals of the octahedron.
The latter prove themselves also mutunally associate. For the
4 rotations, for which the individual diagonals of the octa~
hedron remain unmoved, now participate as a self-conjugate
sub-group, in a dihedral group of 8 rotations. Similarly the
two rotations of period 3 round the same diagonal of the cube,
and therefore in general all rotations of the period 3, are
associate. For every diagonal of the cube is principal axis
of a dihedral group of 6 rotations. The rotations of period
2, on the other hand, separate into two sharply defined
categories, according as a diagonal of the octahedron or a
cross-line remains fixed by them. The decomposition of the
octahedral group is formed of course by descending first to
the tetrahedral group, and then to the quadric group, &e., &c.
No other kind of decomposition exists, as we have now ex-
hausted in advance all the sub-groups contained in the octa-
hedral group.

Finally, we agree that the diagonals 1, 2, 3, 4, of the cube,
in virtue of the 24 rotations of the octahedral group, are per-
mutated in 24 ways. The octahedral group is, therefore, holo-
hedrically isomorphous with the totality of the permutations of
4 elements.

§ 8. Tae Grour OF THE IKoSAHEDRAL RoratioNs.

The group of the ikosahedron, to which we now turn, is for
us the most interesting of them all, because, as we shall show, it
is primitive, in contradistinction to the groups of the dihedron,
tetrahedron, and octahedron. It shares this property with
those cyclic rotation groups whose degree is & prime number.

For the sake of investigating the group of the ikosahedron,
let us imagine that (m addition to the 12 ikosahedral pomts)
as we have said already, the 20 its of the corresp
pentagon-dodekahedron (which correspond to the xmddle pomts
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of the sides) are constructed on the surface of our sphere,
and, further, the 30 points which correspond on the sphere to
the mid-edge points of the ikosahedron. The 12 ikosahedral
points distribute themselves on pairs in 6 diameters, which we
will describe shortly as diagonals of the ikosshedron. Simi-
larly, corresponding to the 20 its of the pentagon-dode-
kahedron, we speak of 10 diagonals of the pentagon-dodeka-
hedron, and finally of 15 cross-lines containing by pairs the
mid-edge points.

‘We convince ourselves first that the total mumber of ikosa-
hedral rotations is 60. 1In fact, each of the 12 (evidently

tuall iated) ikosahedral points remains unaltered on
the whole by 5 rotations. We have thus at once (of course
leaving the identical substitution out of the question), corre-
sponding to each of the 6 diagonals of the ikosahedron 4 rota-
tions of the period 5, in general, therefore, 24 rotations of
this kind. In the same sense the 10 diagonals of the pentagon-
dodekahedron give 10.2 =20 rotations of period 3, and the
15 cross-lines 15 rotations of period 2, whereby if we add
identity the totality of the 60 rotations is exhausted :

24+20+15+1=60.

Of tho rotations here enumerated the 15 of period 2, and
similarly the 20 of period 3, prove themselves respectively
associate ; for they are the 15 cross-lines and the 10 diagonals
of the pentagon-dodekahedron, and, if we rotate round ono of

these diagonals through 2—; or 4?;5, it comes to the same, so far
as the main group is concerned, as if the two end points were
again associated. On the grounds of similar considerations
the rotations of period 5 are separated into two categories of

12 associates. The first category contains all rotations which

turn through an angle of * 2{ round one of the diagonals of

the ikosahedron, the other those whose angle of rotation
amounts to * ;—’

With these data we have at once determined the cyclic sub-
groups which are contained in the ikosahedral group. There

are, as we see, 15 such groups having n =2, 10 groups having
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n=238, 6 groups having n=5; cyclic groups with the same »
are always associates.

These data are sufficient to prove the primitivity of the
ikosahedral group. Namely, if & self-conjugate sub-group
existed, this would have to contain either all or none of the
cyclic groups having n =2 (because these are associates), so
too of the cyclic groups =8 or n=35, either all or none.
But the groups n=2, 8, 5, bring with them respectively 15,
20, 24, operations different from identity. If therefore we
denote by 7, 7/, 7, three numbers which can represent 0 or 1,
the number of operations contained in the assumed self-con-
jugate sub-groups amounts to :

1+15.0+20.90" +24. 9",

But now this number, as we remarked before, must be a factor
of the degree of the main group, and therefore of 60; this
necessarily gives either :

n=of=1"=0,
whereby our sub-group coincides with identity, or :
n=n=n"=1,

which means that the sub-group is not distinct from the main
group. The tkosahedral growp is therefore primitive, g.e.d.

Next to the cyclic sub-groups we find in the case of the
ikosahedron, as a glance at the model teaches us, for further
sub-groups, first, 6 associate dihedral groups having n=5 and
10 associate dihedral groups having #=38. "The former have
the diagonals of the ikosahedron, the latter those of the pen-
tagon-dodekahedron as principal axes; the corresponding
secondary axes are contributed by the 15 cross-lines. We
might suppose that in a similar manner, corresponding to the
15 cross-lines, 15 dihedral groups would present themselves
having » =2, i.c., quadratic groups. Here, however, arises
the fact that in the case of the quadratic group the principal
axis is equivalent with the two secondary axes. J[n corre-
spondence with this we obtain only & mutually associated gquad-
ratic groups. These correspond one by one to the 5 rectangular
triads into which we can divide the 15 cross-lines.

In these quadratic groups we have encountered that property
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of the ikosahedron which in the following pages will interest
us most of all. Inasmuch as only 5 rectangular triads, as
we have remarked, can be formed out of the 15 cross-lines,
each of these triads must remain wnaltered, not only by the
rotations of the corresponding quadratic group, but on the
whole for 12 ikosahedral rotations. ¢ cun be shown that these
rotations form a tetrahedral group. In fact, the 8 summits
of the cube which corresponds to the rectangular triad to
be considered are all included in the 20 summits of the
pentagon-dodekahedron,® There are, therefore, contained eo
ipso among the ikosahedral groups those 8 rotations of period
8, which, together with the rotations of the fundamental
quadratic group, form a tetrahedral group. We will also
expressly agree that the 5 tetrahedral groups so formed are
associates.

Leaving again the proof that, besides those enumerated, no
other sub-groups of the ikosahedral group exist, let us only
further observe the isomorphism which ariscs in the case of the
ikosahedral group from the exist. of the aforesaid 5 rectan-
gular triads. It can be shown that for every rotation of period
5 these triads are cyclically interchanged in a definite order.
For each rotation of period 8, on the other hand, 2 of the
triads remain unaltered, and only the other 8 are interchanged
in cycle. Finally, it appears that for every rotation of period
2 one of the triads remains uneltered, while the other 4 are
interchanged in pairs. In this manner it is shown that the
group of the 60 ikosahedral rotations is holohedrically isomor-~
phous with the group of 60 even permutations of 5 things.
‘We could of course here, as in former cases, have exhibited
the essential isomorphism of our groups with certain groups of
permutations of symbols, and then have transferred to the
former the results which are found in the text-books with
regard to the latter groups. Now we have investigated our
groups directly, .., by means of the figures themselves, it will
be a usefu] exercise to compare the results obtained by us with
the known properties of isomorphous groups.

* One sees occasionally (in old eollections) models of 5 cnbes, which intersect
oue another in such a way that their 5.8 = 40 summits coincide in pairs, and
P the 20 its of & pentagon-dodekshed
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§ 9. OY THE PLANES OF SYMMETRY IN OUR CONFIGURATIONS.

For the further progress of our developments it is useful to
construct the appropriate planes of sy try of our config
rations, %.c., those planes with respect to which the con-
figuration is its own reflexion, and then consider the partition
of the sphere which is effected by these planes.

In the case of the dihedron, we can construct, besides the
plane of the equator, n other planes of symmetry, viz., those
planes which contain, besides the principal axis, one of the
secondary axes. By means’of these (n 4 1) planes, the sphere
will be cut up into 4n congruent isosceles triangles, which have

2 angles =§ and one anglo = ;—: Of such triangles 4 meet
in each dihedral point and in each mid-edge point, and 2n in
each of the two poles, at equal angles.

In the case of the regular fetralkedron, there exist 6 planes
of symmetry, viz., those planes which, passing through an
edge of the tetrahedron, are at right angles to the opposite
edge. Consider for 2 moment a tetrahedron proper, limited
by 4 planes, situated in space. Clearly each of the 4 equi-
lateral triangles in these planes will be cut up by the planes of
symmetry, through the agency of its 8 perpendiculars, into 6
alternately congruent and symmetric triangles. If we now
transfer this partition by central projection on to the sphere,
we have on the latter 24 alternately congruent and symmetric

triangles, of which each exhibits the angles, %, g. g, and

which at the summits of the original tetrahedron, as also at
the summits of the counter-tetrahedron, meet in sets of 6, at
the its of the corresponding octahedron in sets of 4, mth
angles mspectwely equal. In “the case of the reqular octa-
lLedron, in addition to the planes of symmetry of the tetra-
hedron, which as such are retained, 8 more arise: those planes
which contain 2 of the 8 diagonals of the octahedron. By
the 9 planes thus obtained the surface of the octahedron
(which we will suppose for a moment to be a solid proper,
constructed independently in space), isting of 8 equilateral
triangles, will be partitioned in quite a similar manner as the
surface of the tetrahedron has just been. Passing by central
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projection to the sphere, wo obtain thereon 48 a.ltemately con-
gruent and symmetric triangles with the a.ngles o' which

meet at the its of the octahedron in sets of 8, a.ud at the
ends of the cross-lines (the mid-edge points of the octahedron)
in sets of 4. This is that partition of the sphere which is
well known in crystallography in the case of the so-called
Achtundvierzigfiichner. Finally, in the case of the ikosahe-
dron, we have, as planes of symmetry, those 15 planes which
contain two of the six diagonals of the ikosahedron. These
partition the 20 equilateral triangles which are contained in
the bounding surfaces of the ikosahedron considered as a solid,
exactly in the manner now several times considered. We
obtain, therefore, 120 alternately congruent and symmetric

triangles on the sphere, whose angles are ;—;. ;. g- and which
meet in the summits of the pentagon-dodekahedron in sets of
6, in the summits of the ikosahedron in sets of 10, and in
the ends of the cross-lines in sets of 4. Let us consider the
similarity of the results thus obtained in the four cases. In
each we have to do with a partition of the sphere into alter-
nately congruent and symmetric triangles * which meet in sets
of 2» in those points of the spherical surface which remain
unmoved by a cyclic sub-group of v rotations. Of the num-
bers » there are in every case three, corresponding to the
summits of the several triangles. They appear, in order of
magnitude, collected in the following table, which may be kept
in view during the later developments:

i |

n | <] <] ]
Dihedron . 2 | 2 n
Tetrahedron . 2 | 3 3
Octahedron . 2 3 4
Tkosahedron. 2 i 3 5

* When we speak above, in the case of the dihedron, shortly of congruent
trmnglen. no absurdity is involved, for we can, even in this case, describe the
and sy h as it is with isosceles

triangles that we han to do,
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We observe at once that the ber of the triangles is in
every case double as great as the degree of the corresponding
group of rotations (which we will in future denote by N);
they amount in the four cases respectively to 4n, 24, 48, 120.

‘We plete these developments further by constructing,
in the case of the cyclic groups also, certain plancs which we
call their symmetry-planes. These are to be simply such n
planes, passing through the corresponding pole, as proceed
from one another by means of the rotations of the group.
These planes decompose the sphere into 27 congruent (or, if
we prefer, alternately congruent and symmetric) lunes, of

angular separation 5. of which each extends from one pole to
the other.

§ 10. GENERAL GROUPS oF POINTS—FUNDAMENTAL DOMAINS.

‘We now apply the spherical partitions which we have obtained
to the closer study of our groups of operations. Wo consider,
first, the groups of points which arise if we submit an arbitrary
point to the IV rotations of our group, and which we will call
the aggregate of points or group of points belonging to our group
of operations. Here we will suppose, for the sake of a clearer
representation and more convenient description, the bounded
regions on the sphere to be alternately shaded and not shaded.
It is manifest a priori that for the rotations of a single group
cach shaded region will be transformed once, and only once, into
every other shaded region, and similarly eack non-shaded region
once, and only once, into each non-shaded region. In fact, the
number IV of the rotations, as already remarked, coincides in
every case with the half of the total number of regions.

If, now, any point on the sphere is given (which may
belong either to a shaded or non-shaded region), we can,
thanks to our space-partition, without further trouble give the
(¥ — 1) new positions which it assumes in virtue of the (¥ —1)
rotations—distinct from identity—of our group; we have
simply to mark thosc (& —1) points which are situated within
the (V—1)r g shaded or non-shaded regi in just
the same way as the initial point in the ongmal regxon In
ceneral the IV points of the group of points so arising are all
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distinet ; they only partially coincide when the initial point
retires to a summit of the surrounding region. If, on the
whole, v shaded (and of course the same number of non-
shaded) regions meet at this summit, then the point will
remain unaltered by v rotations of the group, and only assume

on the whole I—Y different positions. The special sub-groups

of points so arising are none other than those which we have
otherwise considered in the foregoing paragraphs in our in-
vestigations of the individual groups.*

With the groups of points here constructed is connected
a conception which will later on be of use to us. We describe
as the fundamental domain of a group of point-transformations
in general such a portion of space as contains one, and only one,
point of every corresponding group of points.t The boundary
points of such a domain are connccted naturally in pairs by
means of the transformations of the group, and only half of
them can be attributed to it. I say now that, for our groups,
we may consider as a fund tal domain in any case the com-
bination of a shaded and a non-shaded region. In fact, if we
allow a point to traverse a region thus defined without crossing
its own track, the corresponding group of points cover uniquely
the whole surface of the sphere.

§ 11. Tue EXTENDED GRoUPS.

Applying the suggestions of § 1, we now extend the groups
hitherto considered, by connecting with their rotations the
reflexions of the respective configurations on the planes of
symmetry. .

Hero also the partition of the sphere given in § 10 will be
of service to us. In fact, we recognise at once that each several
region there distingwished, shaded or nom-shaded, is a funda-
mental domain of the extended group, and that therefore the
extended group contains just 2N operations. As regards the

* For the general groupe of points mentioned in the text, consult the work of
Hess already alluded to, where they are used for the purposes of the theory of
polyhedra,

t Cf. for different uses of this notion (so important for all applications of the
theory of groups to geometry) my * New Contributions to Riemaun’s Theory of
Functions,” in the xxi, Bd, Math. Annalen (1882).
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proof of this statement, let us note, first, that a combination of
the rotations hitherto considered with the reflexion on a single
plane of symmetry suffices for turning each of our shaded
regions into each of the non-shaded regions. On the other
hand, let us reflect that a deformation of the sphere which is
known to be a rotation, or to spring from a combination of a
rotation with a reflexion, is completely determined as soon as
we know that it transforms one of our regions into a definite
one elsewhere.

The fund tal domains so obtained have, in contradis-
tinction to those considered in the foregoing paragraphs, the
peculiarity of being im no wise arbitrary. In fact, their
boundary points are @ priori determined by the fact that each
remains unsltered by a determinate operation of the extended
group, viz., by reflexion on a plane of symmetry. We can
generate the extended group by conmecting the initial group
of rotations with the reflexion on that particular plane of
symmetry in which the boundary point under consideration is
contained. Therefore the special groups of only N points,
which spring from the boundary points of the fundamental
domains by the application of the extended group, are at the
same time general groups of points in the sense of the fore-
going paragraphs. Moreover, they are the only ones amongst
these groups of points which at the same time remain unaltered
by the operations of the extended group. Of course the

special point-groups of I_'V points just mentioned, correspond-

ing to the summits of the fundamental domains, are also
included among them.

We might here have investigated our new groups, the ec-
tended groups, in the same sense by the theory of groups, as
we have done for the original groups in the preceding para-
graphs. I should like to recc d such a di ion to the
reader as an appropriate exercise, and limit myself here in
this direction to the following statement :—The original group
is in every case manifestly self-conjugate within the extended
group. But, besides this, the extended octahedral and ikosa-
hedral groups, as well as the extended dihedral group for n
even contain a self-conjugate sub~group of only two operations.
This springs from a double application of that transformation
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which replaces every point on the sphere by that diametrically
opposite to it.*

§ 12. GENERATION OF THE IKOSAHEDRAL GROUP.

Hitherto, in our consideration of groups, we have supposed
the individual groups ready to hand, and sought to obtain a
uniform view of their different operations, and of the position
of these latter with regard to one another. In the following
pages, however, we shall find a more one-sided process of
practical value. Our business will be to introduce the groups
by appropriate generative operations, t.e., to present operations
from which, by repetition and combination, the group in ques-
tion arises.

‘We treat, first, in this sense the group of the ikosahedral
rotations, here again taking advantage of the partitioning of
§ 9 and the fundamental domains of § 10 respectively. The
principle, which here serves as our basis, has been already
implicitly applied in the preceding paragraphs. Since each
fundamental domain of a group will only be obtained from
any other by one operation of the group, we can name the
different fundamental domains after the operations, in virtue
of which they proceed from an arbitrary one amongst them,
which we will denote by 1, as being the initia] domain. Effect-
ing this nomenclature, we obtain directly from it an enumera~
tion of all the operations of the group.t

‘We will suppose, for the sake of a more convenient mode
of expression, that the ikosahedron is so placed that one of
its diagonals runs vertically. For a first fundamental domain
we then choose one of the 5 isosceles triangles, which, endowed

24
with angles —’r: :—:r o are grouped on the sphere round the

* As especially remlrklbla. I will add that the extended octahedral group,
isting of 48 op , ins 8 different self-conjugate sub-groups of 2¢
operations. These are first, as is manifest, the original octahedral group and
the extended tetrahedral group, and then that group whioch consists in a combina-
tion of the original tetrahedral group with the operation just mentioned in the
text. Only the latter group, mot the “extended” tetrahedral group, is a sub-
group of the “ extended ” ikosahedral group,
+ Consult here the already ioned “Gi h hen Studlen” of
Herr Dyck, in Bd. xx. of Math, Ann. The pnnuple mentioned in the text ia
there applied to the general purposes of the theory of groupa.
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uppermost summit of the ikosahedron: such a triangle is a
fundamental domain of the ikosahedral group, because it is
composed of two neighbouring triangles of the partitioning
given in §9. The five isosceles triangles in question form, we
will say, a first pentagon of the pentagon-dodekahedron belong-
ing to the ikosahedron. Those sides of a triangle which are
at the same time sides of a pentagon we will describe as the
ground-lines of the figure in question.

We now denote by S the rotation in a determinate direc-

tion through an angle, 2‘;, round the vertical diagonal of the

ikosahedron. Thus the 5 fundamental domains before men-
tioned will proceed in their natural order from the first of
them by the rotations:

1, 8, 82, 8, 84,

we will therefore denote the domains by the symbols &,
n=0,1,23,4.

‘We now take a second ikosahedral rotation, 7, of period 2.
This shall be the revolution round that cross-line of the
ikosahedron, one of whose ends is the mid-edge point of the
ground-line of 1. By means of this 7, our 5 domains S are
transformed into the domains S*7, which, taken together,
again make up a pentagon of our pentagon-dodekahedronm,
and, in fact, that one which has in common with the first
pentagon just considered the ground-line of the first funda~
mental domain. Applying now again the operations S, 8%,5°%, 8%,
we obtain from the new pentagon the remaining 4 attached to
the first pentagon. Therefore, the fundamental domains of
those 5 pentagons which surround the first one are represented

TS, (1w, 1=0, 1, 2, 3, 4).
A third ikosahedral rotation, also of period 2, shall now be
denoted by U, of which, however, we shall see that it has no
independent importance, but is compounded of the two S and
T. The axis of U shall coincide with one of the cross-lines
which run horizontally, and, indeed, to make everything deter-
minate, we will choose that horizontal cross-line in particular
which stands at right angles to 7. Clearly the rotation U so
determined transforms the 6 upper pentagons of the penta-
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gon-dodekahedron which we have hitherto considered into its
6 lower pentagons, which were still wanting. Therefore we
find at once that the thirty fundamental domains of the ikosa-
hedral group which were still wanting are given by the following :

ST, S TS'U, (1, 1=0, 1, 3, 3, 4).

From the fundamenta] domains we now turn back to the
rotations. We then have the proposition, the deduction of
which was the object of our present considerations, viz., that
the 60 rotations of the ikosahedral group are given by the follow-
ing scheme :

&, TS, SV, ST, (1,1=0, 1, 2, 3, 4).
Here the rotations :
&, SU
form the dihedral group n=25 belonging to the vertical
diagonal of the ikosahedron, and the rotations:

T, U, TU

give, when taken together with identity, one of the 5 quadra-
tic groups occurring in connection with the ikosahedron.

If we draw a figure, as seems mdmpensa,ble for the full

d ding of the th here developed, or if we
operate, as is more convenient, by means ot' a model of the
ikosahedron on which the different fundemental domains are
marked out and the corresponding symbols introduced, we can
of course at once read off all the operations which make up
any sub-group of the ikosahedral group. We have only to
mark those fundamental domains which proceed from the
domain 1 by the operations of the sub-group.*

It remains for us to generate U, as we proposed, by a
combination of § and 7. To this end we subject, say, the
fundamental domain S*7'S° to the operation . Thus arises
s fundamental domain S*TS*T which belongs to one of the
pentagons of the lower half. But we have previously called

* Eg. I find for the tetrahedral group which embraces the quadratic group
just noted :
1, T, 8T8, 878, TS, ST
U, TU, STS*U, S*TSU, TSV, STS*U.
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this same domain (as a glance at the figure shows) 7'S°U.
Hence :
STST=TSU.

In this equation let us consider U as the unknown. We solve
this equation by first multiplying by 7' on both sides of the
left-hand expression and then by S? and recalling that 7% =1,
& =1. In this manner we have:

U = S*TS¥TST,
and this is the relation we wanted.

§ 18. GENERATION OF THE OTHER GROUPS OF RoTATIONS.

As regards the generation of the other groups of rotations,
this can follow without further trouble by the same means as
we have now applied to the case of the ikosahedron. But for
the first of these, the cyclic and dihedral groups, the matter is so
simple that we need no special method, and for the tetrahedron
and octahedron we propose in the sequel to use a method of
generation which runs parallel with the decomposition of these
groups before noted. I gather together here the results in
question, which are easy to verify without special deduction.

Now, as regards the cyclic groups, their operations will be
manifestly given by the symbols:

&, (6=0,1,2,... (a-1))
where S denotes the rotation through the angle 2; ‘We obtain

the group of the dikedron if we annex any revolution 7'round
one of the auxiliary axes of the dihedron, and therefore add to
the operations S* the others:

T, (4=0,1,%,. .. (a-1)).

In particular, the operations of the guadratic group arc now
represented (in agr with the data just given) by the
following scheme :

1,8, T, ST

From the quadratic group we now ascend to the tetrahedral
group by annexing any one of the corresponding rotations of
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period 3, which we will call U. The 12 rotations of the
tetrahedron will then be given by the following table :
1, § T, ST
U, SU, TU, 8TU,
02, SU%, TU?, STUR
Finally, we get the 24 rotations of the octahedral group on
annexing to the 12 rotations here enumerated the others:
v, &8V, Ty, 8TV,
Uy, SOV, TOV, STUYV,
02y, SU%V, TU*V, STU*V.
Here V denotes any one octahedral rotation which is not con~
tained in the tetrahedral group, e.g., a rotation of period 4
round one of the octahedral diagonals.

‘We here conclude these prelumnary conmd.eratmns. Their
object was to instil into i
figures the ideas of the theory of groups, in snch a form that
the group-theory reflexions and the geometrical mode of illus-
tration might henceforward supplement one another.




CHAPTER II
INTRODUCTION OF (z+iy).

§ 1. FirsT PRESENTATION AND SURVEY OF THE DEVELOPMENTS
oF THIS CHAPTER.

TeE essential step for our further progress in developing
our train of thought is as follows: to consider the sphere
which we submitted to the groups of rotations, &c., and on
which we studied the corresponding groups of points and
fundamental domains, as now the vehicle of the values of a

complex variable z = & + 4y. This method of r tation,
originating with Riemann, and first thoroughly expounded by
Herr C. Naumann* in his ¢ Vorlesungen iiber R

Theorie der Abel’schen Integrale,” is at the present day suﬁi-
ciently well known, so that I can make use of it immediately ;
besides, the formule furnished in the following paragraphs are
in themselves an efficient introduction to the theory.

In virtue of the representation thus introduced, tho indi-
vidual system of points which we have hitherto considered
appears defined by an algebraical equation f(z) =0, where the
degree of f is identical with the number of points, as Jong as
none of these points retires to z= o, which declares itself, in
the well-known manner, by a fall of one unit in its degree.
Wo inquire what properties these equations possess corre-
sponding to the circumstance that the groups of points re-
presented by them are transformed into themselves by certain
rotations of the sphere, or by certain reflexions, &c.

* Leipzig, 1865. Cf. for the general application of Riemann's method my
treatise, *Ueber Riemaon’s Theorie der algebraischen Functionen und jhrer
Tutegrale " (Leipzig, 1882). Cf. again for the connection of this introduction of
(x+1y) with the projective treatment of surfaces of the second order my work
(still more often to be alluded to), “ Ueber binire Formen mit linearen Transfor-
mationen in sich selbst,” in BL 9 of Math. Aon, (1875), particularly at p. 189.
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‘With regard to this we have, first, the fundamental theorem,
which I will presently establish and define more precisely, viz.,
that every rotation of the (x4 %) sphere on its centre will be
represented by a linear substitution of 2 :

wz+ B
® z’=72+3

In fact, the 2z, which we can suppose extended with its com-
plex value over the original sphere, and the , which, in just
the same way, we can suppose extended over the rotated
sphere, are, in virtue of the interdependence of the two
different spheres, related to one another wuniquely without
exception; and, moreover, since the relation between the
two spheres is one of conformity,* they are analytically re-
lated to one another ; they are, therefore by known theorems,
linearly dependent on one another.tf So, too, we recognise
that, to the reflexions and other inverse operations (which
spring from the composition of a reflexion with arbitrary rota~
tions), correspond formule of the following kind :

, uz+ﬂ
@ 7= 7z+0
where z denotes the conjugate imaginary value (z — i) of 2.
Our equations f(2) = 0 have, therefore, the property of remain-
ing unaltered by a group of linear substitutions (1), or, in
some cases, by an extended group which contains, alongside
of substitutions (1), a corresponding number of substitutions
@1

* 1t is indeed one of congruency, since the corresponding points of either sphere
can be brought into coincidence with one another by rotation.

+ Un ly we find the fund: 1 th of the function-theory, such
88 we are now eonnldenng, developtd in the text-books in such a form that the
conformable figure which is ished by the functions is only incidentally taken

into consideration ; it is, therefore, for our purpose mecessary to make, in cvery
case, & certain modification aud combination of the proofs explicitly given; these,
however, can present no difficulty to the reader, since we are always concerned
with quite elementary relations.

+ The same, of course, is true of equations F(z)=0, which, when combined,
represent several groups of points such as are cousidered in the text. We can
consider these equations Jz)=0 as a g lisation of the reciprocal of
lower analysis, inasmuch as the latter ‘also remain nnl-ltend by .deﬁmte group of

linear substitutions, viz., by the simple group £'=z, 7= ;.
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I must now consider at once the analytical method which
occurs spontaneously in the establishment of the equations
A(z)=0 and in the study of their mutual relations, and which,
by virtue of its more varied aspects, excels in many respects
the former reflexions based on geometrical illustrations: that
of the komogeneous variables. 1If we replace z by 2, : z,, the
substitation (1), (and analogously every substitution (2)), splits
up into two separate operations:

3 #) =0z + Bz,
® Zy=y5+ &,
where now the absolute value of the determinant (ad — S8y) of
the substitution will be of especial importance. Instead of

the equations f(z)=0 or f ( :‘, 1) =0, we shall then have to
2

consider the form f{z, 2,), on multiplying by a proper power of
2. This form has always the same degree (a first point in
favour of the homogeneous notation) as the corresponding
group of points, the occurrence of the point z = oo being now
indicated by a factor z, of /. We recognise at the same time
that, with the transition to a form f, a new distinction arises.
For f need not remain absolutely unaltered for the substitu-
tions (3); it can change to a factor prés, and our business will
be to determine this factor. Moreover, we obtain, by putting
in the foreground the consideration of the theory of forms, a
bond of union with that important discipline of modern algebra
which is described as the theory of tnvariants of binary forms.
This will be of service to us in the more complicated cases, in
order to deduce from one form f all the rest in a simple manner.
I may mention at once the result in which the considerations
here explained culminate (see the paragraph before the last of
this chapter). It is this; that for each group of linear substi-
tations (1) corresponding to our group of rotations, a corre-
sponding rational function :

(O] Z=R(),

will be found, which represents the different groups of points
belonging to the group, if we equate them to a parametric
constant. But at the same time we obtain, if we actually

represent those groups of substitutions, a series of new prob-
[
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-lems, from which, later on, our further development will have
to start.*

§ 2. ON THOSE LINEAR TRANSFORMATIONS OF (z+4y) WHICH
CoRRESPOND TO RoTATIONS ROUND THE CENTRE.

Let the equation of our sphere, relatively to a system of
rectangnlar central co-ordinates, be
®) Penel=l

We then introduce the complex magmitude z=z+ 1y, by
first, exhibiting (v +1y) in the usual manner in the &r-plane
(the equatorial plane), and then, placing this plane by stereo-
graphic projection ffom the pole £=0, n=0, {=1,in a (1,1)
relation with the surface of the sphere. We thus obtain the
formulee :

4

(6) —l—-yy —Zyz+1y l+;"
or:

2z 2y —1+a22+3P
) 2l v ey L e e i R A e

As we particularly want to determine these linear substitu-
tions of z which correspond to the ro’t.s.hons of the sphere, the
diametral points of the sphere are of i t to us (i
as one pair remains unmoved in every rotation). In order to
derive, with reference to these, a preliminary theorem, we
substitute in (6), instead of £, », {, their negative values.
Then we have for the diametral point :

T .
z' —1iy’ il vy
and therefore, by multiplication with the values (6) of (x + iy)
and attending to (5):

* Consult throughout the work already mentioned, ** Ueber binire Formen mit
linearen Transformationen in sich selbet,” in Bd. 9 of Math, Ann. (1875). Itis
there that for the first time that process of thought is displayed from its founda-
tions which now reaches a detailed exposition in the developments of the first
and second chapters of the text. 1 hld eomm\miuhd the principal results in
June 1874 to the Erlanger phy lachaft (¢f. the Sitz-
ungsberichte).
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® (@+iy) (@ —iy)= -1,
or, if we put (z+dy) = e,

R
==, g+
® & iy 5 +

Diametrally opposite points have arguments whose absolute values
are reciprocal, while their amplitudes differ by .

‘We consider now, first, the case where the axis 0 — oo
(which stands at right angles to the plane of the equator) is
rotated through an angle &, and let this rotation, looking from
the outside on to the point oo (Which we suppose placed on
the upper side of the equatorial plane), take place in a sense
opposite to that of the hands of a clock. A point, which ori-
ginally had the argument 2, will, after the rotation, have the
argument . We inquire how # is connected with z. Evi-
dently in the same way as (£ + in) with (£ +4y), if we rotate
the En-plane (the equatorial plane) in the way given; for the
denominator (1 —{) in the formule (6) remains unaltered by
the rotation. But now we have for the said rotation of the
En-plane, if, as usual, we let the positive £-axis extend to the
right, and the positive 7-axis away from us:

F=f.cosa—1n.sina,
A=f.siuw4n.cosa,
or,
E+in=(cos @ +1isin a) (E+1dn);
whence follows in the well-known manner : i
(10) etz

If we now wish to rep t analogously a rotation through
an angle a, for which the points £ 7, {, and —§,—»,~, on
the sphere remain unmoved, and for which the first point plays
the same part as the point oo did before—so that, therefore,
if we view £, #, {, from without, the rotation takes place in a
sense opposite to that of the hands of a clock—we have in (10),
instead of z and #, such a linear function of z and 2/ respectively
as becomes infinite at £, 7, {, and vanishes at —§& —»,~{.
Such a linear function is, however, determined, save as to a
factor; it runs in the most general form :
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But it is unnecessary to determine this factor more precisely
by any kind of convention, because it must of itself drop out
of the formula to be established. In fact, we obtain, on substi-

tuting in (10) for z our new exp pendently of C':
E+in E+in
2+ l—z— e z+l+c
R Eein
1= TG

or, after an easy alteration :

11 —~a z'(l+()+(‘.+u|) 'Tz(1+t)+(§+m)

an e ZA-P-E+M)~° "2 (I-0=(E+am)

This is therefore the general formula for an arbitrary votation,
Jfor which we sought. If we solve it for , it will be con-
venient to introduce the following abbreviations :

(12) Esin%:a, nsing=b, tsing=c, cosg-d,

where evidently :
(18) @+ pctrd?=1,
‘We then obtain the simple form :

. ¢ _(d+ic) 2—(b- ta)*
1% ; (b+ia)z+(d—dc)

We have, as we might suppose a priori, obtained by this
method fwo formule for every rotation of the sphere. The
rotation remains unaltered, namely, if we increase the angle of
rotation a by 2w. Now the consequence of this is, by formula
(12), that all 4 magnitudes change their sign. This corresponds
to the circumstance that the determinant of the substitution of
(14) will be equal to a®+43'+4¢* 4 d?, therefore by (18) equal

* See the mote by Cayley in Bd |5 of Math, Ann. (1879), “On the Corre-

d of H " where this formula is for the first
time explicitly established,
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to 1, which in respect to the sign of a, b, ¢, d, admits of just
two possibilities.

At the same time we have obtained a convenient rule for
calculating the cosine of half the angle of a rotation which is
given in the form
f= Az+ B

Cz+ D’
and thoreby estimating the periodicity of this substitution (so
far as we are concerned with periodic substitutions). For
manifestly we have, by comparison with (14):
A+ D

(15 2 3= JAD-BC

§ 3. HoMoGENEOUS LiNear Sussrrrutions—TEHEIR Co-
POSITION.
‘We will now, as we proposed in § 1, split up formula (14)
into two homogeneous linear substitutions by simply writing :
#,=(d+icyy, — (b—ia
(16) {z’;-(b+ia)zl+§d—l'c ~
Here a,b,¢,d, denote, according to formula (12), in the first place,
arbitrary real magnitudes, which are subject to the condition :
at+ B+t + =1,

Meanwhile we may remark that the same formula, with
this condition maintained, provided we regard @, b, ¢, d, as
susceptible of arbitrary complex values, represents at the same
time the most general binary linear substitution of determi-
nant 1. Hereby the formule of composition, which we shall
immediately establish, acquire a more general significance,
which, h , in the develop ts to which we must here
limit ourselves, need not be further considered.

To deduce the formul® of composition in question, let

2y =(d +ic)z — (b —ia)zy,
8 { z‘;-=(b+1'a)zl1 +(d—dc)zy,
be a first substitution, and similarly
T{ &= (d +ic)d -(b’-ia’;j,,

#y= (¥ + 1)y + (& +ic)d,

a second. We obtain the substitution ST, arising from the
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composition of these, by eliminating 2, Z,, from the two systems.
We naturally put the result again in the form (16), and so

write :
2", —(d"+zc 2, ~ (b — ta")z,,
st{Z6 e

Then direct comparison gives the following simple result :
{a =(ad’ + d'd) - (be' - b'e),

an b = (bd’ + Y'd) - (ca’ - a;

¢’ =(od'+c'd) (ab —a'b

d'=—aa' - by —ce' +dd'.

‘We have thus, as We may observe, the symbolic notation S7'
applied in the same sense as in the preceding chapter, if we
effect first the substitution S, then the substitution 7%

‘We shall immediately apply the formule (14), (16), (17), in
the establishment of the groups of substitutions which now
correspond to the groups of rotations of the preceding chapter.
First, however, we must consider the significance which these
formulee claim in a more general sense. That it was proper,
in the treatment of rotations round a fixed point, to introduce

the parameters a, b, ¢, d, of the preceding paragraph (or at

least their quotients 3 3 7), Buler had slready found* It
appears, however, that the formulee of composition (17) re-
mained still unknown for a long time, till they were discovered
by Rodn'gues* (1840). Hamilton then made the same formule
the foundation § of his calculus of q ions, without at first
recognising their significance for the composmon of rotations,
which was soon brought to light by Cayley.§ But the relation
of these formule to the composition of binary linear substitu-
tions remained still unobserved ; to Herr Laguerre is due the

* “Nova Commentationes Petropolitan,” t. 20, p. 217.
+ “Journal de Liouville,” 1, série, tome v. : “Des lois géométriques qui régis-
sent le déplacement,” &c.

% In fact, if we consider the quaternions :
g=ai+ bt ck+d, ¢=ai+bj+ck +d,
the product thereof :

g'=9"=a%+¥Vj+ k4 d
is exactly given by the formule (17) of the text. It i is interesting to consult the
Sirat reports of Hamilton on bis calenlus of pecially his letter to
Graves in the * Philosophical Magazine,” 18“ ii. p. 489,
§ “Philosophical Magazine,” 1843, i. p. 141.
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credit of having first recognised this tion on the formal
side.® It first acquired a real importance by Riemann’s inter-
pretation of (z + ) on the sphere, and especially by Cayley's t
formula (14). '

§ 4. RerueN To THE GROUPS oF SUBSTITUTIONS—THE
Cycric AND DHEDRAL GROUPS.

‘We now proceed to establish the homogeneous linear substi-
tutions of determinant 1,} which correspond, in the sense of
formulae (14), (16), to the groups of rotations previously inves~
tigated. Of course, the substitutions which we in this manner
obtain are, on account of the double sign of the parameters
a, b, ¢, d, double as mumerous as the rotations from which we
start. The group of substitutions is, therefore, in the first
place kemihedrically isomorphous with the group of rotations ;
the question whether we cannot so limit or modify the group
of substitutions that holohedric isomorphism ensues, will not be
investigated till a later paragraph.

As regards the general rules of which we shall make use in
establishing the groups of substitutions, we shall of conrse, in
each case, provide for the system of co-ordinates a position
as simple as possible ; and besides this, we shall recur to the
propositions which we have established in §§ 12 and 18 of the
preceding chapter, with reference to the generation of the
several groups of rotations.

In the case of the cyclic groups and the dihedral groups,
the affair is so simple that we can write down the formulse
without more ado. It seems most convenient to let the two
poles considered in connection with these groups coincide with
the points z=0 and 2= c0. Then we have, for the rotations
of the cyclic groups:

* #Journal de I'Kcole polytechnique,” cah, 42 (1867): *Sur le calcul des
systdmes lindares,”

4 Cf. especially, too, M, Stephanos’ article, “ Mémoire sur la
des homographies binaires par des points de I'espace avec application & 'étude
des rotations sphériques,” Math. Ann., Bd. xxii (1883), and also his note *Sur
1a théorie de quaternions” (idid.).

% Or, as T shall say fn fature for brevity, where there is no fear of misander-
standing : the * homogeneous subetitutions,”
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e
a=b=0,c= sm-d cosé,a_T,

and therefore for the 2z homogeneous substitutions of the
cyclic group:

it ikx
(8) "1="Tl- ndg=e ® g, (k=0,1,... (2n-1)).

If we now proceed to the dihedral group, we shall choose
one of the secondary axes, so that it coincides with the £-axis
of our co-ordinate system in space (and therefore joins the
points z= +1 and 2= —1 on the sphere). We find for the
corresponding revolution :

(19) 7y =Fiz, 2= Finy,

and therefore, by combination with (18), for the 4n homo-
geneous substitutions of the dihedral group:

& —ibr
di=e®. 2, fy=e oz

(20) (%=0,1, ... (2n=1)

- ikr ik

=te " .2, z’,:ioT. 2.

Account has already been taken in these formule of the
double sign of (19), since we have allowed % to range, not
merely from 0 to (n— 1), but from 0 to (2n—1).

‘We have in particular, as we will note expressly, for the
quadratic gronp the following 8 homogeneous substitutions :

1= P+, dy=(- ’)k %i
zl—_( i) 2y 7= 4
(*=0,1,2,3).

(C2))

§ 5. THE GROUPS OF THE TETRAHEDRON AND OCTAHEDRON.

In the case of the tetrahedron and octahedron we shall dis-
tinguish two different positions of the system of co-ordinates.
In the first case we allow, as appears most natural, the 3 co-
ordinate axes £, 5, {, of our co-ordinate system in space to
simply coincide with the diagonals of the octahed: In the
second case we rotate the co-ordinate system so obtained on its
(-axis through 45°, viz., so that (as proves advantageous later
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on) the ¢{-plane coincides with a plane of symmetry of the
tetrahedron.

Let us begin with the consideration of the former position.
‘We can then make immediate use of formulse (21), just written
down, for the representation of the quadratic group. Recall-
ing now, with regard to the generation of the tetrahedral and
octahedral groups, the data which we have prepared in § 13,
we will first construct the homogeneous substitutions which
“correspond to the two rotations (U and U®) of period 3 round
one of the diagonals of the corresponding cube. Evidently
2 diametricelly opposite summits of the cube have the co-
ordinates :

1
E=n=l= tT/-S_-'
and since :
1 ) —
s fede o Tain T g 2

we obtain for the homogeneous substitutions for which these
two summits remain unmoved (neglecting the double sign,
which occurs again here) :

_1
a=1% 4:==;|:d—§

Corresponding to this we have the two substitutions:
g (Ele0m-0-dn , _ (+das(£1-9g
1= 2 2 2T T

Combining these now in a proper manner with the substitu-
tions (21), we obtain, for the right sides of the 24 homogeneous
tetrahedral substitutions, the following pairs of linear ex-
pressions :
{ *iz, (—i).z;
(=9, 2z, *. 25
#(x 1:!')2‘2—_(1_—:')2,' (-9, (1 ﬂk}i‘g*l__‘l’s

—(-ip, QD+ (219 p (E1+0n -1 -0z
. A s . s
k=0,1,23)
‘We pass to the octahedral group by adding a rotation ¥
through gronnd one of the 8 co-ordinate axes, say the {-axis.

(22)
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For one of the two corresponding homog substitutions
we have manifestly :

, 144 1-¢
(28) fi= g 2=-/T;'_zr

In correspondence w:.th thw, we obtain the r1gM hand sides of
the 24 homog tons still g in the table (22),
by multiplying, in each case, the laft-hand one of the 24 linear

expressions included in this table by J_ the right-hand one by
1-¢
NEa

It will be unnecessary to write down specially the new
expressions here.

‘With regard, now, to the second position of the co-ordinate
system relatively to our configuration, it is sufficient, in order
to have substitution formulee with referénce to it, to take
account—in the formulse (22), (23), &c., just obtained—of the
transformation of co-ordinates which leads from the first posi-
twn to the seoond. For such a h'ansforms.ﬁon of co-ordinates,
the ongmal will be replaced bylvt- 1, and of course

1+
sunulta.neonsly the original ?‘ by TJ_' . :42.' Let us observe,

14¢ 1-4¢ . .
el A f
moreover, that 7; 7 We thus obtain on brief re-
flexion the rule:

If we desire substitution formuls which correspond to the
new position of the system of co-ordinates, we must, in the
expressions occurring on the lefb-hmd side in (22), leave 2,
unaltered and replace z, by J +%; on the other hand, in
the expressions oocumng there on the right-hand side, we
must replace z, by I ’1’ and leave z, unaltered.

With such entn-ely elementm-y operations I agein omit to
explicitly note the expressions which occur.
ys°
* Namely, if we suppose the rotation through 96 round Of.axis to proceed in
a positive sense.
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§ 6. THE IKOSAHEDRAL GROUP.

‘We have now to investigate the homog: substitutions
of the ikosahedron. With this object we will endow the
ikosahedron with such a position with regard to the system of
co-ordinates that the rotation through 2—', which we previously
(§ 12 of the preceding chapter) denot Jby;S’ takes place in a
positive sense round the §-ms while at the same time the
cross-line, round which the revolution T (loco cito) takes place,
coincides with the y-axis. Then we have at once, corresponding
to the operations S, U, the following substitutions :

1=+,
(24) { 8: {“/2— t‘z’z H
=7 2z
u: {z’ ;— ES 21,’
which, taken together, generate the dihedral group belonging
to the vertical diagonal of the ikosahedron.® By e here, as
always for the future, the fifth root of unity :

T
25) —
is to be understood.

Our convention respecting the position of the system of
co-ordinates admits of a twofold possibility with regard to the
revolution 7', which we have now still to consider.

The axis of 7' can move in the £{-plane either through the
first and third quadrants of the system of co-ordinates £, or
through the second and fourth. We will settle that the latter
is the case. If we understand by 4 the acute angle which
the said axis makes with O(, one of its ends will have the
co-ordinates :

§=~siny, 1=0,{=cos y,

and the parameters of the corresponding rotation become by
(12) (since we are concerned with a rotation through 180°):

a=Fsiny, b=0,c=+cosy, d=0;

* This is here related to a somewhat different system of co-ordinates to that of
formula (20).
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where, as always in these formules, the upper and the lower
signs go together respectively.
The question now is how we calculate the angle . For
this purpose I will return to the parameters of S (24):
a=U'=0,c= +sin g, &'=tcos T 5’
and to the formulse of composition (17). By means of this
formula we find for the parameter d” of the operation ST':
d" = ~aa’ - bt —cd +dd
. T
=kcosy - sin &
Now the operation ST’ (as a glance at the figure of the
ikosahedron shows) has the period 3; it must therefore be

identical with + cos %B té. ‘We thus obtain, if we further

consider that cos o must be positive :

cosy. sin o= 1
7. 5=%
or, if we again introduce the root of unity €, and recall that
(B-d) (- =1+t~ ~= /5
we must have :
1t
cosy= ;.-:/57
and, therefore, again assuming the positive sign,
28
NG
‘We now introduce these values into the expressions a, b, ¢, d,
just given, and also refer to the formulm (16). Then we have,

JSinally, for the two homog titutions which correspond
to the rotation T :

siny=

f B =T~ (P -z
(26) T {J5—.z',=-.t(ﬁ—|3)zlt(l—n‘)z,

From (24), (26), we now construct at once the whole set of
ikosahedral substitutions. We need only remember that we
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previously brought the ikosahedral rotations into the following
table :

S, SU, Sk TS, S*TSU, (,v=0, 1, 2, 3, 4).
Corresponding to this we obtain for the 120 homogeneous
ikosahedral substitutions :

=g,
&.{‘,;=t.,..zﬁ
" Folu. 2y
U {z: £ o ;
@n STS {“/5 L= (= (- W) (- ),
NE . Zy= o8 (4 (P 8) >, (=)@ g);
V5. 2,= +|"(+(ﬂ 0) &Lz 4 (1), g),
N 2= +l3'( (0 = ) Lz + (F— ) 22)
I will further call attention to the simple rule by which
here (as also in the previous cases), the periodicity of the

individual rotation is determined by formula (15). We obtain,
in virtue of this formula, for the angle a of a rotation $*7'8” :

STSU : {

cos o=F (ﬂ(z""f:—ti)'

and analogously for the angle of rotation of S*7'S*U :

oon 2= 2 (=) ( (M*-_. — iy
'

‘We have, therefore, for $*7'S” the period 2, if ,u+vl =0,
for TSU if 8 +2v =0 (mod. 5).

We have for §*7'S” the period 3, if u+v==%1, for TS"U,
if 8u 4 2v = 1:* (mod. 5).

In the 20 other cases §*7S” and $*TS"U are respectively
of period 5. To this must be added, what is self-evident,
that all the S*U have the period 2; all the S*, vnth the sole
exception of S° (identity), have t.he period 5.
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§ 7. NoN-HOMOGENEOUS SUBSTITUTIONS—CONSIDERATION OF
THE EXTENDED GROUPS.

From the homogeneous substitutions we naturally descend
without calculation to the non-homogeneous substitutions, If
I give here, notwithstanding, the formule in question in a
tabular collection, it is because, when the fixed value of the
substitution-determinant hitherto maintained is abolished, they
admit of a certain amount of condensation, and hence, in fact,
become very readily surveyed. We find for the mon-homoge-
neous substitutions :

(i.) For the cyclic group :

2k

(28). Z=e ™ .5 (k=0,1... (a-1));
(ii.) For the dikedron :
. 2ikxr
@9) - T

=6 .2 P 2 » (K as before) ;
(iii.) For the tetrakedron and first assumption respecting the
position of the system of co-ordinates :
1 z+1 z-1 z—1

z+i
(80a) 2=z - b E =1 tt-m. :I: ) :tz“,

also, for the other assumption :
Cay at g (L+ies J2 ./_z-Lq
(80b) Z=%z 5 i./'é P e 73
(-d)z+ JZ Jz z-(1+d) ;
_J) z— (l+t) -9z + J2
(iv.) For the octakedron with similar distinctions in the two
cases:

g g2+l 4 2-1 4 244 z- t
31a = 4 . '
(1) I 4 |z, % 2 ——i,l l,t Q,t

and :
gt a QD5 VT g Nz (1-4)
@) F=ia, ey *, aa D
& A-d)z+ JT &, NI z—(1+7)
N2.a-(1+s)y (-9 + J2 H
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% has here in each case to assume in succession the values
0,1,28.
(v.) For the ikosahedron :
— . =(s —d)r oz 4 (3-8
? (P— ) 24 (s ~ o)
e, (B—PW .24 (s —n‘)’
—(s — ozt (82— )

(82) i=r3

2(_-
('=e";/‘. %=0,1,23, 4)-

From these formulee we now pass at once to those which
correspond to extended groups (as we expressed it in Chapter L),
namely, if we deduct the single groups of formule (80a), the
£(-plane is throughout a plane of ymmetry for the configura~
tion just considered, Now we can generate the extended
group by combining the reflexion on this very plane of sym-
metry with the rotations of the original group. This reflexion
is, however, given analytically by the formula:

(838) . =73

where z denotes the conjugate value of the imaginary quan-
tity 2. Hence we shall obtain formule for the operations of the
extended group if we place alongside of the formule (28) to
(32) ((30a) alone excepted) the others in whick z is replaced by z.

I conclude this paragraph with two short historical remarks,
Of the groups of substitutions (28) to (82) only two cases
come particularly into prominence in earlier literature (except
the cylic groups, which, of course, occur everywhere), viz., the
dihedral group for » = 3 and the octahedral group (31a).
The first case appears in a form somewhat different to that
of (29), but only because a different system of co-ordinates
is established on the z-sphere, viz., that for which that great
circle which we have hitherto described as the equator coin-
cides with the meridian of real numbers, and the summits
of the dihedron have the arg ts 2=0, 1, ©®, We thus
find the formule :

1 2 5-1

I-22-1-"2

which in projective geometry connect the 6 corresponding
values of the double ratio and in the theory of elliptic func-

, 1
z =31;) 1-s
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tions (which is really the same thing) the 6 corresponding
values of %’ (the square of Legendre’s modulus). The group
(81a) is found in several places in Abel’s works.* The object
is there to present the different values of %%, which result on
transforming & given elliptic integral of the first kind by a
linear substitution into Legendre’s normal form :
dx
NI-a?. 1 -kt

Abel remarks that these different values are represented in
terms of any one of them in the following manner :

1+ J;;)A, 1- JE\* (;+ Jk) ..__‘/l‘

1- V& 14+ Jk - JE M+ JE
If we here extract the fourth root and replace ,/% by z all
through, these ave evidently exactly the expressions (31a).

§ 8. HoLomepric IsomorpHISM IN THE CasE oF Homo-
GENEOUS GROUPS OF SUBSTITUTIONS.

For a discussion of the groups of substitutions now obtained
from the point of view of the theory of groups, it will be
sufficient to refer here to the analogous inquiries in our first
chapter. In fact, our non-homogeneous groups of substitutions
are holohedrically isomorphous with the groups of rotations
there considered, the homogeneous ones at least hemihedrically,
where let us expressly remark, that among the homogeneous
substitutions the two:

z:‘=z‘} and AN
29=% =%
always correspond to “ identlty."

Moreover, we will concern ourselves with a question of an
allied nature, certainly, if not purely one belonging to the
theory of groups, a question which we have already pointed
out (§ 4 supra), and the answering of which will be of prime
importance to us in the sequel. We have found for a group
of N rotations in every case 2V homogeneous substitutions.
We ask if it be not possible to extract from among these 2N
substitutions N of them forming a group so that Aolokedric

* Sce, ¢g., Bd. I. p. 259 (new edition by Sylow and Lie),
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isomorphism with the group of rotations ensues, or if wo
cannot at least attain that isomorphism, by imparting any
other value to the determinant, which we have hitherto taken
+1, of the individual substitutions ?

‘We begin with the repetitions of a single rotation, 4.c., with
the cyclic groups, where, in order not to apparently limit the
investigation by the introduction of a canonical system of co-
ordinates, we will start from a perfectly arbitrary system of

co-ordinates. We therefore take, say, a rotation through %’.
for which an arbitrary point £, n, {, on our sphere remains un-
moved. To the corresponding linear substitution (16):
2y =(d + ic)z, — (b —ta),,
z:—(b+|a)z:+(d c)zg,
we have hitherto attached the parameters :
a= tEgin"_r, b= +nsin ‘E, c= +{sin E, d=# cos I,
n n n n

We will now write instead of them, laking the determinant of
the substitution equal to p*:

(34) al=pEsin’f,bl=pnsin1:,cl=p{sin:d,=pwsf.
Recurring then to the formulae of composmon (17), we obtmn

for the parameters of the %™ repetition of our substituti

kw kr .k
a,=p*. Esin = b=k nsin e c=p* {sin - dk=’fcog]:_:r_

We require now—in order that holohedric isomorphism with
the corresponding group of rotations may take place—that the
nt® repetition of our substitution should be identity, and that,
therefore :
@y=by=6,=0,d,=1.

It is clearly necessary for this that:

f=—1
We shall, therefore, then, and only then, attain to holohedric
isomorphism between the substitutions and the group of rotations
when we introduce in (34) p as the n** root of (—1). Hereby,
however, the value p? of the determinant of the substitutions
is determined, or at least limited to a few possibilities only.
If n is odd, we can take p= —1, and therefore the deter-
minant = +1. If nis even, the value + 1 of the determinant

D
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of the substitution is %ble. In particular, if 2 =2, we
must choose the deterfiinant = — 1, and the magnitude
=+
d ‘We now consider the dibedral group. We have for it, first
of all, the rotations §* (with S"= 1), which, according to what
has just been said, we must make correspond to substitutions
of determinant p?, where p"= — 1. 'We have further the
rotations ST of period 2. To effect holohedric isomorphism
we shall certainly provide the substitution which corresponds
to 7' with the determinant (—1). Now we know that in the
composition of two substitutions their determinants are multi~
plied. Therefore we obtain for 87" a substitution of deter-
minant —p%. But this must itself again be equal to —1,
because 8*7 has the period 2. Thus we have for p the simul-
taneous equations :
=1, =41 (u=0,1... (n-1).

These are evidently only reconcilable when # is odd (whence
p= —1). Therefore it follows that, in the case of the dikedral
group, the desired holohedric isomorphism can only exist for n
odd, never for n even.

We shall in the sequel lay special stress on the negative
part of this proposition, for we at once deduce from it an
analogous theorem for the groups of the tetrahedron, octa-
hedron, and ikosahedron. JIn the case of the letrahedron,
octahedron, and ikosakedron, holohedric isomorphism between
the group of rotations and the group of homogeneous substi-
tutions 1s impossible. They all contain, namely, as sub-group
at least one dihedral group with n even (viz., a+quadratic
group), and herein, as we have just seen, lies the impossibility
alluded to.

§ 9. InvariaNT ForMS BELONGING To A Grour—THE SET or
ForMs For THE CYCLIC AND DIHEDRAL GROUPS,

True to the general process of thought which we have
sketched in § 1 of this chapter, we now ask—after finding
the homogeneous group of substitutions which correspond to
the several groups of rotations—for all such forms F(z,, z,) as
remain unaltered, save as to a factor, for these substitutions.
An dnvariant form (an expression which we shall hereafter
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retain) clearly represents, when equated to zero, a system of
points on our sphere which remain unaltered for all rotations
of the group in question—a proposition which we can reverse.
Now such a system of points must necessarily separate into
mere groups of points of the kind which we have described in
§ 10 of the preceding chapter as appertaining fo the group.
The invariant forms which we seek therefore arise when any
number of the forms which correspond to the aforesaid groups
of points are multiplied together.

Concerning the nature of the ground-forms thus presenting
themselves, we can & priori make certain moro detailed state-
ments. If N is the number of rotations of a group, the groups
of points which appertain to them consist in general of N
separato points, The general ground-form will accordingly be
a form of the N degree, and will contain besides—corre-
sponding to the singly infinite number of groups of points
mentioned before—an essential (not merely factorial) para-
meter. But there occur among the general groups of points
those in particular which contain only a smaller number of
separate points, In accordance with this, special ground-forms,
of degree l:r—' will occur, which can only be considered as a

special case of the general ground-form when we raise them to
the »® power.

If we wish to push these general results any further, we must
separate here the case of the cyclic groups from the others.

In the case of the cyclic groups there occur among the general
groups of points only two special ones, cach consisting of only
one point, viz., one of the two poles. Accordingly in their
case there are two special ground-forms, and these linear ones.
Retaining the system of co-ordinates which was introduced
in § 4 in the treatment of the cyclic groups, these are simply
2z, and z, themselves. But further, we can here very easily
construct the general ground-forms, and this by means of a
method of reasoning which we shall find exceedingly useful in
the following cases, To pass to the general ground-forms we
construct the n*" powers of 2, and 2, and convince ourselves
that, by the several substitutions (18), they acquire the factor
(—=1)% Whence we conclude that A;z™ +Az,", understanding
by A, : X, an arbitrary parameter, is also an invariant form in
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each case. Since its degree is equal to » (equal to the number
of rotations of the group), it is at the same time a ground-form.
It is manifestly, without further proof, the general ground-form.
For we can so determine A, : A, that A 2" +\z," vanishes for
an arbitrary point on the sphere, and therefore just represents
the group of points proceeding from it by means of the rota-
tions of the cyclic groups. Thus we have given a general
solution, for the case of cyclic groups, of the questions which
first confronted us. We can express the result by saying that
Jor the cyclic groups (18) the most general invariant form is
given by :

(35) 2® . 2B, . (A “'z".'.).’(‘lz":)
1 2 H 1 %

where a, B, denote any positive integral numbers and A, A0,
any parameters.

In the other cases the theory presents certain differences,
but only in so far as for them, among the general groups of
N separate points each, fhree of a smaller number of points
occur. For the multiplicities which are to be attributed
to these special cases, so far as we include them under the
general’ groups of points, we will again assume the nota-
tion v}, vy, v, which we used in § 9 of the preceding chapter.
The said groups of points then contain respectively f\—r. f—v, f—v,
separate points, and produce accordingly 8 special gmm:d-fzom:s
F,, F, F, respectively of the same degree. We construct
F», Fr:, Fy». Then it is shown that these powers all
assume the same constant factor for the homogeneous substi-
tutions in each case concerned. Therefore every linear com-
bination :

MEP 4+ MFn + M Fys,

is an invariant form, and, indeed, as its degree shows, a
ground-form.

But the general ground-forma contains, as we have said,
only one essential parameter, while we here have two in
A2 A i A, We conclude that for the representation of all
ground-forms it suffices to take into consideration the linear
combinations :

ME 4+ ARy,
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and that therefore an identity
(86) MNOFM + AOFr + 2O0F =0
must exist between F, F,, Fy.

Considering F,"* always eliminated by means of this identity,
we have finally, as the expression of the most general invariant
form :

87) Fye Fp . FY. , l(x,mo’,-.n;‘w,n),

where the positive integral numbers a, 3, v, and the para-
meters A\, \,®, are throughout arbitrary.

In the case of the dihedron, the whole theory here described
presents itself again in such a simple form, in virtue of the
position of the system of co-ordinates established in § 4, that
we can write down the result immediately. We have:

N=2n0n=4,=2 rn=n,

and find accordingly :

(38) F z‘ +z’ ) F 2, F = 2%

F,=0 represents the summits of the dihedron, F, =0 the mid-
edge points, F;=0 the pair of poles. Between F,, F,, F,
exists then in correspondence with (86) the identity

(39) FE-F?-F=0,

As regards the tetrahedron, octahedron, and ikosahedron,
the establishment of the special ground-forms requires in their
case special considerations, to which we now turn.*

* The forms F,, F, F,, considered in the several cases together with the rela-
tions mhnhﬁng between them, occur for the first time in Herr Schwartz's
memoir: “ Ueber diejenigen Fille, in denen die Gaussische Reihe Mg, 8, v, 2)
eine algebraische Function ihres viertem Elementes ist,” Borchardt’s Journal,
Bd. 75 (1872). See, too, f jons in the Ziricher Vierteljah
schrift from 1871 onwards, The reason of my only cursorily citing this lnnd»
mental work is that its point of view in the treatment of tbe forms Fis, in the
first place, quite different from ours. Its starting-point is formed by certain
questions in the theory of the conformable representation, on which we can only
enter more fully in the following chapter. On the other hand, Herr Schwartz
gives neither the groups of linear substitutions, nor the relatlon to the theory of
invariants which we shall now lay so much stress on.
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§ 10. PREPARATION FOR TUE TETRAUEDRAL AND OCTAHEDRAL
Forus,

In the case of the tetrahedron and octahedron we have to
distinguish, in d. with § 5, two positions of the
system of co-ordinates. Beginning with the first of these,
we find for the summits of the octahedron (i.e., now the points
of intersection of the co-ordinate axes with the sphere) the
arguments :

z2=0, ®, *1, &,
and therofore the octahedron is simply given by the following
equations :
(40) a2 (4t -5 =0.
In a similar manner we determine the equations for the
two corresponding tetrahedra and the cube determined by its
8 summits. The 8 summits of the cube have as co-ordinates

1
+E= 1= i(=ﬁ‘

‘We shall pick out the summits of one of the corresponding
tetrahedra, if we choose here, among the 8 possible combina~
tions of sign, those 4 for which the product £n{ is positive.
Substituting in the formulm (6), we obtain for the arguments
of the 4 summits of the ,Petrahedron :

z__1 +i’ 1-¢ s _—_lii’ —-1-1

TVESY VE-r 3 Y BoT

Whence we obtain (by multiplying out the linear factors) the
equation of the first, tetrahedron in the form:

(41) 20+ 223 222 428 =0.
-In the same way we find for the tounter-tetrahedron
(42) 20— 24 =3 . %2 +2,0=0,

and finally for the cube, on multiplying together the left sides
of (41) and (42):
(48) 28 + 142928 +28=0.

I will denote in the sequel the left sides of (40), (41),
(42), (48), by ¢, ®, ¥, W. If we now rotate the system of
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co-ordinates, as we proposed at the end of § 5, through an
angle of 45° round the {-axis, these forms are transformed into
others with only real co-efficients. I shall distinguish these
forms by accents, and put:

V=gte 2,3 nh -,

¥=z4-2,/3 - 2%2 -2,

W =208 ldzto 25

Equated to zero, these forms represent of course the octa-
hedron, tetrahedron, and counter-tetrahedron, as well as the
cube relatively to the new system of co-ordinates.

[ {=22 (@t 2",
(44) {

§ 11. Toe Ser or ForMs ForR THE TETRAHEDRON.

In accordance with the explanations given in § 9, our whole
consideration of the tetrahedral forms may now be limited to
two points; first, to determine the constant factors to which
the ground-forms :

®=z44+2./-3 - 2% +24,
(45) ¥= :l‘ 25_3 . z:’z:’+::‘,

t= zlz! @t -2,
or the corresponding ones @', ¥/, ¢, are subject for the homo-
geneous substitutions of the tetrahedron ; secondly, to note the
linear identity which connects &°, ¥°, ¢, or @, ¥7, ¢, with
one another.

With regard to the first, we recall the generation of the
group of the tetrahedron as we established it in § 18 of the
preceding chapter, and have already used it in the present
chapter. For the substitutions of the quadratic group (21),
D, ¥, ¢, evidently remain in general unaltered. On the other
hand, for those substitutions which correspond to the rotation

211' 4u-
U of Period 8, ® and ¥ receive factors ¢ 3 and ¢ * , while
¢ remains invariant for these also. The consequence is that,
in addition to ®° and ¥°, ®¥ = W also remains unaltered
throughout, while ® and ¥ themselves are only transformed
into th Ives by the substitutions of the quadratic group.
As regards this latter circumstance, we perceive in it & confir-
mation of a principle which we can establish a priori. This
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asserts that those substitutions of a homog group, which
leave altogether unaltered a corresponding invariant form, must
Jorm a self-confugate sub-group within the main group of substi-
tutions. These remarks, of course, just apply to the forms
YV L W

Having confirmed by these remarks the existence of the
supposed identity between ®°, ¥°, ¢, &c.,* we shall be able to
compute it by only taking into consideration the first terms in the
expressions of ®%, ¥*, ¢2, In this way we find without trouble :
(46a) 12./-3 - 2-0%+¥8=0,

or:

(46b) 12,3 - t2-@3+¥¥ =0,

In connection with the results here obtained two remarks
may be made which are both related to the invariant theory of
binary forms, and of which the one may express the signifi-
cance which the said theory will often have for us in the
sequel, while the other is designed to marshal the results
obtained by us in the case of the tetrahedron relatively to the
otherwise well-known products of the invariant theory.

Suppose that, of the forms (45), we have only so far com-
puted one, viz.,, & ; then the theory of invariants supplies us
with the means of deriving from it other tetrahedral forms by
mere processes of differentiation. We have only to establish
any covariants of . In fact, if @ is transformed into itself,
save as to a factor, by any homogeneous linear substitutions,
so also is every covariant; this is an immediate deduction
from the definition of covariant forms. Now ¢ is a binary
form of the 4th order, and the theory of invariants showst
that such a form only possesses two independent covari
the Hessian form of @ and the function-determinant of this
Jform with ®. The former is of the fourth, the latter of the
sixth degree ; moreover, we may convince ourselves that the
former is not identical with ¢. We, therefore, conclude at

+

* Since $3, ¥3, ¢? remain uniforml ltered by the tetrahedral substitu.
tions (22).

*+ Cf. e.g., Clebech, “Theorie der biniiren algebraischen Formen” (Leipzig, 1872),
p. 134, &o., or the other text-books of the theory of invariants, ¢.g., Salmon.
Fiedler, “ Algebra der linearen Transformationen ” (Leipzig, 2nd edition, 1877).
Fad de Bruno-Walter * Einleitung in die Theorie der biniiren Formen ” (Leipzig,
1881), &c.
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once that the Hessian of P, equated to zero, represents the
counter-tetrahedron, and similarly that the function-determi-
nant, equated to zero, represents the corresponding octahedral
form. For both these forms, equated to zero, must represent
such groups of points as remain unaltered by the tetrahedral
rotations, and no other groups of only 4 or only 6 connected
points can exist besides those just mentioned, or at least
do not come under consideration (inasmuch as the 4 summits
of the original tetrahedron, which likewise form such a group,
are already given by & =0). We should therefore be able to
caleulate also amongst the forms (45) both ¥ and ¢ by constructing
the Hessian form of ®, and then, from this and &, the functional
determinant. In fact, we get by calculating out directly :

vo  ¥o
&t &k, |

20 2y 48,./°3. Y,
dle, &}

and :

o ®

& W |_

oy =32./-3.¢t
%

The theory of invariants possesses, as we see, in virtue of these
remarks, the character of a method of computation. As regards
our further elaboration by the theory of binary invariants, let
us recur to the general theory of biquadratic forms, let :

47 F=ap* +4a,2°% + 6a2,%.? + a2z + az*
be such a form. Then we have in the first place, as already
explained, two covariants, which we will now denote by A and
T, “the numencal factors being properly determined :

&#F  ®F F W
@8 =L | & ®&| o 1|5

1 %
44" | »F ¥F 8| g H
XN o &y
‘We have, further, 2 invariants :
G & &

49) f=a—4a,a,+ 30}, go=| @) 0y a4
ap a3 a4
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where I have applied on the left-hand side that notation
to which I shall hereafter have anyhow to return in con-
nection with Weierstrass’ theory of elliptic functions. We
have, finally, as the single relation between these forms, the
following :
(50) AR — g, l[F? 4 g 3 + T2=0,

Let us now put our ® in the place of F; then we have in
the first place :

9,=0.

This means, if we adopt the geometrical mode of expression
which, e.g., is explained by Clebsch, 1. ¢. p. 171:

The form @ equated fo zero represents an harmonic group of
points.*

We find, further, for our P :

1 -

H—'-—-v:—a' v, T'=44, ya=wf=3.
Hence the identity (46a) is included in the general relation
(50) as a particular case, as was to be expected. We must,
therefore, say that our geometrical reflexions on the group-
theory have led us in the case of the tetrahedral forms not so
much to new algebraical results, as to a new way to results
otherwise known.

§ 12. TRE SET oF FoRMS FOR THE OCTAHEDRON.

Turning now to the octahedral forms, we already know, of
the 8 special ground-forms appertaining to them, the two:
t=2 (2 -2,
(51a) {W=zl°+l4 Zizt ez
and
- t=27, (4 +2),
(alb) { W' =28 - ldzf24 + 28
We easily verify that, setting aside & numerical factor which
occurs, W can also be computed as the Hessian of ¢.
‘We obtain a new octahedral form by now constructing the
* We arrive, of course, at the same result if we in general interpret geometri-
cally on the sphere the double ratio of 4 complex values z=z+ 1y, in the way that

Herr Wedekind has done in his insugural dissertation (Erlangen, 1874), and in
bis note on the subject in the Mathematische Annalen (Bd, ix, 1875).
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functional-determinant of ¢ and . We thus have, disre-
garding a factor :

52 (X =71 — 332,08, — 33242, + 219, or
¢2) VK =% + 3322~ 33,405 — 52

We easily prove that this x is the third special ground-
form of the octahedron, i.e., when equated to zero it represents
the 12 mid-edge points of the octahedron. In fact, x =0
must represent a group of only 12 point connected by means
of the octahedral rotations, and since x is different from ¢*
and the group of 6 octahedral point counted twice does mnot
therefore come under consideration, there is, in fact, no other
possible explanation.

‘We have just seen that ¢ and W remain entirely unaltered
by the homogeneous tetrahedral substitutions. The same is
consequently true of x. For x being a covariant, can only
alter by a power of the substitution-determinant at the most,
if its ground-form is unaltered; but this determinant is in
our cage equal to 1. Now in § 1 we generated the homo-
geneous octahedral substitutions by entertaining, in addition
to the tetrahedral substitutions mentioned, a single substi-
tution (23) which corresponded to a rotation ¥ of period 4.
We determine by direct calculation that ¢ changes its sign
for this substitution (and therefore generally for all octahedral
substitutions which are not at the same time tetrahedral
substitations). Accordingly W as the Hessian, and since we
are again concerned with a substitution of determinant 1,
remains generally unaltered, while x changes its sign alter-
nately just like ¢, so that the product x¢ remains unaltered.
In any case, t!, W3, X% are in general not altered by our
homogeneous octahedral substitutions, and there exists, there-
fore, between them the supposed linear relation. Again,
taking into consideration only certain terms in the explicit
expressions which result for these forms from (51) and (52),
we get for them :

(58) 1084~ W34 52=0,
a relation which holds also for #, W/, and /. /°%*

The form ¢ has been long known in the invariant theory of
binary forms, i h as it pr d itself as the covariant

- -

1o o
T
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of the 6th degree of the binary form of the 4th order, when
the latter was assumed to be of the canonical form :
@ (ot + 251 + 622

Similarly the synthetic geometers have on many occasions
closely investigated the system of points ¢=0, 1.e., in their
language: the aggregate of 8 mutually harmonic pairs of
points.  Clebsch, too, in his theory of binary algebraic forms,
has considered the form ¢ as a special case of general binary
forms of the 6th order.* Finally, as regards the relation (53),
this, with those analogous to it, are included under a general
formula of the theory of invariants, by virtue of which the
square of & functional determinant of two covariants is ex-
pressed by integral functions of forms of a lower degree.

§ 13. Tee SeT oF FoRMS FOR THE IKOSAHEDRON.

To establish the form of the 12th degree, which, equated to
zero, represents the 12 its of the ikosahedron, we first
calculate the arguments of the several summits, supported by
our former developments (§ 6). One of the summits has the
argument z=0; introducing this into the 60 non-homogeneous
ikosahedral substitutions (82), we obtain for the 12 summits:
(54) z=0, o, ¢(s+é), e(2+8) (1=0,1,2 3, 4).
‘We can therefore take the required form f equal to the follow-
ing products :

- [Ja-v ot - - [Ja-v@re

or:
2% (B —(e+ P - 2%) (8- (E+ ) 2)
or finally :
(55) J=27 (5,20 + 112,525 - 2,19),

We will now again calculate from the f so obtained, dis-
carding the proper numerical factor, the Hessian form, and
from this and f calculate the functional determinant. We
thas obtain the two forms:

* Cf. p. 447, &c. Consult too Brioschi, “Sulla equazione del ottaedro,”

Trnnnunn della Accademia dei N. Lincei 3, iif, (1879), or Cayley, * Note on the
dron Function,” Qu: ly Journal of Math ics, t. xvi. 1879,
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Bf ¥
S | [N
(56) H=+po0 B Bf
B &
= = (5 +2%) + 228 (5, %0 — £,°%'°) - 494219,
&L
1 1
67 T=%%. 0 om
| & ¥
= (2,30 + 2,9 + 522 (2,225 — 2,82,5) — 10005 (2,202,10 4. 2,19%,2°),
and T assert with regard to them that H =0 represents the 20
its of the pend dodekahedron, T =0 the 80 mid-edge
points (the ends of the 15 cross-lines).
In order to prove this somewhat more completely than was
done in the analogous cases of the tetrahedron and octahed
let us remark, first, that H and T as covariants of fceruunly
represent 20 and 30 points respectively on the sphere, such
that their totality remains unaltered for the 60 ikosahedral
substitutions. But now the points on the z-sphere arrange
themselves in general by virtue of these rotations into sets
of }6, and the number of points thus grouped together is
lowered then, and only then, and this to 12, 20, 80 respec-
tively, when we have to do with the summits of ikosahedron,
the pentagon-dodekahedron, and the mid-edge points. An
aggregate of points which remains unaltered for the 60
ikosahedral substitutions must be a combination of such in-
dlvldual groups of points. The number of points which it

ily admits of being put into the form :

@ 60+B3.-12+9.20+3. 30,
where a, 8, 7, J, are integers, and B, v, 4, give the multi-
plicities with which the summits of the ikosahedron, the
pentagon-dodekahedron, and the mid-edge points contribute
to the aggregate of points.

Now if, as in the case of H =0, this number is equal to
20, or if, as in the case of 7'=0, it is equal to 30, there is in
either case only one possible determination of a, 3, v, 8, viz.,
in the first case a=8=J=0, y=1, and in the second
case a=f=y=0,8=1. But this is what we asserted re-
garding the meaning of H=0, 7'=0.
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‘We now investigate the behaviour of f, H, T, towards the
homogeneous ikosahedral substitutions with reference to the
factors that may occur.

Considering only the generating substitutions (24), (26), we
determine after a short calculation that f remsins generally
unaltered. The same, therefore, holds good for H and 7.
For we have defined H and 7' as covariants of f, and the
determinant of each substitution (27) is equal to unity. The
behaviour of f, H, T, in this connection is thus as simple as
possible. There exists, therefore, certainly, as was supposed
above, a linear identity between f°, H3, T%. Again, recurring
only to the initial terms of the explicit formula (55), (56),
(57), we find for this identity :

(58) T2 - H3 41728 5,

We have thus found results which are quite analogous to
those developed in the case of the tetrahedron and octahedron.
If we are to demonstrate here also relations to the general
theory of the invariants of binary forms, we cannot at any
rate appeal to older works. For the knowledge of the forms
/f» H, T, was, in fact, first obtained by the ideration of the
regular solids and the circumscribed (z+ iy)-sphere. I first
investigated on this basis the principal invariantive properties
of the form / in Bd. 9 of the Annalen (1. ¢.). But there is a
series of later publications on the theory of invariants.

These are in connection with the definition, in the theory
of invariants, of the form f, and of the other forms respec-
tively, which we are considering. In this respect I had myself
alrcady announced in Bd. 9 of the Annalen the theorem that
/, like the earlier forms ¢ and ¢, is characterised by the iden-
tical evanescence of the fourth transvectant (f,f)'. This
theorem Herr Wedekind had expanded in his  Habilitations-
schrift,” by showing that, apart from trivial exccptions, in
general there is no other binary form whose fourth transvec-
tant with respect to itself vanishes identically except P, ¢, and
/.* Herr Fuchs has brought forward another property, ana-

* 4 Studien im biniren Werthgebiet,” Carlsruhe, 1876. See too, Brioschi,
“Sopra una classe di forme binarie,” Annali di Matem., 2, viii. 1877, Latterly
Brioschi has also considered such forms of the eighth order as are identical save
as to a factor with their fourth transvectant. See Comptes Rendus, t. 96
(1883).
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logous to this, in his search for these forms,* viz., that all
covariants of these forms which are of a lower degree than the
Jorms themsclves, or are powers of forms of a lower degree, must
vanish identically. Herr Gordan then showed? that the pro-
perty which underlies this is, in fact, just sufficient to charac-
terise the form ®, ¢, /. I mention, finally, the latest work of
M. Halphen.} He starts, generally speaking, from the neces-
sity for identities of 3 terms :

A OF P 4 MOFps 4 \0F s =0,

and shows that these cannot occur otherwise than in the cascs
which we have investigated. We can thus even regard our
forms as defined by these identities. These developments of
M. Halphen are otherwise closely related to the others which
we shall introduce in the fifth chapter of the present part,
when our busi is to establish g Ily all finite groups of
binary homog substituti

§ 14. TEE FuNDAMENTAL RATIONAL FGNCTIONS.

Having now spent sufficient time over the invariant forms
which belong to the homogeneous substitution groups, it is
easy to take the final step and construct such rational func-

tions of z—:—' as remain in gcneml unaltered by the non-

homogencous substitations of §7. In fact, we shall only have
to establish proper quotients of our invariant forms of null
dimensions in 2, and 2, We asserted in § 1 that in all cases
one such quotient Z could be constructed, which, equated to a

tant, uniquely rep: ts in each case the different groups
of points on the sphere such as we are considering. This is
clearly nothing less than saying that there exists a rational
function of the kind required which is of degree AV, under-
standing by & the number of the non-homogeneous substi-

* See the Gitti N: ich of D her 1875, as also the memoirs in
Borchardt's Jonrnd Bd, 81, 85 (1876-78), The * Primformen,” which Herr
Fuchs there eonﬂderx, are just what we have called in the text *‘ ground-forms,”

+ Math. Ann., Bd. zii. (1877) : “ Bin. Formen mit versch. Covarianten.”

+ “Mem. prélentéa par divers savants & 1'Académie,” &c., t. 28 (1883):
« Mémoi sur la réd des ions diff. lin. aux formes intégrables
(Pri 3 of the Paris Academy, 1880),
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tublons in questlon, Before we actually establish these jfun~

tal rational funmctions, and thus provide the shortest
proof of their existence, it will be useful to make inquiries as
to their position among the other rational functions which
remain unaltered.

I say first that every such rational function of 2 is a ra-
tional function of Z. In fact, if B(z) be such a function,
R(z) will assume the same value for all points on the sphere
which proceed from it by means of the NN rotations of the
group in question, but the N points so connected are, by
hypothesis, characterised by one value of Z. The functions
Z and R, which, through the intervention of 2z, are always
algebraical functions of one another, are therefore so related
that to every value of Z only one value of R corresponds, t.e.,
R is a rational function of Z, g.e.d. That conversely every
rational function of Z is a function R(z), scarcely needs
mentioning.

I say further, that, by the property attributed to it, Z is fully
determined save as to linear transformations, viz., let 2’ be a
sccond rational function of 2, which, like Z, has the property of
rep ting, when equated to a tant, only one group of
connected points. We conclude, just as before, that Z’ de-
pends rationally on Z, but that also Z depends rationally on

Z'. ‘Therefore Z’ is a linear function of Z: Z' _;Zﬂ: It

is again manifest that we should be able conversely to use
every Z' introduced in this way as our fundamental rational
function just as well as the original Z.

On the last remark is based the following: that we can
subject our fund tal rational function Z to three more inde-
pendent ecmdmtwns, to make it fully determinate. First with
regard to the cyclic groups, we simply put

" = 2, "

(59) z= (;;)

where Z therefore vanishes for one pole of the cyclic group,
and becomes infinite for the other, and take along the equator
the absolute measurement unity. In the other cases, we have
always, a8 we know, to distinguish three special groups of
points, which, with the multiplicities v, », p» Vg TOspectively, are
contained within the gemeral groups of points appertaining
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thereto. Relying on a method frequently employed, we now
80 regulate our Z that it assumes for these three groups of
points the values 1, 0, o, respectively. Then Z will take the
form "'—Fli:"'. and Z—1 the analogous form e }',{‘"' where by
E 3°
F,, F,, ¥, are to be understood what we have previously
called the ground-forms. At tho same time ¢ and ¢ must be
of such a nature that the equation

Fpo . _, Fn
c.F:;: 1 d.Fs"_’

coincides with the oft-mentioned identity existing between
F,, F, F, which fully determines ¢ and ¢'.

Turning now to the task of giving explicitly in every case
the function Z thus defined, I make use of a notation which
uniformly connects the two expressions of Zand Z—1, viz., I
put Z: Z—1 : 1 proportioned to

cFg i Fo: Fys,
We obtain in this form the following table, to which we shall often
recur :

(1.) Dihedron :
(60) Z:Z-1: 1=(ﬁ”‘2'_’i')’: (ﬁ”_*fﬂ")’:—(zlzg)‘;

)

2

(2.) Tetrahedron:

(61a) Z:Z-1:1=¥3: —12 /3. 12: %,
or
(61b) Z:Z-1:1=¥3%; 12 /3.£2: 05,

according as we assume the first or second position of the system
of co-ordinates.

(3.) Octahedron, with the same distinction :

(62a) Z:Z-1:1=W3: x2:108¢4,
or
(62b) Z:Z-1:1=W3:%2:108¢%;
(4.) Ikosahedron :
(63) Z:Z-1:1=H3:-T?:1728/5.
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For the symbols here applied consult throughout the principal
formulse of paragraphs 11, 12, and 13.

§ 15. REMARES ON THE EXTENDED GRoOUPS.

Finally, we return to our extended groups (§ 7) once more.
‘We want to know how our rational fandamental functions now
obtained behave towards them. From the analytical side the
extended groups 1. ¢. arose from a combination of the operation
% =z with the non-homogeneous groups of substitutions, where,
so far as the tetrahedron was concerned, we only supposed the
second position of the co-ordinate system to be employed. But
now, maintaining the same supposition, all our ground-forms
have real coefficients, and Z will be derived from these ground-
forms, in virtue of the preceding formuls, in every case by the
help of real coefficients. The matter therefore simply comes to
this: that for all those operations of the e.z'tmded groups which
are not alrcady contained in the corr g non-h

groups of substitutions, Z in each casc passcs over to its amjugatc
imaginary value,

Combining this result with the propositions which we de-
duced in § 11 of the preceding chapter, we obtain one final
remarkable result. It is this: Z assumes rcal values for all
those points of the z-sphere which lie in the planes of symmetry
of the configuration in question, and only for such points. The
points of the said planes of symmetry are therefore in each case
characterised by the reality of the corresponding Z.

Looking back, we have in the second chapter thus ended
arrived at this point : we have ted the g trical
results of the group-theory occurring in the first chapter with
a definite region of recent mathematic, namely, with the algebra
of linear substitutions and the corresponding theory of invari-
ans. Just in the same way, the following two chapters are
destined to effect the connection with the two other modern
disciplines. These are Riemann's theory of functions and Galois’
theory of algebraical equations.
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CHAPTER III

STATEMENT AND DISCUSSION OF THE FUNDA-
MENTAL PROBLEM, ACCORDING TO THE
THEORY OF FUNCTIONS.,

§ 1. DEFINITION OF THE FUNDAMENTAL PROBLEM.

THE investigations of the preceding chapter have led us, in
the formulee (59)—(63) of the last paragraph but one, to the
knowledge of certain rational functions Z of z, which remain
unaltered for the groups of non-homogeneous substitutions in
each case considered, and by means of which all other rational
functions of 2, which remain unaltered, are expressed ration-
ally. We annex to this result a statement of the prob-
lems which we denote as the equation appertaining to the
group iun each case. We suppose, namely, that the numericnl
value of Z is arbitrarily given, and seek to ealculate from it the
o ding z as the unknown; or, to express it differently:
we no lonyer consider Z as a function of 2, but z as a function of
Z. The equation which thus corresponds to the cyclic group
is, according to formula (59), L. c., none other than the binomial
equation :

o &)~z

The other equations correspond in just the same way to the
formule (60—63). I will collect them here briefly in the form :

.
@ c. pa=2

which we used incidentally in the preceding chapter, Here
F,, Fy, together with F,, denote those three principal forms of
which all other invariant forms are compounded as integral func-
tions, and ,, v, are in each case taken from the table which was
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provided in § 9 of the preceding chapter, and which I reproduce
here to facilitate reference :

1
! " | v H v i N
1

' — I

@ Dihedron . 2 2 ” 2n
|1bhﬂwd®n. 2 3 32
! Octahedron . 2 3 4 24
! Ikosahedron . 2 3 5 60

i

I have here added a last column, headed by N, which marks
the degree of the equation in each case under consideration.*

But with the equations (1), (2), only a part of our earlier
considerations is inverted ; we obtain a second mode of pre-
senting the problem by recurring to the several invariant
forms themselves. These forms remain unaltered by the homo-
g substitutions of d inant 1 in g 1, save as to a
factor. It is not difficult, however, to select from them those
for which this factor is equal to 1, and which we can call the
absolute invariants. The sequel shows that these absolute in-
variants can be composed in every case as integral functions of
8 of them; I have noted these three forms in the following
table, together with the identities subsisting between them in
each case :

L Cyclic groups.

@ { Forms: 22, z)2", 2" ;
Identity : (z)2;)""=2"". zp"

II. Dikedral groups.
In the case of the dihedron we had:

npan 2 _an
Fl=zl_2 2, Fy= 1_2_2, Fy=z2,

and the relation :
F2=Fp2+Fp

* T shall also occasionally denote the degree of (1) by N in the fullowing
pages. -
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If we now seek the absolute invariants, we obtain for n even :
(59) { Forms: Fg2 F? F\F,Fy;
dentity : (1, F,Fy=F2. F2. (F2-F);

and for n odd
(3b) (Forms : Fg2, F2F, F\F,;

ldentity : (F,F,)2 . Fy=(F2F,) . F2F, - F;**).

IIL. Tetrahedral group :* s
6 {Fotms: Fy=t, F,F,=W, R#=a3; o= ¢

®) Identity: W3=a%(®5-12,/-3. &),

IV. Octahedral group :

0 { Forms: Fy=W, F¢=t F\F,=xt;
G Tdentity : (xt)?=12 (W9 - 1084).

V. Tkosuhedral group :

® {lforms F\=T,F,=H, F;=f;
Identity: 72+ H‘x 1728f3=0.

‘We now suppose, in a particular case, that the numerical value
of the three forms included in the table, in oorrespondence with
the identity subsisting bet them, is given, and we seek to
calculate h'om this the values of the two variables z,,z,, Thus we
have what we will call the form-problem. The number of the
systems of solution of a form-problem is always 2.V, where by
N is to be understood the degree of the corresponding equation.
All these systems of solution proceed in this case, in just the
same way, from any one of them in virtue of the 2V homogene-
ous substitutions, as the &V solutious of each equation manifestly
do with respect to the N non-homogeneous substitutions.

§ 2. RepuctioN oF TRE FORM-PROBLEM.

As regards the solution of the form-problem, we can always
accomplish it by means of the corresponding equation and an
accessory squareroot. Take, for instance, the cyclic groups. We
then calculate first from the forms (4) the right side of (1) :

Z= (zlzz)" "’12:

72" (zlz,)"

* In the case of the tetrahedron and octahedron, T now use, contrary to what
1 have hitherto done, non-accented letters,
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then solve (1), whence we find 2 __z, and finally obtain 2y, 2z,
Zy

themselves by introducing this value of ;1 into the given form

of the second degree zz, (which we shall now call X),
whence :

© a=y/L oz n

In the case of the other groups, the matter takes a form per-
fectly analogous. For not only does the particular Z (2) in
these cases also admit of being rationally composed of the
forms (5)—(8), but we can also always construct rationally
from these forms an expression which is of the second de-
gree in z, z,. I choose as such, in all the cases:

(10) X= ﬂﬁj
If we have then determined, by means of (2), the quotients

:—‘_‘ =2, we find, by comparison with (10):

X (2, 2 =
1) Jﬁ, 4=2.2
where X (z,, 2,) denotes the magnitude (10) previously given,
and X (z, 1) a definite rational fanction of z:
Fylz, ] 1) Fy(n 1)
l (l, l)

‘We have thos at the same time the means of simplifying the
previous statement of our form-problem, of reducing it, as we
will say.* DBy means of (9) and (11), 2,, 2, depend only on X
and Z, which, in their turn, are rational functions of the forms
(4)—(8). We now introduce these values of 2, z, into the
forms (4)—(8). Thus these forms will be rational in X since
they are all of even degree. But at the same time they will
be also rational in Z. For they now represent rational fanction
of z, such as do not alter for the N corresponding non-homo-

* That such a reduction was poesible was pointed out to me incidentally by

Herr Nither, who derived it in a totally different manner from his researches on
the representation of surfaces,
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geneous substitutions. We shall therefore in the sequel, when
speaking of the form-problems, not snppose, say, the forms
(4)—(8) to be glven [whem we had always to puy regard to
the i g bet them], but rather the ex-

Z and X directly, and then ider 2, 2, as functions
of these two magnitudes.

I reproduce here explicitly the rational functions of Z and X,
to which the forms (4)—(8) are equal. We verify these easily
by reflecting, on the one hand, how Z and X are composed of
the forms (4)—(8), and, on the other hand, taking account of
the identities subsisting between these forms. I find:

1. For the cyclic groups :

12) 2z =X, g =2 . X* 2= Jg

IL. For the dihedron : for n even :

n+2
. ., X2.2Z-1 X (Z-1) 2
(138) “-=_'Z =, Fe= J"_) B
Zé
n+2
xh (z 1 2
FanF:F‘h,.)
22
and, for n odd :
n+3
. X.Z- XM . (Z - NN
sy mp=E ol pepe
z?
n+l
PR X (Z-1)7T
1 n-1
ZT
TIL For the tetrahedron :
X .(Z-1) _ Xt (Z-1)
(14) Fi=-"" ysgz— Fofs= —"—p55—"
X (Z-1)

Fg= Tb8LJZ3. 2
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IV. For the octahedron :
XL (Z-1p X0, (Z-1p
(5) Fy=108. X221 payop, X021
FyF=108, X2 2217

V. For the ikosahedron :

X5 (Z-1p8

I R

0 X0(Z-1p
F=-19 20 1F

X0 (Z-1p
F,,=—123._(zz_)_

§ 8. PLay oF THE FOLLOWING INVESTIGATIONS.

We have now to discuss the fandamental problems, which we
have thus far reached, under a double aspect, viz., in the sense
of the theory of functions, and algebraically. Postponing the
latter kind of investigations to the following chapter, we turn
ab once to the function-theory considerations.

‘We have z, the unknown in the individual equation, as a
fanction of Z alone, while the 2, z,, of the corresponding form-
problem depends also on X. But the mode of dependence by
formuls (9) and (11) is s0 expressly simple that we need delay
no longer over it. We will, therefore, only discuss 2, and z, so
far as they are fanctions of Z.

Such an investigation breaks naturally into two parts. We
have first to obtain a general survey of the differeut branches
of our functions, and then to suggest the means of computing
the particular branch of the function by a convergent process
(for example, by a series of powers). We attain the former
very simply, in our case, by the method of conformable repre-
sentation (§§ 4, 5). We learn hereby, at the same time, the
Jorm of the series which come under consideration for the
different branches of our functions (§ 5). The coefficients of
the expansions will then be given by proving that z satisfies, in
velation to Z,a simple differential equation of the third order, and
consequently the roots z,, 2,,of the parallel form-problem appear as
solutions of a homogeneous linear differential equation of the
second order, with rational coefficients (§ 6-9). Finally, we
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prove in § 10 that, by reason of the last-mentioned differential
equation, z;, 2, are particnlar cases of Riemann's P-function,
whereupon our investigations seem to adjoin a well-defined and
much-explored region of modern analysis.

As to the results which we obtain in this way, they are, in
their main features, all contained already in the above-men-
tioned work of Herr Schwarz ; * except that in Herr Schwarz’s
article the order of the matter is just the reverse of that fol-
lowed by us here. .Starting from the differential equation of
the hypergeometric series, Herr Schwarz first constructs the
differential equation of the third order, on which the quotient
z of two particular solutions z,, 2, depends. He then investi-
gates the conformable representation which 2 projects from the
two half planes of the independent variable Z, and ds,
finally, by means of the condition that z is to be an algebraical
function of Z, to the z-functions considered by us and the fun-
damental equations which define them.t We, on the contrary,
begin with these equations, construct from them the conform-
able representation, and then reveal the existence of the diffe-
rential equations of the third order, which z satisfies, and,
finally, pass from this to the differential equation of the second
order of the P-function, or, what is essentially the same, of the
hypergeometric series. In this connection it may be here ex-
plained that, in taking this last step, we borrow an idea which
Herr Fuchs has introduced in his memoirs mentioned above,]
inasmuch as we represent X (2, z,) (a form, therefore, dependent
on 2, %) directly by meaxns of Z.

I should, of course, have been able to collect the developments
here described much more briefly had I desired to presuppose
special knowledge with regard to Riemann’s P-function, or even
merely to make use of the general foundations of the modern
theory of linear differential equations with rational coefficients,
as developed by Herr Fuchs in the 66th volume of Borchardt’s

* “Ueber dienigen Fille, in welchen die Gaussische hypergeometrieche Reihe
eine algebraische Function ihres vierten Elementos darstellt,” Borcbardt's
Journal, Bd. 76, p. 292-335 (1872).

1 I smnmarise in the text only such of the results obtained by Herr Schwarz
as are in immediate relation with our own expom.lon

1 “Zur theorie der linearen Diff i mit verdoderlichen Coeffi-
cienten " (1865).
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Journal. This sacrifice being made, my exposition acquires the
importance of leading, by a relatively short route, to a portion
of the researches just mentioned. I should like to refer here
in thig relation to § 3 of the fifth chapter following, where, in
connection with the development now given, the most general
linear differential equations of the second order with rational
coefficients, and which have entirely algeb: 1 integrals, are
directly determined.

§ 4. ON THE CONFORMABLE REPRESENTATION BY MEANS OF
Tk FUNCTION 2 (2).

Turning now to the conformable representation which is
furnished by 2z (Z), we denote as before the complex value
of z=a + iy on the sphere, while we interpret Z=X+:Y on
a plane.* We construct in the plane Z the axis of real numbers,
and decompose this into a positive and negative half-plane. We
mark in addition, when we have to do with the binomial
equations (1), the two points Z=0, oo, in the other cases
Z=1,0, o,

A glance at the equations (1), (2), with reference to the
more complete formul® (59)—(63) of the preceding chapter,
teaches us that, in the case of the binomial equations, the n
function branches coming under consideration for Z=0 and
Z= o all congregate in cycle, while, in the other cases, for
Z=1, vy, of the IV existing branches are connected cyclically ;
for Z=0, v,; and for Z = oo, v;. Now I say that the function
2 (Z) furnishes no other branchings than those given here. In
general, viz, when Z is given as a rational function of z=-1
in the form:

b (% 2)

z= Y6 2)
[where ¢, ¥, are to be integral homoge *functions of the
accompanying argument, of degree N], we find those values
of z, and therefore of Z, for which branchings take place, by

* Whoever s not thoroughly familiar with the theory of the conformable
represeutation will consult with advantage Herr Holzmiiller's recently published
work, * Einfilhrung in die Theorie der isogonalen Verwandtschaft und der con-
formen Abbildungen,” &c. (Leipzig, 1882),
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equating to zero the functional-determinant of the (2 N—2)*
degree :

B &y W

A TN

If this vanishes p-times at a position z=z, u+41 branches

of the function z for Z=2Z, are counnected cyclically in corre-
spondence therewith* If we pute this functional-deter-
minant in any one of our cases (1), (2), we always return to the
branching points, which we already know. For in the case of
the binomial equatious we obtain simply :

" =0

and in the case of the other equations, recalling that v, is always
=2, and F, is the functional-determinant of F, and F;:

Fpt-t, Fps—t. Fys—'=0,

where the different roots of F;=0 all give Z=1, those of F,=0,
Z=0, and finally those of F, = 0, Z = 0.t

The data so attained are already snfficient to characterise
fully the nature of the conformable representation which we
sought. If we describe as an n-gon every figure situated on
the sphere, and furnished with the necessary number of sum-
mits, and otherwise bounded by continuously curved lines, and
observe that Z is rational in z, and that therefore to every Z
belong N values of 2, while to every z belongs only one valae of
Z, we have at once:

In virtue of the binomial equation (1), the two half-planes Z
will be alternately represented on 2N lunes of the z-sphere
which meet at the poles of the z-sphere (i.e., the points z2z,=0)

* The rule bere formulated differs from that given in the text.books in the use
of the homogeneous variables 2, 2 This has the advantage of embracing iu
one form of expression the finite and infinite values of ¢, as the geotnetrical inter-
pretation of z on the sphere and the modern couception generally of the infinite
requires.

+ This explicit cal ion of the functional-d i ‘was not really needed ;
for the estahlisbment of our result, it would have been sufficient to have remarked
that the total number of the hranching points for Z=0, ®, and for Z=1, 0, o,
respectively (with their proper multiplicities taken into account) is identical with
the degree (2N -2) of the functional-determinant. [We must here attribute (v - 1)
roots of the functional-determinant in each case to » branches associated in
cycle.]
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with angles = =, and envelope the z-sphere completely, but no-

where mu]tiply.
Just in the same way in the cases (2), the half-planes Z will
be represented alternately on 2N triangles of the z-sphere,

which, with angles equal to = o ’—r, W extend to onme point of

F,=0, one poiut of F,=0, nndlone point of Fy=0.

‘We now observe thst all roots of (1) or (2) are snccessively
derived from any one of themselves, in each case, by NV linear
substitutions to which correspond rofations of the z-sphere round
the centre. We thus conclude immediately that :

The NV lines or triangles which in an individual case corre-
spond to the positive half-plane Z, as also the N lunes or tri-
angles which correspond to the megative half-plane Z, are
respectively congruent with one another.

Finally, we recall the th which we d d in the con-
cluding paragraph of the preceding chapter from the existence
of the extended group. We there showed that Z only assumes
real values along those great circles of the z-sphere which are
traced out by the planes of symmetry of the several configura-
tions. Now the real values of Z separate in the Z-plane the
two half-planes. Hence we have finally:

The boundary lines of the lunes and triangles are none other
than the circles of symmetry before mentioned, and our lunes
and triangles are therefore identical with those figures which
we have described in § 11 of the first chapter as fundamental
domains of the extended group.

I beg the reader to make himself quite familiar with the
formal relations here described ; this is not the place to discuss
them more minutely.* The representation which corresponds
to the binomial equations has of course been much investigated
elsewhere, only that the z-spl has been replaced throughout
by the plane to which we must suppose our sphere related by
means of stereographic projection.t

1

* As regards the ikosahedral equation in particular, a glance at the figure gives
the beautifal theorem : that this equation, for a real value of Z, possesses always
four, but only four, real roots.

+ In his ** Vork uber math he physik ” (Leipzig, 1876), Herr
Kirchoff describes those plane figures which correspond to our lunes as Sicheln.
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For the rest, I will in the developments of the following
paragraphs leave on one side the binomial equations and the
cyclic groups g Ily, in consideration of the gap which sepa-
rates them from the other cases, and only note the simple
results which relate to them in footnotes.

§ 5. MARCH OF THE 2, 2,, FUNCTION IN GENERAL—DEVELOP-
MENT IN SERIES.

The characteristic feature of the g trical expression of the
functions z (Z), as we have given it in the preceding paragraphs,
consists in the fact that we have constructed, not a many-leaved
surface on the Z-plane, but a region-partition on the z-sphere.*
Having now to consider the march of the functions z,(2), z, (2),
we transfer our attention, accordingly, again to the z-sphere.
Leaving aside, as proposed, the cyclic groups, we have to recur
to the formule (11), which we will write in the following
manner :

F AR
D wmy/Top iy e
Here 2,2, appear as smgle-valued functions of position on a two-
leaved surface, covering the z-sphere, which
points at all points F;=0, or F,=0, or Fa—-O (the point z =
not 'Jj\md" £ e hal atothe"' y:

(18) p=-1+% (V '_8).

‘We determine at once for the parhcu]nr fanction its null and
infinite points, which of course must occur in equal numbers.
As concerns 2, it vanishes, and in fact simply + vanishes, for
all points of F,=0,and also for z = o, on the whole, therefore, for

({Xi‘ 1) points. On the other hand, it becomes simply infinite
for all points of F,=0, and those points of Fy=0 which do not

* In a singular manner the march of any one-valned functiou Z=F(z) can he
exbibited. CY. for exnmple, 0 Hmmmn “ Geometrische Untersachungen ber
den Verlauf der elli im ! Gehiete," Schomlich's
Zeitschrift, Bd. 28 (1883).

+ We say of a function which becomes zero or infinite at a branch-point z on
& two-leaved surface, that it becomes nimply‘ zero or iufinite, if it behaves for a first

1

approximation like C' (2 —2) Zor C(z—29) "z respectively. If 2=, we bave to
consider instead of (z—2) the expression z
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coincide with 2= ; the number of the infinite points is there-

fore (f_V+ f—v— 1), which, in fact, corresponds with ({—Y+ 1) for the
2 3 1

numerical value of N and » we are considering. Just in the

same way for z,, only that the two points 2=0 and z= o (which

both belong to the roots of Fg=0) have exchanged places.

We can now with little trouble display the nature of the
development in series of which our three functions z, z,, 2, admit
in the neighbourhood of the singular positions Z=1,0, «. I
only complete this here so far as we shall need it in the follow-
ing paragraphs. Let us agree for a moment (as is indeed other-

wise customary) that Z— Z, shall denote the value %for Zy= @

and correspondingly z—z, the value% for z, = co. Further, let 2,

be one of the values of z which belong to Z=2Z, Then we have
directly, from the conformable representation of the preceding
paragraph, the following general theorem :

In the neighbourhood of Zy=1, 0, co, z—2, admits of a develop-
ment in an ascending series of powers:

1 2
(19) z-2,=6(Z-Z)"+b(Z-2Zp) " +. . .
where v i3 to denote the mumbers vy, vy, v, in order and the co-
efficient a s different from zero.

‘We consider now in particular the case Z, = o, z,=0,and the
corresponding developments of 2, z,. The formule (2) to which
we must here return :

g,
¢, T~ Z;
the left-band side contains the factor - multiplied by a rational

function of 2”s, which for 2=0 assumes the valne +-1. Hence
we have first for z the development :

1
. _(xe\n o (1
o ~(3)5(3).
where P (%) denotes a series proceeding according to integral
powers of% of which the first coefficient is equal to + 1. We
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consider now the formulem (17). The quotient occurring in them
breaks up into the product of ; and & rational fanction of 2%,

which again for z=0 is equal to +1. Introducing now for z the
series (20), we obtain from this and (17) the following series :

_l.
A v (5 (2)
1

am (0 (3)

where 9, P,, are series of powers which proceed according to
integral powers of —;— and begin with the term +1.

We shall not return to the formule thus obtained till § 10.
Let us recollect, meanwhile, that ¢ in the case of the dihedron
= —1, for the tetrahedron = + 1, while it has for the octahedron

the value l(l)_8’ and for the ikosahedron the value

@)

- l_
1728

§ 6. TRANSITION TO THE DIFFERENTIAL EQUATIONS OF TUE
THIRD ORDER.

‘We now turn to the consideration of that differential equation
of the third order with rational coefficients which z, as we
asserted above, satisfies in relation to Z. This has its origin in
the property that all the N branches of z are linear functions of
one of themselves, and, in fact, in the following way : understand-
ing by n an arbitrary function of Z let us eliminate generally
between :L,,: l; and its first, second, and third differential coeffi-
cients the three constants a : 8: o : 8. We thus obtain a diffe-
rential expression of the third degree which remains unaltered
for any linear transformations of 1. Now, substitating our 2
for n, this differential expression, in virtue of the property just
explained of the N functional branches of 2, will take a deter-

inate value independent of the branch whick we may choose.
Therefore for n=z the said differential cxpression is @ onc-valued
Sunction of Z, and therefore also (since z is algebraic in Z) a
rational function of Z. Putting it equal to the proper rational
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function of Z, we have the proposed differential equation of the

third order, which 7=z satisfies as & particular solation.
Our first object is to actually construct this differential

expression of the third order. Let l—- -"— l:, or, as we will

write it :
onl—an+8{-B=0,
ly on differentiating ively with respect to Z
y (' + ) —an 437 =0,
7 ('8 + 2T 4 al") —en” 43 =0,
(T 3T + 30T + ALY —an” 437" =0
In the three equations thus obtained, 8 has vanished of itself,

the elimination of the other constants gives, after an easy re-
duction :

| Y r oo
o=! wr P 4

1)

PG WO

or, on separating the variables :

T8 (TN w3 (e
[ (Z_’) Tr 2 (n’_> ’
The differential expression required is therefore :

A3 (a\
e LA
We will in future denote this by [3] or by [n]):* We will,
moreover, here estimate how [7]z varies if we introduce in-
stead of Z a new vaviable Z,. If

_ ._dZ
Z=F(2) 2= & .

* According to a communication for wlueh I am mdebted to Herr Scbmrz.
this jon occurs in L 's on
“Sur la construction des cartes géographiques,” Nouv. Mem. de I'Acad. de
Berlin, 1779. Cf. further Herr Schwarz's often-mentioned treatise in Bd. 75 of
Bomlurdu Jonmd vhm other literary notes are collected. In the “Sitzangs.
berichten der si lischaft of January 1888, T bave tried to demon-
strate what deeper ing is involved in a diffe ion of the third
order [7]=/{2) if we start from the origin of the expression [1)] asit is treated of
in the text.
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there follow in order :

dn _dn

azaz o

an _ &, dn

iz 2+ az &

@ _ d% dn , . n "

azy~ iz L3 £ v ag - T
Therefore
(23) [n)z,=[7]z - Z*+[Z]gz,

which is the required formula. If, in particalar, Z depends
linearly on Z;,
_AZ,+B
2=z, D
then [Z]z, disappears, and we have simply

(21) g =llz- G

§ 7. Connecriox WITH LINEAR DIFFERENTIAL EQUATIONS OF
THE SECOXD ORDER.

Before going farther, we will unfold the connection between
the said differential equation of the third order and the homo-
geneous lincar differential equations of the second order, which
we shall have immediate occasion to utilise. Suppose that, in
general, a linear differential equation with rational coefficients
is given:

(25) Y'+p.¥+q.y=0.

Understanding by #,, ¥,, any two partial solutions of it, let us
put
9= %,
Ys
If we then allow Z to describe any closed path in its plane,
will only be able to pass over into a linear function of itself
48 por after any such ¢ le, 7,, ¥, have only transformed
iy y yele;, Y1 Yz y

themselves into certain linear combinations of y,, y,. Hence we
F
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conclude that our n satisfies a differential equation of the third
order of the kind just considered :

(26) [lz="(2)
vnderstanding by v(Z) a rational function of Z.

Our next object must be to calculate this 7(Z) in terms of the
coefficients p, ¢, of (23). By supposition :

9+ 0 +e. =0,
Yo'+ Y +q. Yp=0.

therefore combining the two equations:
27 0"Y2 = v2"5) +2( v~ 95'11) = 0.
‘We have further :
(28) WY =Wt _y
[

whence by logarithmic differentiation :
w' 3/2 ./g ‘% 9% -7
Wh-%h % 7
or, by virtue of {27):
o o
(29) _n’=_p_2g;:"
On farther differentiation it follows that :
("Y'= _ _z_ Yy
(n’) p-2 Ya *2 )
and therefore, by combination with (29):
1 oo Y
= pP-p 272 -2 , 22,
b]=-3#-p-2%--% . 2
Now the terms which here, on the right side of the equation,
contain y, are just equal to Zg by the differential equation of
the second order to which y, is subject. We therefore find :

(30) [ilp=2¢- 327,

which is the final formula which we sought.
If to every linear differential equation of the second order
(25) there thus belongs a definite differential equation of the
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third order (26), then clearly to every differential equation (26)
belong infinitely meany equations (25). 'We have only to put

(31 2-1p-p=r,

and in this, p (as a rational fanction of Z, if we lay stress on
that point) can still be taken arbitrarily, ¢ being hereupon
uniquely determined (and in fact again as a rational function
of Z if p and r are rational).

Evidently (26) is completely solved, if one of the correspond-
ing equations is so too. Conversely, too, the solutmzs o (25) are
very readily given if the solutions of the corresp
(26) is ngardcd as known. We conclude, namely, from (27) by
integration in the well-known manner:

(32) N~ Y h =k,

understanding by % the constant of integration. Combining
this with (28), there results:

D=0 Yy

1
(33) \/IE 2 fpd2
Yo=A 7" :

The linear differential equation of the d order, therefore,
requires, after previous solution of the corresponding differential
equation of the third order, only & single squese-soet besides in
order to solve it. ;L«.a i Qavw,

§ 8. ActvAL ESTABLISHMENT OF THE DIFFERENTIAL EQUATION
or THE THIRD ORDER Fok 2[Z].
In order now to actually establish the differential equation of
the third order:

[1]z="(2).
which our z satisfies as a particular solution, we make nse of
what is contained in formula (19) with regard to the develop-
ment of (z—zo) in a. series a.coordu.\g to powers of (Z—Z,). We
consider the dev ts in series to be explicitly written
down, and from them a series calculated for [2]z by direct
differentiation. As initial term of this series (which, besides,
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must proceed according to integral powers of (Z—2Z,) since [2],
is & rational fanction of (Z), we have for Z,=1, 0, , respec-
tively :
»2-1 ni=1 v2—1
REZ-TF 2,227 22T
Now I say further, that [2], will certainly not become infinite
for & position Z, which is different from 1, 0, or . At such a
position we have, viz. (as follows again from the conformable
representation) :
2-z=a(Z~Z)+b(Z=Z+. . .

where a = 0, and hence for [z], & series proceeding by integral
powers of (Z—Z,) and only possessing positive exponents.
‘We put in d with these lts :
-1 A4 +2-1 B
A =gaz-Tptz-1tai Azt
where 4, B, C, will be constents, and these we must now so
determine, that the development in series, which r(Z) admits

C,

in sscending powers of 3, in the neighbourhood of Z = oo, shall

2_
)

1
2. 2% The result shows that

A, B, C, arc completely determined by this necessity. In fact, we
have immediately :

possess the initial term just given

B ol a1 n21
C—O’A+B_O’JQ”T+12'7+A—_$W
Introducing these, our differential cquation will be simply :
1,11,
34 N et S, ol SO G
GH Dl DRIV Ay I W A

where now for v, v, v;, the numerical values of our table (3)
may be substituted.*

The three critical points Z=1, 0, o, just because one of
them lies at Z = oo, do not enter into a differential equation

* For the binomial equation (1) we get as the corresponding differential equa-
tion by direct differentiation :
[nk=

n?-1 1
o3 " Z¥
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with a symmetry corresponding to their peculiar importance.
We shall at once remedy this if we introduce in place of
Z as a new variable some linear function of Z, which for
7Z=1, 0, , assames any three finite values a,, a,, @, Making
use of the formula (24), and, further, calling the new variable
itself Z again, we have:

ni-1

®5) Blz=y—g—g a7 —ar | B a,><“1 @) @ - a)

?
2,2 ({" %)( -as) (6 —ay)
* g a4 (=) |

where now, as we see, all desirable symmetry reigns.

§ 9. Lrxear DrrroReNTIAL EQuATIONs OF THE SEcOND ORDER
FOR 2, AND 2,

The developments of § 7 put us in a position to give the
most general linear differential equation of the second order
with rational coefficients :

(36) Y +p. ¥ +q.y=0,
which has two particular solutions ¥,,,, whose quotient is equal
to our z,; we have only to put according to formule (31), (34):
1.1 "
S+ 51
[ 2 1 ’, 2 1 ,_5 v, 2
] 2 t]
- 21’2 Pegrz-iy ag 2t Iz
I say now that among these differential equations there is always
one which the roots zy, 2, of our form-problem satisfy. In fact,
we recognise a priori that z,, z,, must be particalar solutions of
8 linear differential equa.t.ion of the second order with rational
coefficients, Namely, let 2,°, 2, be two corresponding branches
of our functions, then any other branches express th lves
as linear homogeneous functions of these 29 2,°. 'They there-
fore all satisfy the following differential equation :

3/"“ ¥y oy

g
az: 4z ' |-o.
diz0 dznd g
az: Az
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‘We now conclude at once that the coefficients, which 3", ¥/, v,
obtain when this determinant is developed, behave as rational
functions of Z. They are themselves, indeed, without farther
consideration rational functions. For if we replace z° 2,0, by
any other pair of corresponding branches of z, 2, :
az®+ B, 92,0 + 8,0,
these coefficients, since ad— By by virtue of the definition of the
form-problem =1, remain altogether unaltered, according to the
rule for the multiplication of determinants. Our next object is
to seek, out of the totality of the differential equations (36), the
one which z and z, satisfy.
Let 3y, ¥, be two solutions of (36), such that yl_z Then we
will first caleulate generally
Fy (5 90) - Fy vy 1)
X (4, 11y) = 22 Y12 Y9) - X5 Wy s Yo
@ v2)= F Uy %)
To this end we start from the equation

¢ I l)_ g

F s (4, 1)
Differentiating this, and considering as before that F, is always,
save as to a numerical factor, the fanctional determinate of F,
and F;, we obtain (¢’ representing a proper constant) :
. Fpii(z 1) . Fi(z))
Fa"“(z, )]
or, on introducing another appropriate multiplier ¢” :

. F 1)
L mE). R @ 4=t

D 7o,

Here let us now put z—gl Then

’ F\ (yy_3)
“ s 5 (v, _t/..) szg(yp D’ O'v-¥n)=1,

or finally, embodying the symbol X and the formnla (32) also:
37 X (yp v)=k.c". Z. e,
which is the formula we required.
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Now for the solutions #, 2, of our form-problem, not only was
j-;=z, but it was determined that X (%, 2,) was to be inde-
pendent of Z. We shall therefore have to take the coefficients p
of the corresponding linear differential equation in such a way

that Z in g ! disappears from the corresponding formula (37).
This gives, as we see,

e/742=Z or p=—,

Introducing this value into (36), we obtain the differential
equation which we sought. This, after some easy modifications,
runs as foﬂows:

1
38) y'+ 4*4(2 I zr{ ( —,- ,+1) }

§ 10. RELATIONS TO RIEMANN'S P-FUNCTION.

‘We now have all we require in order to calculate by a series
of powers 2, z,, and from them z=:!» in the neighbourhood of

any position Z=2, In fact, we t;aw2 in § 5 how we could deter-
mine in an individual case the nature of this series of powers,
and have now simply to substitute the series itself in (38) in
order to find the coefficients in the series which still remain
unknown. If we wish to effect this in particular for the neigh-
hood of the point Z = oo, we can use the formule (21) im-
mediately.

If I do not more explicitly carry out the step here proposed,
nor discuss more closely the convergence and the analytical law
of prog of the developments suggested, it is because we
have meanwhile obtained all the preliminary conditions for
basing the investigation of the fanctions z,, 2, on & ready-pre-
pared and well-known theory. I mean the theory of Riemann’s
P-functions :

( By,
gy
* For the ions 2,, 2, of the form-problem of the cyclic group, we find in a
similar way :
v'+3 Y__¥ __q.

'z
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and the represcntation of their several bramches by the hypergeo-
metrical series of Gauss* I have already seid that I will not
take for granted any previous special knowledge concerning the
P-fanctions, We may therefore define these functions in the
way which most conveniently fits in with our previous develop-
ments, iz, as solutions of the following differential equation of
the second order :

N o 4 m)[(l—u &)-(+p+B)]
+5’2W [aa’ - (za’ + BB - yy') 2 + BR'22] =0,

where a+a’ + B+ B+ v+« is always to be taken equal to 1.1
Clearly (38) is a special case of (39); to obtain (38) we have
only to write :

2
P=y,z=2, "'—-“=—»ﬂ ﬁ"“ 17 21'»7' ‘l—ly
2
which is reconcilable with the condition a 4+ a’+ B8+ 8 + v+«
=1, since », is in all our cases=2, Therefore 2, 2, are with
reference to the particular value of vy, special cases of the func-
tion ;

(40) P

We can now characterise more precisely our functions 2, z,,
among the general ones denoted by this symbol. It is just for
this purpose that I have established the formul (21) explicitly.

1 1

If in these we multiply 2, by Z%s and 2, by Z %3, the products
.remain finite for Z = oo, and different from zero, and, moreover,

* Any one who wishes to enter on these theories will find it still the best plan,
in addition to Gauss's * Disqni: cnm seriem infinitam,” &c. (1812,
Works, t. iii.), and Kunm:r s irs on the hyperg: ical series (1836,
Crelle’s Journal, Bd. 15), to study the original work of Riemann : “ Beitrige zur
Theorie der durch die Gauss'sche Reihe F (a, 8, , ) darstellbaren Fanctionen™
Bd. 7 der Gottinger Abhandlungen {1857), or Werke, p. 62-82).

+ This differential equation is obtained by an easy modification from that which

Riemann gives specially for P(“ 8 0 ) (Werke, p. 75).
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are continuous in the neighbourhood of the point Z = w. The
formule (21) there denote just such series as Riemann intro-
duced 1. c. under the title P®), P®); only that Riemann leaves
undetermined the first coefficients of P® and P®). If we
choose them, in particular, as is done in the formulw® (21), we can
say, finally, that our 2, z, are specially those among the general
P-functions (40), which spring from the series P®, P®), by any
analytical expansion.

‘With this theorem we have reached the object of the deve-
lopments of the present chapter. I wished to show that our
fanctions 2, 2, 2, belong to those into which the modern theory
of functions, both by its g trical tations and its ana-
lytical weapons, obtams 8, 80 to say, complete insight. Granted
this, we have thus at the same time attained to a point of view
which is to serve us in the second part of our exposition, viz.,
it then appears reasonable to reduce more complicated algebrai~
cal functions, so far as is possible, to our present ones z, 2, 2,

But, moreover, the developments here given can only be con-
sidered, even more so than our other ones, as an infroduction.
In fact, our intention of putting the argument in the most
elemeutary form possible has hindered us from explaining a
point which is really the most interesting, viz., how the linear
substitutions to which we have subjected 2, z,, and z,, respec-
tively in the preceding chapter now come into prominence,
when we look upon 2, 2, 2, as fanctions of Z, and allow the
latter variable to travel a closed path in its plane. We should
also have been able, if we had followed the proposition given in
§ 5 a little farther, to find the direct transition to Riemann’s
P-function withont previously having formulated explicitly the
differential equations. I leave it to the reader to familiarise
himself, by his own stndies and reflections, with these and allied
questions,
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CHAPTER 1IV.

ON THE ALGEBRAICAL CHARACTER OF OUR
FUNDAMENTAL PROBLEM.

§ 1. ProBLEM OF THE PRESENT CHAPTER.

HaviNG in the first place di d our fand tal problem
only under the aspect of the theory of functions, we now treat
it from the point of view of the theory of equations. I
understand by this latter, the aggregate of the theories which
relate to the rational resolvents, i.e., to those auxiliary equations
which any rational functions of the roots of the given equation
satisfy.

A first and important portion of this theory, which distin-
guishes the nature of the resolvents coming generally under
consideration, is formed by those reflections which, in accor-
dance with the fundamental ideas of Galois, are usually de-
noted by his name, and which amount lo characterising the
individual equation, or system of equations, by a certain group
of interchanges of the corresponding solutions (the word group
being taken in the same specific sense which we have explained
in the first chapter). I will,in paragraphs 2—4 following, make
mention of the foundations of this theory so far as seems neces-
sary for understanding what follows, but I refer otherwise to the
text-books already mentioned above,* and this not only for the
more thorough completion, but also, indeed, for the proofs. On this
basis it is very easy to characterise our fandamental problems
in Galois’ sense (§ 3, 6). In particular, it follows that these
must all admit of solution by extraction of roots, with the sole
exception of the ikosahedral equation, whose lowest resolvents
are of the fifth and sixth degrees respectively. I shall, in the

* See remark on p. 6 supra.
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luding ks of this chapter (§ 16), draw attention more
in detail to the prime importance of this result.
Howbeit, it is not sufficient in any given algebraical problem
to know the nature of the resolvents we require, farther, to
tually calculate these resolvents, and thw in the simplest manner.
The second part of the present chapter is concerned with this,
with strict limitation to the questions immediately surrounding
our fundamental problems. I show, first of all (§ 7), how we
can actually construct the auxiliary resolvents by means of
which the solution of the dihedral, tetrahedral, and octahedral
equation is to follow. I concern myself, then, in detail with the
resolvents of the fifth and sixth degree of the ikosahedral equa-
tion (§ 8-15). The particular equations of the fifth and sixth
degree, which we so obtain, will be of essential importance for
our later developments. Here it is primarily the method on
which I wish to lay stress now; a method which makes use
at one time of the theory of functions, at another of the theory
of invariants, and in both directions seems capable of an ex-
tension to higher probl

§ 2. ON THE GROUP OF AN ALGEBRAICAL EQUATION.

Our object now being to define the group which belongs to
each individual algebraical equation from the point of view of
Galois’ theory, we will first consider the classification which we
can derive for the rational fanctions of # variable magnitudes :

Ty Ty v o0 o s noyy

from their behavionr towards the permutations of the 2’s. It
is clear a priori that all permutations of the z’s which leave
unaltered sach a rational fanction form a group which is con-
tained as a sub-group in the totality of the permutations (or,
perhaps, is identical with this totality). But the converse is
also the case ; as soon as any group of permutations of the z's
is given, we can always constract sach rational functions of the
«'s a8 remain unaltered for the permutations of this group, bat
for no other, We call these rational functions of the «'s those
belonging to the group of permutations,aud now classify generally
all rational functions of the 2’s which occar according to the
group of permatations to which they belong.
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‘We must further acqnaint onrselves with the so-called theorem
of Layrange.* Let R and R, be two rational functions of the
«’s, and let B remain unaltered by all permutations which make
up the group appertaining to R, (where, of course, it is not
stated that B must belong to the same group). Let, further,
8,8 .« . . Sy be the elementary sums of powers:

1) :,=Z’z. 32=Zx“, PN 3,=Zx".

Then the theorem alluded to declares that I can be represented
as & rational function of R, and s, s, . . . s, We can easily
generalise this theorem still farther by considering, instead of
R,, a number of rational fanctions: R,, B, . . . to be given,
and assuming that R remains unchanged by all those permuta-
tions which leave R, R, . . . simultancously unaltered. Then
R will be a rational functionof R, R, . . . and the s, s, . . . 5y
In fact, we can compose rationally of the B, R, . . . & rational
function R’ of the z’s which only remains unaltered for those
permutations of the «’s which leave R, £, . . . simultaneously
unaltered. According to the first application which we made
of the theorem of Lagrange, R will then be capable of being
represented rationally by means of this R’ and the s,,s,, . . . 8,
whereapon our new assertion is proved co ipso,
Now let the equation of the n'® degree be given :
f@)=0,

whose roots are to be the z,, #,, . . . 2,_; previously considered.
Then, in any case, we know the values of the s,(1) ; and hence,
by rational processes of operation, the rational symmetric fanc-
tions of tho 2’s generally. But it may happen that some un-
symmetric functions of the 2’s : R, R, . . . are given us. Then
we can, on the ground of the expanded Lagrange theorem, com-
pute genorally every fanction R of the 2’s in a rational manner,
which remains nualtered for all permutations which at the same
time leave R, E, . . . unaltered. Therefore we shall always
have those rational functions of the ’s, and only those, “ rationally
known” (as we will say), which remain unaltered for a determinate
yroup of permutations of the «'s.

* « Réflexlons rur la i fons.” Mem. de I'Acad. de
Berlin, t. iii. (1770-71), or Oeuvrel. t. i m (§ 100 dar Abbandlung).
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The theory here sketched is first applicable, as we said, to
the case of 's altogether independent. But now the point is
that there exists in every special case also an analogous theory.
If, in such & case, we say of a function that it remains unaltered
for certain permutations, we understand thereby that it does
not change its numerical valae. There is always, then, such
a group @ of permatations of the a’s that all rational functions
of the «'s which remain unaltered for @, and only these, are
rationally known. Besides this, the law holds good that all
permatations of & which leave unaltered any given rational
function of the 's in each case form a group, o that, in rela-
tion to the permutations of @, the classification of rational
functions just described and also the theorem of Lagrange are
retained with no exception. The group & is then that which
Galois describes as the group of the equation.*

The difficulties of the Galois theory lie, perhaps, less in the
general theorems here formulated than in the notion of being
“ rationally known” which is employed in them. When shall
we apply this description to functions? We must do so if (in
consequence of special values of %, 2, . . .) they have rational
values, 7.¢., are equal to rational functions of the s; (with rational
numerical coefficients). But we can do so for quite arbitrury
fanctions B, R,, . . . if we assume that we have already by some
means computed the values of R, B, ... We then adjoin,
as Galois expresses it, these R, I, . . . and accordingly widen
the rationality domain, to use the language of Herr Kronecker,t
in which we operate. In this sense the statements which the
Galois theory makes concerning the individual equation f(x)=0
are to & certain degree dependent on our subjective interpreta-
tion. If we adjoin the whole of the roots of f(z)=0, the gronp
of the equation always consists of identity alone.

§ 3. GENERAL REMARKS ON RESOLVFNTS,

Now let G again be the gronp of the equation f{z) =0, N the
degree of the group. The only assamption to which we subject
@ is that of being transitive, t.c., of embracing permutations in

* See “Ocuvres de Galois,” in Liouville’s Journal, t. xi. (1846).

*+ Cf. here, Kronecker, “ Grundziige einer arithmeticchen Theorie der algebrai-
chen Grossen ” (Bd. 92 of the Journal fiir Mathematik, 1881).
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virtue of which the individual root 2, of f=0 can replace any
other root z,, Otherwise f(x)=0 would be reducible, i.e., would
split up into rational factors, and we should therefore be able,
instead of f(x)=0, more effectively to consider the several
equations which arise from equating to zero the individual
factors.

‘We now choose any rational fanction R, of the roots z, such
as does not remain unaltered for all the permutations of @, and
therefore is not rationally known, though it may remain un-
altered for some permutations in namber v, which form & groap
go Yor the permutations of @, R, assumes on the whole

1¥=n' different values :

We then form the equation on which these different values
depend :
(B-B)(R-R) . .... (B-Ry_)=0.

‘We have thus evidently obtained an equation whose coefficients
are rationally known, for they are symmetric functions of the
different R’s, and, as sach, invariant for the permatations of G.
This is what we denote as a resolvent of the foregoing equation
f(x)=0, and indeed, when this may be of importance, as a
rational resolvent, inasmnch as on it a rational fanction of the
’s depends.

We inquire as to the totality of the different kinds of resol-
vents which f(x) =0 possesses, In this respect we may make
the following convention beforehand. If we had chosen instead
of B, another rational fanction of the roots, which equally apper-
tains to g,, it would, by Lagrange’s theorem, admit of rational
expression in terms of R, and the knmown rational quantities;
the new resolvent would therefore result from the former (and,
similarly, the former from the new onc) by rational trangforma-
tion. We will agree to look upon as altogether identical two
resolvents of this kind in the general survey of them which
will be given here. Then to every group g, there appertains
always only one corresponding resolvent.

But the same resolvent also arises if we start from certain other
sub-groups instead of g, 1In fact, instead of beginning with the
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root Ky, we can, in the construction of the resolvent, just as well
put one of the other roots R,, R, . . . in the foreground. Then,
in place of g, those groups of permutations of the 2’s occar
which respectively leave unaltered R, R,, ... and which we
will denote by g;, g5, - . . . We inquire how these g's are con-
nected with the original g,. Let S; be one of those permutations
of the a’s by which R, is transformed into RE,; the totality of
such permatations will then be given by S;7'?, understanding
by I'® the several permutations of g, in order. 'We now com-~
bine with ;7 the inverse operation ;. Thus R, is trans-
formed back into R, Hence R; remains nnaltered for all per-
mautations :
TO=48,.T° 8

Now, conversely, from every 7% for which R; remains analtered
a 7% can be derived by the corresponding lemma in the form:

=§71.1%, 5,

This formala is, a8 we see, the immediate solation of that just
given ; we have therefore in this latter defined the whole of the
permutations generally which leave R unaltered, <.c., the group
g The group g, therefore proceeds from g, through transfor-
mation by S,

Now ; (if we take into consideration all the roots Ry, R,,
... R,_)) can here be any arbitrary permatation of ¢. For by
S;7! every one of the R; must proceed from B, Consequently,
we can describe the groups g,, g, . . . gu, 88 the totality of
those which exist within & by transformation from g,. Such
groups we have previously described as associates. Hence we
have, finally, to sam up what has gone before, the concise
theorem : that there are as many different kinds of resolvents of
@ proposed equation f(x) =0 as there exist different systems of
associate sub-groups within the corresponding group G.

‘We now determine the group [ of the individual resolvent
so obtained. I say that it. will be constructed of those permu-
tations of the R’'s which occar when we subject the 2's to the
permutations of G. For a rational function of the s is, at the
snme time, when considered as a fanction of the z's, nnchanged
for the permutations of @, and, conversely, it cannot be the
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latter if the former is not the case. The group [ is, therefore,
for every case, isomorphous with the group &.

Here we must now make an important distinction. The
isomorphism which has been found can be holohedric or meri-
hedric. The latter occurs then, and only then, when such per-
matations of the &’s exist within &, as leaye unaltered the whole
of the Rs; these permutations will then form a group «, which
is self-conjugate within @. The resolvent plays an entirely
different part with respect to the original equation in the two
cases.

In the first case, we can compose rationally every rational
function of the 2’s, and in particular the a's therselyes, from
the B/s with the help of the known quantities. The original
equation is, therefore, itself a resolvent of the resolvent: the

lution of the one equation ensares that of the other, and con-
versely. On replacing the equation f () =0 by its resolvent, it
is trae we have attained a modification of the original problem,
but in no way a simplification thereof.

It is quite otherwise in the second case. The z’s are in it
by no means rational in the R/s. If we have compated the
R/s, the original equation f{z)=0 has yet to be solved. This
problem is now simplified only so far as the group & is now
(after adjunction of the R;'s) replaced by ¢.* Bat for this the
determination of the Rs themselves is more easy to carry out
th:m the computahon of the #’8: for the group [ of the corre-

tion s ller than G. We have therefore
decomposed the original problem into two steps of a more
simple character.

Clearly the resolvents of the second kind are the more impor-
tant. They can only ocour when the group & of the proposed
equation is compound. By studying in sach a case the decom-
position of @, we have, at the same time, the means of simplify-
ing, step by step, the equation f(2)=0, by means of a complete
geries of resolvent auxiliary equations, It is just this significance
of resolvents which the ordinary theory makes use of in the
solation of the equations of the third and fourth degrees.

* Hereby fiz)=0 may possibly have become reducible (even if y, when ex-
pressed 1n terius of the z's, Is not transitive).
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§ 4. THE GaLOIS RESOLVENT IN PARTICULAR.

According to what has just been said, all resolvents whose
group is holobedrically isomorphous with the group & of the

proposed equation f(#)=0 rep , in the abstract, equiva-
lent problems. But there is one amongst them which, for the
purpose of algebraical exy P quite a special

significance : ¢ is that which we are accustomed. to call by the
name of the Galois resolvent, and which is defined by the fact
that its individual roots are unaltered for every permutation of
the @'s which is contained in @. Therefore the groups gy, g, . . -,
which we just now made to correspond to Ry, R,, . . ., then all
rednce to identity, and It: ----‘y the degree of the re-
solvent will be as high as possible, viz., equal to N. On the
other hand, it offers this advantage, that we need only compute
ome of its roots. In fact, by Lagrange’s theorem all rational
fanctions of the 2’s must express themselves rationally in terms
of this one root and the known quantities.

But let us consider more closely the properties of the Galois
resolvent.

First as regards its group ; for every one of the N-operations
of the group @, each of the N-roots

RyB, ... Ry,

will be replaced. There are therefore no two operations of ¢
which wonld both bring the same root R, into the same posi-
tion R, : the individual operation is fully determined provided
only we know in what way it influences an individoal R, In-
troducing the notion of transitivity, as it has already been used,
we can say :

The group [ of the Galois resolvent 18 just simply transitive.

‘We can, therefore, denote the individual permatation of [ by
the index of that root B, which proceeds from R, by means of
it. In this sense we will forthwith make use of the symbol ;.

We now express rationslly, by means of the theorem of
Lagrange, the different roots By, R, . . . Ry_,, in terms of the
first of them. Inp this manner &V formul® arise, which we write
in the following way :

®@ Bo=by(Bo), By=dy (B) - . . R,_1=~Pn-x(Ro2;




98 THE ALGEBRAICAL CHARACTER OF

Here the yv's denote rational fanctions of the panying
argament, which are only so far completely determinate that
we will not modify it by the help of the Galois resolvent itself,
and yY(B,) is of course only written instead of R, itself for the
sake of uniformity. We select one of these formul® and write
(neglecting the former indices of the R's) :

) B =\(R),

and consider the Galois resolvent transformed by the help of
this formala (by eliminating the R bet the resolvent and
the formala (3). Thus arises an equation of the degree AV for
R which, in any case, has the root R; in common with the
original Galois resolvent. Now, the resolvent is by hypothesis
irreducible. Hence the two equations of the N'** degree have all
their roots common, 4.c., they are identical. We have therefore
the theorem :

The Galois resolvent will be transformed into itself by the N
rational transformations (3).

If we therefore substitute in formula (3), instead of R, any
root R,, B will become equal to another root R;. Bat, instead
of R,, we can write yy(R,), and v(R,) instead of R, Hence:

VA Bo) = hol(Ry)
and therefore generally :

+=Vobn

80 far, namely, as we disregard the changes which can be
wrought on the individual symbols of this expression by the
help of the Galois equation satisfied by the R, In this sense
we have:

The N rational transformations (3) form a group.

‘We ask how this group is connected with the Galois group [
If we replace, in the formul® (2), the R, on the right haud by
Ry, Ry, ... Ry_, in order, we obtain on the left-hand side,
in consequence of what has just been said, the roots R; again,
in each case in unaltered sequence. We obtain, therefore, NV
different arrangements of the R’s, and now the assertion may
be proved that those N permutations, by which these arrange-
ments proceed from the original arrangement, just make up the
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group [. For this purpose we will show that a rational func-
tion of the R,'s
F(By R, ... Ry_)),

which remains unaltered when we replace the sequence R,
R, ... Ry_, by any of the other N orders in question, is
rationally known. In fact, every rational function of the R/s
can in virtne of (2) be compressed into the form $(R;). If,
now, F submits to the changes mentioned, it will be just as
truly equal to $(R)), or equal to P(R,), &c., understanding in
every case by & the same rational function, Therefore also

For[0R)+OR)+ . . . ®(By)];

therefore F is equal to a symmetric function, and hence, in
fact, can be rationally compnted, as was asserted.

The relation between [ and the group of the transformations
(3) thus found we will investigate more closely. If we put B*
instead of R, on the right-hand side of (2), R, appears also on
the left~hand side in the first position. We therefore obtain
the same order of the R,’s as proceeds from the original one by
the operation S, of [ Now writing instead of R, (on the right-
hand side) ¥ (&,) throughout, we can say as follows:

The operation 8, is that whick replaces ¥(By) (1=0,1, . . .
(V=1)) by Yoda(B).

Similarly the operation S, will be that which replaces y(R,)
by Yapi(R,), or, what is the same thing, which replaces ¥y (B,)
by Y (R,) (where in both places we will allow ¢ to range
from 0,1, to (N-1)). If we combine the two theorems thus
obtained, by applying first S, and then S, it follows that:

For the operation S8y, i (By) will be replaced by Yolnoyy(By).

The relation which we find in this form between the groups
of the §s and of the 4's is at first by no means ome of
isomorphism. For .S, denotes that we first apply S, and then
S, while Y,y (R,) says that we first compute the 4, of Rj and
from it the ;. But we can directly so modify the relation
that isomorphism results. To this end we need only make S,
to correspond to the inverse operation ¥ —%. In fact (Yrdy) =2
=vY;~1.4,~1 Hence we have:
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The groups of the S's and of the 's are holohedrically iso-
morphous.

The theorems thus formulated are the more important because
we can reverse them without farther trouble. In fact, we find,
if we repeat what has been already said in a different order:

If an irreducible equation of the N degree is transformed into
tself by N rational transformations :

R=Vo(R BE=Y%(B) ... ,
it is its own Galois resolvent, and its group [ stands to the group
of the Y's in the relation just explained *

If, then, for such an equation, a rational function of the roots
is constructed which remains unaltered for the permutations S
of a certain sub-group contained in the Galois gronp, and thus
can be introduced as a root of a corresponding resolvent, it is
sufficient to establish a rational function of the single root R,
which will, for the corresponding +’s, be transformed into
itself ; for the sub-group of the ’s contains at the same time
all the (¥~1)’s, and, therefore, corresponds to the sub-group of
the S’s in the icomorphous co-ordination.

§ 6. MARSHALLING oF OUR FUNDAMENTAL EQUATIONS,

I have fashioned the foregoing paragraph in such detail in
order to be able to now marshal directly our fundamental
equations in the scheme of the Galois theory, to wit, the bino-
mial equati and the equations of the dikedron, tetrahedron,

tahedron, and ikosahedron. Let us first agree that our egna-
tions are irreducible. From the considerations based on the
function theory it follows, viz., that the N-function branches,
which are definited by the individual equations, on regarding
in each case the right-side Z as independent variable, are all
connected with one another. Therefore the hypotheses are exactly
Sfulfilled to which the concluding theorem of the preceding para-
gragh relates. For the N-roots which an individual one of our
equations possesses do in fact proceed from any one of their

* This theorem must not be confused (as it occasionally has been) with the
definition of the Abelian equations. For these also there are N rational trans.
formations R'=y(R), but it is further assumed that the ¥’s are permutable, and

* that therefore yuWx = Wi
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number by N rational transformations, viz., by the N linear
substitutions well known to us.

Thus we have at once : our equations are their own Galois re-
solvents, and we can now immediately draw further conclusions
by adopting what was said above concerning the groups of the
corresponding (non-h ) linear substituti

Let ns first select, sny, the octahedron, and recall that the
group was composed of the 24 octahedral substitations. In it
the tetrahedral group of 12 substitutions was contained as the
most comprehensive self-conjugate sub-group; in this again
the quadratic gronp (of 4 substitutions), and in the latter,
finally, a cyclic gronp of 2 substitutions. We conclude there-
fore: that we can solve the octahedral equation by a series of
4 auxiliory equations whose groups are respectively ?;, 12 4 2,
.., 2, 3, 2, 2 permutations. A group whose degree is & pnme
number is necessarily a cyclic gronp. If we now add to this
that every cyclic equation of the n** degree can be replaced by
s binomial equation of the n'* degree,® we recognise that : the
octahedral equation can be solved by extracting in succession a
square root, then a cube root, and, finally, two more square roots.
‘We will confirm this in § 7 by explicit formule.

As regards the tetrahedral equation, this is itself solved at
the same time by what was said concerning the octahedral
equation; for the tetrahedral group is a self-conjugate sub-group
of the octahedral group. For the dihedral equation of degree
2n, we find that it must admit of reduction to a binomial
equation of the 2™ degree by extraction of a square root. And
finally, the solution of the binomial equation itself can then,
and only then, be decomposed into several steps when its degree
is & composite number.

Thus the tkosahedral equation stands alone by the side of the
binomial equation of pmne degree, as the only one of our equa-
tions which we cannot reduce by the construction of resolvents.

* The equation of the nth degree is called eyclic if ita Galols group is cyclic,

and therefore contains, say, only the permutations of (g, 2y, . . . Zn-1). The
method then consists, as is well known, in introducing as the unknown the mag-
2ir

pitude zo+ezy . . . ®-lzq_), wheree=e¢ ™
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If we wish to construct resolvents for it as well (as we do in
§ 8 following), our earlier researches on the ikosahedral group
teach us that, as the lowest resolvents, those of the 5th and 6th
degrees come nnder consideration. The former correspond to
the circumst that the ikosahedral group contains 5 associate
tetrahedral groups; the latter to the other circumstance that
it contains 6 associate dihedral groups of 10 operations each.
These resolvents will in both cases possess again a Galois group
of 60 permutations. We can say directly, from what has gone
before, that these, for the resolvents of the 5th degree, are the
60 even permutations of the roots, and that, therefore, the pro-
duct of the differences of the roots must be rational. We shall
not determine more exactly the group of the resolvent of the
6th degree till later on (§ 13).

‘While we thus take advantage of the resnlts of our previous
investigations for dealing with the Galois theory, we must cer-
tainly not overlook one important circumstance. We are only
entitled to reckon the linear functions of our substitution groups
among the rational functions 4 of the preceding paragraph, so
far as we suppose the coefficients occurring in the formul® of
the linear snbstitutions as rationally known, These are certain
roots of unity. We must therefore suppose these roots of umity
adjoined, in order that the foregoing statements may be accurate.
In the case of the ikosahedral equation, for instance, we must
adjoin the 5th roots of nnity, 4.., the numerical irrationalities
which are determined by the equation :

*-1

z-1
Let us explain by this example the conseqnences which would
otherwise ensue. It is known that the foregoing equation of
the 4th degree has a cyclic group of 4 permutations,* a group
therefore which contains a self-conjugate sub-gronp of 2 permu-
tations. We conclude that the ikosahedral equation now pos-
sesses a group of 4.60 permutations among which a sub-group
of 2.60 permutations, and then one of 60 permutations, is self-
conjugate. This new group of the ikosahedral equation need
by no means ily be transferred unchanged to the indi-

* See, ¢.g., Bachmaan, *Die Lehre von der Krelsthellung,” Leipzig (1872).

=0,
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vidual resolvent of the ikosahedral equation. Indeed, for the
resolvents of the 5th degree this is a priori not possible, since
their group can never contain more than |5=2.60 permuta-
tions. In fact, only ,/3 occurs as a numerical irrationality in
the formule which we shall establish in § 14 for the differ-
ence product of our resolvent of the 5th degree, so that the
adjunction of the individual 5th root of unity is by no means
necessary to reduce the group of the resolvent to only 60 per-
mutations. We do not pursue this matter further, because it
would involve us too deeply in considerations appertaining to
the theory of numbers *

§ 6. CONSIDERATION OF THE FORM-PROBLEMS.

‘We further consider in a few words the form-problems which
run parallel with our equations. These are systems of equations
with, in every case, two unknowns, z,, 2, 'We shall be able to
apply the fandamental ideas of the Galois theory throaghout to
these systems of equations by substituting, whenever in these
latter mention is made of the roots of an equation, the indi-
vidual pairs of solutions z,,2,, In particalar, we shall then be
able to say that our form-problems are their own Galois re-
solvents. In fact, all the 2N systems of solution which our
form-problems possess are derived from the individual systems
of solution by 2.V linear homog; bstitutions, which are
known a priorit It is here, therefore, the homogencous linear
substitution-groups of our earlier exposition which determine
the Galois group of the problem in question.

These homogeneous groups were all compound, inasmuck as
they contained a self-conjngate subgroup, which consisted of
identity and the following operation :

o= =ty

* We have, in the text, represented the Galois theory as pmt\ully known,
and then deduced from it properties of the ikosahedral &c. On the
other hand, the beginoer cannot be too strongly recommended to reverse the
whole method of consideration, and to employ the properties of the ikosahedral
equation, &c., in order to extract from them, as a simple example, the general
ideas of the Galois theory.

+ The roots of unity here occurring figure in the text again as adjoined
quantities.
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‘We thence conclude that our form-problems must always admit
of solution if we first solve an equation with a group of N per-
mutations, and then extract a square root. This is now just
what we have already effected in § 2 of the preceding chapter,
while dealing with the reduction of the form-probl It will
be superfluous to spend further time over the details of this.

§7. THE SoLUTION oF THE EQUATIONS OF THE DIHEDRON,
TETRAHEDRON, AND OCTAHEDRON.

Turning now to the communication of the proposed formula
of solution for the dihedrom, tetrahedron, and octahedron, we

again with the ideration of the octahedral equa-
tion. We write it as before :

ws
“) Tosa=2-

‘We will then introduce, as a root of the first auxiliary equation,
such a rational function wf z as remains unaltered for the 12
tetrahedral substitutions. It is clearly the simplest plan to
chose for this the right side of the corresponding tetrahedral
equation. Denoting this by Z,, we have :
. [

(D) 7 Zl.‘

‘We further choose, as the unknown of the second auxiliary
equation, corresponding to the quadratic group,

& -2
® -Gz,
and, finally, as the unknown of the third auxiliary equation, the
right side of the binomial formula :

® (@)-z
The fourth auxiliary equation will then simply arise in calcu-
lating from this Z, the 2 =z itself,

In order now to actually construct the auxiliary equations on
whickh Z, Z,, Z, and, finally, :‘—’ depend, we need only recall
that all rational functions of 2, which.remain unaltered for the
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totrahodral anhatitnts e

, aTe 1 in Z, ; that, similarly, all
rational functions of z, which remain unaltered for the substi-
tutions of the quadratic group, are rational in Z, &. Hence
(if we further consider the degree of the fnnctions in question)
Z is a rational function of Z, of the second degree, this again a
rational function of Z, of the third degree, Z, in its turn a
rational function of Z; of the second degree, and Z itself, as
is already noted in § 7, a rational function of # of the second
degree. A glance at our earlier formule suffices to actually
construct these rational functions. We find in order:

® e L

o G- )
(10) (_32_1)’ Z,

and finally, as is self-evident :

a G-

It is just these formulee, in which we now consider Z,, Zy, Zy, and
z in order as the unknown, which are the ouxiliary equations
we sought. It will be observed in particular, that the cubic
auxiliary equation (9), as we had proposed, only needs a cabe
root for its solution.*

The tetrakedral equation is, without further trouble, solved by
the way in these formulz. In fact, we need only, in order to
deal with it, allow the sequence of auxiliary equations to begin
with (9). Butthe g 1 dihedral eqnation also :

Gty
(12) e =%

offers no difficulties ; in order to reduce it to a binomial equa-
tion, we need only, exactly as we did just now in the case of the
quadratic group, introduce as the new unknown,

3) (%)‘ =z,

* The appearance of the jrrationality a in (9), which distinguishea it from the
rest, is the equivalent of the fact that, in order to reduce a cyclic equation of the
third degree to the binomial form, we have always, as we remarked just now, to
bring a to our assistance,
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‘We have then for Z, the quadratic equation :

_(Z =12
(14) ( '

and afterwards cnlcnlnte from the binomial equation (14).

§ 8. THE RESOLVENTS oF THE FIFTH DEGREE FOR THE
IR0SAHEDRAL EQUATION.

Turning now to the ikosahedral equation, we investigate
first, and in detail, the resolvents of the fifth degree. We
here use from the first the same fundamental theorems as were
applied in the preceding paragraph. For the individual tetra-
hedral group contained in the ikosahedral group a triply
infinite number of rational functions of the twelfth degree of z
remain unaltered, as we previously ascertained, which fanctions
express themselves linearly in terms of any one of them, which
we will call 7, but which we will only fully define later on.
Introducing this » as the unknown, the required resolvent of
the fifth degree takes the form :

(15) F(r)=2,
where F is a rational function of the fifth degree with numerical

coefficients, and Z is the right side of the ikosahedral equation.
Our object will be to determine ¥, This is, of courss, at once

attained if we establish » explicitly as a function of 2, and sub-

stitute, besides, the left side of the ikosahedral equation. How-
beit, the matter is somewhat more complicated than in the case
of the preceding paragraph, and hence I intend to develop in
the following paragraph a method by which we can determine
the value of F(r) without recurring at all to the formnie in z.*
By the side of this first, which might be called the function-
theory method, th ts itself —the invariant method.
This blends wnth the homogeneons substitutions of kS and
the corresponding forms which remain unaltered ; it is related,
therefore, in the first place, to the problem of the ikosahedron,
* I have repeatedly used this method in Bd. zii. of the Math, Annalen, p.

175, and Bd, xiv. p, 141, 416, &o. (1877-78), in order to establish equations
defined in an analogous way.
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and we shall only in a suppl ary hange the
results obtained from it into resolvents of the ikosahedral
equations,

We have in'§ 1 of the preceding chapter collected, for each
of the homogeneous groups of substitutions there described,
the complete system of the corresponding entirely invariant
forms. For the 120 substitutions of the homog ikosa-
hedral group these are the forms f, H, T, themselves. On the
other hand, for the 24 substitutions of the homogeneous tetra-
hedral group there are the corresponding octakedral form, the
associated cube W, and a form of the twelfth degree, y, for
which, however, we can now put f, which is a linear combi-
nation of #and x. The most general entirely invariant tetra-
hedral form is therefore an arbitrary integral function of ¢, W,
and f (homogeneous in 2, z,).

Let G be suck a form. Assuming that it does not, at the
same time, remain unaltered for the ikosahedral substitutions,
we obtain from it, by means of the ikosahedral substitutions,
5 different forms, which we will denote by Gy, Gy, . . . G,. We

construct the product:
l l G-&).

Here the coefficients of the different powers of @ are sym-
metric fonctions of the G,’s, i.c., ikosahedral forms. Hence @
will satisfy an equation of the fifth degree :

(16) G +al + @B+ +dG+e=0,

in which the coefficients @, b, . . . are integral functions of the
f, H, T. The calculation of these coefficients is achieved im-
mediately. For since we know the degree of the @,'s in z,, z,
we know a priori that a, b, ¢, . . . can be composed linearly
only of determinate combinations of £, H, T, finite in nomber,
and all that is then required in order to determine the remain-
ing nnknown numerical coefficients is a comparison of a few
terms in the explicit formulw for £, H, T, and G,

In order now to transform the equation (16) into a resolvent
of the ikosahedral equation, we will multiply G, or divide,
respectively, by such powers of f, H, T, that there results a




108 THE ALGEBRAICAL CHARACTER OF

rational function of null degree of z, 2, .., a rational function
of 2. We have then simply to introduce this function in (16)
o3 the unknown, instead of G, whereupon the coefficients a, b, ¢
. will be of tk Ives transformed into rational functions
of Z.
So much for the invariant-theory method.* To carry it ont,
I first compute in § 10 the explicit values of ¢ and W. I then
give in §§ 11, 12, the prepared equations on which 7, on the one
hand, on the other an arbitrary linear combination of W and
t W, depends, equations which can then at once be changed
into resolvents of the ikosahedral equation. The first of these
quations is also especially remarkable, because it has already
occurred (certainly on quite different assumptions) in the earliest
researches of Brioschi + on the solution of equations of the fifth
degree, as we shall have to describe more in detail later on.
The other will play an important roll in our theory of the prin-
cipal equation of the fifth degree, whick we shall develop in
Chapter IL of the following Part, and may therefore be here
at once described as the principal resolvent.} In § 13 I then
explain, further, how these new resolvents of the fifth degree
are connected with the resolvent of the »’s (which was furnished
by the function-theory method), and finally determine (in § 14)
for it the value of the particular product of differences, which,
as we know, must be rational in Z.

§ 9. THE RESOLVENT OF THE 7’s.

To compute the resolvent of the +’s (15), we first of all split
up F(r) into numerator and denominator, and take the par-

ticular value Z=1 into ideration, and therefore write,
instead of (15) :
a7 () : ¥ :x(=2:2-1:1,

* 1 gave this, in the form here used, first in Bd. xii. of the Math. Ann. (1877),
p. 517, &e.

+ See “ Annali di Mntemhen, Ser L i, ]858.

+ I first d the , in 8 hat lesa simple

form, however, in Bd, xii. of the Almslm, p- 525. It is also implicitly the foun-
dation of the parallel investigations of Gordan, which we shall only describe in
detail in the following Part (see in p lar Bd. xiii. of the Annalen, “ Ueber
die Aufissung der Gleichungen 5 Grades,” 1878).
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where ¢, ¥, x will be inteyral functions of the fifth degree.
Now combining the original ikosahedral equation

Bz): — T2(2) : 1728 f0 (3) =2 :Z-1:1,

with this we remark, that ¢=0, y»=0, ¥=0, give respectively
those values of r which are inserted for the 20, 30, and 12
points of H=0, T'=0, and f=0. The consideration of the
figure gives us accordingly certain theorems concerning the
linear factors of ¢, ¥, x-

It is clear, in the first place, that the aggregate of the points
/=0 will be permuted amongst themselves for the 12 rotations
which leave r unaltered (i.., for the 12 rotations of the cor-
responding tetrahedral group). Therefore r will assume the
same value for all points of f=0. Hence x(r) is necessarily the
Jifth power of a linear expression. We consider farther the 30
points 7'=0. Amongst these are found, above all, the 6 sum-
mits of the octahedron belonging to the tetrahedral group
(which we just now denoted by ¢). The remaining 24 points
are divided (as is evident on a model) in virtue of the tetra-
hedral rotations into twice 12 associated ones. We hence
conclude that J(r) contains one simply linear jfactor, and two
others counted twice. As regards these multiplicities, let us
remark that yY+(r) =0, corresponding to the term 7%= (z) of the
ikosahedral equation, must represent the aggregate of points
under consideration, counted twice. The linear factor, however,
which vanishes at the 6 octahedral summits, will be of itself
twice equal to zero; it need therefore be only counted once as
contained in yY»(r). On the other hand, the two other linear
factors, on the same grounds, vanishing as they do in sets of 12
different points, and therefore only once vanishing, must occur in
¥ counted twice. This agrees with the fact that the one linear
factor presenting itself in (r) is to be taken quintuply. We
consider, finally, the points ¢(r)=0 or H=0. Among them
are found, as we know beforehand, the 8 summits of the cube
W appertaining to the tetrahedral group. These distribute
themselves in virtue of the tetrahedral group into twice 4 co-
ordinated points, of which each remains fixed for 3 tetrahedral
rotations. We have, in addition to these, 12 more points of
H=0, which in respect to the 12 tetrahedral rotations form a
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single group. Hence we conclade that ¢(r) possesses only 3
different linear factors, of which the two which correspond to
W =0 occur simply, while the third occurs as a cube.

Summing up, we have reached a resalt which expresses itself
when we replace the formula (17) by the following :

Z:Z-1:1=¢ (r-ap (r2=PBr+9)
a9 o (r=2) (R-ers D2
e’ (r=n),
understanding by a, B8, v, . . ., ¢, ¢, ¢,” constants which are still
unknown.

The determination of these constants is a problem which is
only determinate when we have previously defined » in an
unambiguous manner. Let 7 be one of the triply infinite
number of rativnal functions of the twelfth degree, which
remain ltered for the rotations of the tetrahedral grouwp.

We will now put, in particular, r=f—;,, understanding by ¢ (as

above) the octahedral form appertaining to the tetrahedral
group. Here ¢ should be so chosen that, when arranged in
powers of z;, 2, it begins with the term -+z°and has altogether
real coefficients.* Then the first result is that, in (18), ¢”
(r—mn)® is equal to € (since it is only to vanish for » = o), and
therefore ¢ is to be put =¢’ while § vanishes. We have further

that € is to be taken = —1728c. For f, in consequence of
our convention, reduces itself, for a very large value of —:—’;, to
5; as a first approximation, while Z (in virtue of the ikosa-
hedron) is o be replaced by 17 28:2“ Finally, it follows that all

the coefficients in (18) will be real. We have therefore now so
simplified formula (18) that we can write :

* Both these conditions can be satisfied, as a gllnce ot the figare shows, For
on the one hand, each of the 5 octahed g in ion with the ikosa.
hedron contains a tern with 2% because none hu a summit at z=0, and, on the
other hand, amongst these octahedrs is found one which has the meridian of real
numbers for its circle of symmetry,
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T Z:Z-1:1=(r—a)} (:*-Pr+y)
(19) i (P -er+ QP
: - 1728,
understanding by a, B, v, €, L, real constants,

Now a, B, v, ¢ { must in any case, in correspondence with
this formula, be so determined that the following relation is
identically true:

(20 (r—a)s (r2=Br+9) + 1728=r (12— er + {)2.
On treating this identity by appropriate means, we recognise
that, with its help, a, 8, v, ¢, {, are fully determined. Namely,
we have first, on putting in (20) 7=0:
a%y = + 1728,
Then, on differentiating (20) with respect to 7, we find farther:
(r2 - a@)? (512~ (2 + 4B) 7 + (a8 + 37))
= -+ ]) (512340,
or, since (PP—er+%) and (r—a)? are necessarily prime to one
one another:
¢ = 2a+ 48, 10a=3¢
5l=aB+3y, ba®=],
therefore (by eliminating ¢, £):
11a=38, 64a?=9y,
and by combination with the relation first found :
ab=35%
But now a is to be real. Thus we have a=3, and hence
B=11, y=64, e=10, {=45. The resolvent of the » rums
therefore simply thus:
Z:Z-1:1=(r-3) (2= 11r+ 64)
(21) i (12— 10r + 45)2
. 1 ~1728,

§ 10. CompuTATION OF THE FORMS ¢ AND W.

‘We now give a supplementary computation of the forms ¢ and
W, whereby, on the one hand, we attain to an explicit exposi-
tion of the connection between the quantity 7, used in the pre-

ceding paragraph, and the :‘2 of the ikosahedral equation, and,
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on the other hand, obtain the necessary foundation for the
invariant-theory method.

‘We remarked in § 12 of the first chapter, that to that
tetrahedral group which we have here to consider belong the
rotations :

T, 0 T,

to which we then made to correspond, in § 7 of the second
hapter, the substitutions:

. (¢-9) z+(3-¢)
(@G z—(d=q)’
1

-
. @—e’;z-{-(t—t‘!

(e—€t) z2—(2—¢)

‘We pute, in a homog form, for the pairs of points
which remain fixed for these substitutions the following equa-
tions:

7?2-2(¢+ )55 -5 =0,
22 +2%=0,
72 =2(c+e) 2z -2 =0.

But now the octahedron t will be constructed with just these 3 pairs
of points. On further reflecting that the form ¢ must contain
the term +2,°% we have, accordingly, for the latter:

Lo m) = (07 +87) - (&~ 2 (5 + ) 23— 27)
(22) (@ —2(¢+ ) 2z -5
=25+ 2%, = 522" — Syyfat - 225 4 2%

If we now wish to compute the corresponding W, this can
be done, according to our earlier developments, on establishing
the Hessian form of (z, ). We may farther agree, as it is
convenient for our later calculation to do, that W(z,, 2,) is to
contain the term —2z8 We have thus:

Wi, )= =20+ 25~ Toft ~Talsb

+ 7208 + T5%0 — 25 - 2,
and we have thus already achieved the first object of the present
paragraph.

@9
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‘We now subject £ and W to the operations :
Briz)=4eé.2,2/ =+ .z,

Thus arise, respectwely, those five values which always come
under id ly in the case of our equations
of the fifth degree, and which we will call ¢,, W,. We find:
249 by (2 29) = €728 + 2 P27, — B €72, 42)2
— 5 ez %2yt — 2 82,200 + €22,
W, (2, 2) = — 42,8 + 2,72, - T 92022 — T 52,3 + T etz 2%
~ T 22,8 ~ 2227 — 2,5,

Here we will inquire expressly how the five ¢,'s or W,’s are
permuted under the 120 homogeneous ikosahedral substitutions.
This, however, is derived already from the statement which we
have made in § 8 of the first chapter concerning the correspond-
ing geometrical fizares; but it seems useful to blend the rule
in question explicitly with our present formule. We have
generated the 120 homogeneous ikosahedral substitutions from
the following formule by repetition and combination :

(25)

8: z/=%6, 2= ey,
T: +3J5-2/= (=) 2, + (- )z,
£ /55 = +(E= )z +(e— )2,
Introducing now these values of z,’, z,, instead of 2, 2, in the
forms ¢, (or the #,), new forms ¢, arise, whose connection with
the original ¢,’s is given, after a little calculation, by :
8: =t
2 : Y , .

) {T= =ty i =lyy by =ty tg =ty b =ty

Here, in the formula for S, the indices are taken with respect
to the modalus 5.

§11. Tue RESOLVENT OF THE ’s.

‘We now first compute the equation of the fifth degree which
our ¢,’s satisfy. 'We write, in correspondence with the formula
(16):

Grat+ b +c2+dl+e=0;
a,b, ¢ . .. will thus be respectively of the 6th, 12th, 18th . . .
degrees. Now, they are ab the same time to be integral fanc-
H
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tions of f, H, I. Hence ¢ and ¢ must in any case vanish,
while b, d, ¢, will be respectively proportional to £, /2, . Our
equation of the fifth degree will therefore have the following
form :
Cruf B+A2 (+uT=0,
where «, A, u, are numerical factors. To determine them, we
either introduce the value of ¢ (22) and the values of f, H, T,
as we exhibited them above, into this equation, arrange them
in the order 2%, 2%, . . . and require that the three highest
terms which do not vanish identically shall be reduced to zero
by appropriate values of &, N, u; or, again, we determine, in
the appropriate symmetric functions of the ¢,’s (24), the highest
term which does not vanish in each case, and compare this with
the highest term in f, /2, 7% In both cases we get:
k=—10,A=45,p= -1;
and our equation of the fifth degree thus runs as follows :*
@0 107 8+4572. ¢~ T=0,
In order now to pass to a resolvent of the ikosahedral equa-
tion, we put, say,

(28) w2

(where now u depends on 2 alone). Thus we have, by a simple
substitation :

(29) 48u5 (1 - Z)2 - 40u° (1 - Z) + 150 - 12 =0.

I shall h forward denote this equation as the lvent of
the w's.

§ 12. THE PRINCIPAL RESOLVENT OF THE Y’s.

In our later researches on eqnations of the fifth degree, those
equations in which the fourth and the third power of the
unknown are wanting simultaneously will play a particularly
important role. The equation of the fifth degree, which our
W,'s satisfy, evidently belongs to them, For we have 3 W, =0,
X W,2=0, inasmuch as there are no ikosahedral forms of

* This is just that equation which, as has been already explained, occurs in the
fivst works of Brioschi,
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degree 8 or 16, In just the same way the equation of the fifth
degree belongs to them, which we can establish for the next
highest tetrahedral form, ¢ . W. For we have agein identically
(and on the same grounds): 3¢, W,=0, 3 (t,W,)*=0. Bat
3 (W,)- (& W,) will also, in virtue of the same considerations,
be identically zero. Hence, generally, to our equations of the
fifth degree those ones will belong whose roots are linear com-
binations of the W,’s and the ¢, W,’s with constant coefficients :
(30) Y,=¢ - W,+r-t, W,

We accordingly set ourselves the task of calculating out, for
any values of o, 7, the corresponding equation of the fifth
degree. Inasmunch as the details of the calculation offer
nothing of special interest, I communicate the result imme-
diately. We find

Y3 +5Y%(8/2. S+ T-a + 723 or2 4 fT- &%)
(L) 45T (—fH. o+ 187U o't 4 HT 023 + JIf1H . 14)
+(H?- 10/ 112 62 + 452 oet & TII? . 1) = 0,

In order to construct herefrom a resolvent of the ikosahedral
equation, we have but to recar to the formula (28), and put
instead :

12/. W

(32) v

Then we can write in consequence of formula (30):

(33) Y,=m- 0, +2- Ul
h is pub =" I < HT
where m is pub=Jor, n=" 7.
On introducing into (31) the values of a, 7, resulting herefrom,
we obtain

2 4 8
Z.Y%+ 5Y2 (81)33 +12m% + 6mn +

a-zy

= 6ment + 4mnd 3t
— 4t
(34) 157 (o ST *4(1—2)*)
s 40n3a2  15mat + 405
+ 3 (48'"—(1—2)+ (l—Z)‘_)

This is that resolvent of the fifth degree of the ikosahedral
equation which we shall later on denote as the principul
resolvent.
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§ 13, ConNECTION OF THE NEew RESOLVENT WITH THE
RESOLVENT OF THE 7's.

‘We have now to exhibit the connection of our new resolvent
with the resolvent of the s (§ 10).

First, as regards the ag t of the fanction-theory and
invariant-theory methods, we write the equation (27), say, as

follows :
(35) T= (th— 10/ + 4577)
now squaring, dividing both sides by 7%, and finally writing
again for ;, we have: '
—1728(Z-1)=1(r2 - 10r + 45)%,
an equation which, in fact, is identical with (21).
We shall have further to express

Lol 13W. 5
-5L &

and p= ~

rationally in terms of 7.
As regards u, we achieve this at once on introducing for 7'
the value (35).
We thus find :
12
36) Y= A0+ a6
To exhibit » similarly, let us recall that, according to the de-

velopments of § 10, the points %:0 are at the same time

represented by 7—3=0. Therefore g will be identical with

t,—3f, save as to a factor. The comparison of any term in the
development in terms of 2, 2, shows that this factor = 41.
Hence we have without farther proof':

12
r=3°

Finally, introducing the values of (36), (87), we have:

_ 12m(r-3)-144n
==3)(2*=10r+45)

@0 v=

(38) Y,



THE FUNDAMENTAL PROBLEM. 117

We should, of course, be now able to compute also the resolvent
of the %’s and the principal resolvent, on eliminating r between
(21) and (36) respectively.*

§ 14. Ox TEHE PRoDUCTS OF DIFFERENCES FOR THE %'8
AND THE Y's.

‘We now further calculate, also in view of their later appli-
tions, the products of differ of the w's and the ¥’s,
which, as we know, are rational in Z. We consider, say, first,

the following product :
1 1 E&-b),

where the symbol under the product-sign is to denote that only
those 10 factors are to be mu.ltxphed out for which » is <»’
(while » and »’ are to be simult ptible of the values
0,1, 2,3, 4). This product is known to be equal to the deter-
minant :

1 ¢ !
1 ¢ 4t
1 ¢ . 8t

‘We now maltiply this last expression, according to the rules of
maltiplication of determinants, by

1 1 1 11 |

=25 ~/_5, (z.—_ei%).

—
%

Thus arises a new determinant with real and integral numerical
coefficients throughout :

* This is the manner in which Herr Kiepert has derived the principal resol-
vent: “ Auflideung der Gleichungen fiinften Girades” (Gottinger Nachrichton of
the 6th of July 1878; Lorchardt's Journal, Bd 79).
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Z‘w, Zeﬂ, Z’z«,ﬂ, Z(,l',
Z“e.t' Zg-tz'

Zc’ﬂ,

Z‘m,

This is of the GOth degree in 2y, 2,; it will therefore (as an ikosa-
hedral form) be necessarily equal to & linear combination of H®
and /. On actually calculating the terms which contain 2%
and z,%z,f, we agree that this

5.

=55, I3 (2, 2).

Hence our original product of differences :
I l(r,— 1,)=255. H3 (2, 2,).
But now we have:
T,
b=qgm "

Hence the product of the differences of the u's will be:

N 2548 Z
(39) [1e-i= -5 T@-i

vy

In a similar manner I compute the product of differences of
the Y's. Starting first from (30) we find:

H(y,- Vo= —25 5. H(T*. 00 +34.5 .1.fT. oo
T (. 3. P HYSR .35 AT,
$2.5. Y. 3T 5131, HA)SA— T(@. 3. T, f54+ 11, HI)ebrs
—2.30.5.f3(25. 30,7 f5 — 13. HY)ate® - 2.5, FT(25. 30, f5 — H¥)odet
—30.5.7425. 35 1.5~ 11. IP)rd 32, 5. AT(2* . 3% . f5 — Fex
(25,30, 11. 70— 34 7 oS 4 HO(s10},

and then, passing to (33), we have the definite formula:
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(%-¥)= °5‘/3}28 B(1-Z)mo+2.32.5.7 .m0
VI .. @24 B 3.5 mh

1-2
L2P.8.5(3.7-31.2)m0n'- 2. 3$(3.742.11. ) mhws
(40) -2
| 98.38.5(3.7-13.2) minb+ 2. 32. 5 (3-22) m¥?
(1-zp
5 (T=11.2) mnS+ 38, 5 (3-22. Z) mn®
(I-2y

(3. 11-30.7.2+98.32. Z9n0 }
w(1-28

§ 15. THE SIMPLEST RESOLVENT OF THE SIXTH DEGREE.
At the conclusion of this chapter, and with the special object

of forming later on a simpl tion b our own
developments and the earlier investigations of other mathe-
maticians, let us further consider the simplest resolvent of the
sixth degree of the ikosahedral equation, and, in fact, with this
object, we will at once employ the mvarumt-theory method.*
Among the six dihedral groups containing each 10 rotations,
which here come under consideration, let us select that one
whose principal axis joins the two points z=0, . The lowest
form, which ins completely unaltered for the pondi;
homogeneous substmutlons, is, as we know beforehand, the squan
of zz,, We shall therefore first compute the equation of the
sixth degree which this square, or rather the quantity :
GV b=z
satisfies, where the numerical factor 5 has been advisedly
attached, and the index oo affixed to the ¢, in order to have
the symbols ¢, (v=0, 1, 2, 3, 4 [mod. 5]) available for the cor-
responding expressions which appertain to the remaining 5
ikosahedral diagonals. On applying to ¢, the homogeneous

ikosahedral substitutions which correspond to 7'S¥, we find for
these ¢"'s :
(42) o= (e2)? + 22,2y ~ 22

* Compare Math. Annalen again, Bd. xi. pp. 517. 518
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Now let the equation of the sixth degree, which the ¢'s
satisfy, be:
S a P+ B PP AP Edrf =0,

then a, ¥, ¢ . . . are ikosahedral forms of the 4th, 8th, 12th . . . de~
grees respectively. Hence it follows at once that a'=¥"=d'=0,
while ¢, ¢, f*, must, apart from numerical factors, coincide with
Jf, H, and f? respectively. We determine these factors in the
well-known manner by returning to the values of f, H, and ¢
in 2,2, We thus find with little troudle the following equation :
(43) $0-10f. ¢2 + H. ¢+ 5/2=0.

Let us now concern ourselves for a moment with the group
of this equation. This will be given, as follows from our
earlier developments, by those 60 permutations of the ¢'s which
correspond to the 120 homogeneous ikosahedral substitutions
(where we must not forget that we have adjoined e once for all).
Now the latter are all composed of the substitutions S and 7,
which we again named in § 10. Clearly the ¢, remains
unaltered for S, while ¢, is transformed into ¢,,,. We can
compress this into the single formula :

v-=v+ 1 (mod. 5),
inasmuch as for v=o the »”" so determined will also be . On
the other hand, for T, ¢, will be interchanged with ¢, ¢,
with ¢,, ¢, with ¢, which will be repeated by means of the
single formula :

D'E—% (mod. 5).
Of the two formule so obtained, all formule:

av+
V=——

= B (moa. ),

I

are now entirely composed, according to known theorems of the
theory of numbers, where a, 8, v, 8, are integral numbers which
satisfy the congruence (a8~ By)=1 (mod. 5). In fact, the
number of these formul is equal to 60, so long as we always
count as only one all such systems of values a, 8, v, 5, as are
identical for the modulus 5, or are brought to identity by a
uniform chauge of sign. Therefore :

The group of owr equation of the sixth degree will be constructed
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with those 60 permutations of the roots ¢,, whick are provided by
the various formule :

(44) V=

;::'f (mod. 5).

But this is, according to the researches of Galois, exactly that
group which presents itself for the modular equation of the
sixth order, for a transformation of the fifth degree of elliptic
functions. And, in fact, Herr Kronecker, who started from
elliptic functions, while following up incidental statements of
Jacobi's, had long before deduced exactly the same equation
(43), though, of course, with a different notation.* We shall
return again, and in some deteil, to this circamstance.

In order now to transform (43) into a resolvent of the ikosa-
hedral equation, let us put, say,

- ¢. H
(45) ¢= oe
we thus obtain, by mere substitution :
(46) -10Z. 3 +1222. {+522=0.

We will complete this result by deriving from it a second
resolvent, whose root is a rational function of the 10th degree of
2, which does not, alter for the 10 substitutions of the dihedral
group under consideration. Such a function is, for example :

[
1 =7

since, namely, the numerator and denominator of this expres-
sion have in common the factor ~/'¢, quadratic in z, 2, In
order to construct the corresponding resolvent, let us write (43)
in the following manner:

g 8 -107. P+ 577
48) H= 3 )

then cube, and divide both sides by 1728/°. 'We have thus:

7 (8108 +5)
=TToTrasE

* See the passagos cited in the first and third chapters of the following Part,
and compare, on the other hand, § 8 of the chapter following this,
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or, also (if we rearrange the value of (Z—1) in an appropriate
manner) :
Z:Z-1:1=(E~108+5)
(49) (B2 4E-1)% (B2 - 22 + 125)
1 ~ 17288

‘We should also have been able to derive this equation from
fanction-theory considerations, without any use of explicit
formulee.*

I further give, in conclusion, the formule by means of which
§(45) is expressed rationally in terms of our present £. Accord-
ing to (48):

o S0 _—¢'+10 ¢ -5y

127277 7 1272

and therefore :

(50) =" 5 _+l;‘15_" 3

§ 16. CONCLUDING REMARKS,

The developments of the last paragraphs have manifold rela-
tions with the applications which are going to be made of them
in the part here following.

It has thus been already noted that the considerations of the
present chapter will be of the weightiest importance for our
further process of thought. Let me state this more precisely.

‘We have already seen, in the third chapter of the present
Part, that we can consider the solution of our fundamental equa~
tiou, from a function-theory point of view, as a generslisation
of the elementary problem; to extract the ' root from a
magnitade Z. The algebraical reflexions of the present chap-
ter have then shown wus that the irrationalities which are
introduced by the equations of the dihedron, tetrahedron, and

tahedron can be puted by repeated extractions of roots.
The ikosahedral irrationality, on the contrary, has maintained
its individual importance. Hence an extension of the ordinary
theory of equations seems to be indicuted. In the latter we are
generally restricted to the investigation of those problems which

“ Compare Mathcmatische Annalen, xiv. p. 143 (formula (19) of that page).
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admit of solution by repeated extraction of roots. We will now
adjoin, as a further possible operation, the solution of the ikosa~
hedral equation, and ask whether, g the problems which
do not admit of solution by mere extraction of roots, there may
not be some for which this can be effected by the help of the
ikosahedral irrationality.

In this sense our second Part now deals with the general
problem of the solution of equations of the fifth degree. The
attempt to accomplish this solution with the help of the ikosa-
hedral equation appears the more natural inasmuch as the
group of the equations of the fifth degree, after adjunction of
the square root of the discriminant, is holohedrically isomorphous
with the group of the ikosahedral equation, and as we have, in
the resolvent of the fifth degree of the ikosahedral equation
(previously established), the same number of special equa.l;lons
of the fifth d , whose relation to the ikosahedral equation
is a priori ﬁxed




CHAPTER V.

GENERAL THEOREMS AND SURVEY OF THE
SUBYECT.

§ 1. ESTIMATION OF oUR PROCESS oF THOUGHT 80 FAR, AND
GENERALISATIONS TITEREOF.

1IaviNG now, in the third and fourth chapters, studied the
essential properties of our fundemental problem, we will inquire
where lies the proximate cause of the remarkable simplicity
which has manifested itself therein all along. About this, I
believe, there can be no doubt, viz., it s the property of our
problems that from one of their solutions the others always proceed
by means of linear substitutions which are s priori known. The
geometrical apparatus, from which we started in the develop-
ments of the first and second chapter, has served to lead up to
our problems, and to illustrate their primary properties; now it
has doue us this service, we can henceforward leave it on one
side.* Forming this conception, we shall naturelly ask if there
may not exist other equations, or systems of equations, also
which agree in that most essential point with our fandamental
problem.

We therefore first seek, so far as it is possible, for new finite
groups of linear substitutions of a variable z (or two homo-
geneous variables 2, 2,). But we will show immediately (§ 2) that
all such groups return to the ones already known to us. If we,
therefore, conceive our stat t of the guestion in the obvi
manner explained, the equations and systems of equations

* This is only meant to npply ad hoc, and for the developments of tha second
Part here g. For carrying vut wore th hly the ki pro-
posed in the th, an illustrative notation, at all events when we have to deal
with transcendental functions, is for the time quite indispensable, as also in § 6 of
the present chapter, where we involuntarily, so to say, return to geometrical
explunations,
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hitherto treated of are the only ones of their kind. Thisis a
result which is calculated to attach a certain absolute value
to our p iderations, which, on t of their induc-
tive form, at first appear to aim at no definite object. In fact,
we see that our fundamental equations occur as a specially

kable ci ibed group among numerous mathematical
investigations of the last few years. In regard to this, I will
bring forward, in § 3 following, the simple developments by
means of which we show that, with the help of our fundamental
equations, all linear homogencous differential equations of the
second order with rational coefficients, which have entively alge-
braical integrals, can be established with little trouble. I refer,
however, for the analogous significance of our fandamental equa-~
tions for the linear homogeneous differential equations of the
n' order with rational coefficients, to the memoir of Halphen *
already quoted ; further, as concerns the rdle which our funda-
mental equations play in the theory of elliptic modular func-
tions, and similarly in the investigation, by the theory of
numbers, of binary quadratic forms, to my own investigations+
and those of Herr Gierster.} Meanwhile we can generalise our

tat t of the question in a twofold sense.
In the first place, we can, instead of the variables z,, 2, take
into ideration a larger ber of homog variables,

23, %gy + + « 2%, and inquire for the finite groups of linear substi-
tutions which may exist in their case. I will presently (in
§ 4, 5) treat this more fully, and will here only observe that, as
a consequence of the views thus unfolding themselves, the
lopments of the d Part here following appear as a
single contribution to & general theory, which embraces the
whole theory of equations,
Our second generalisation proceeda in another direction:

we will retain the one variable z=" , but, on the other
hand, take into consideration infinite groups of linear substita-

* “Sur la reduction des & fons différentielles linéaires aux formes inté-
grablcs,”” Mémoires présentél &c.. xxviii. 1 (1860-83).

+ Cf. especially Bd, xiv. of t.he Mlﬂ.\ Ann., p. 148-160 (1878)

1 “TUeber Relati bindrer d her Formon
von negativer Determinante,” Ente Note (Gottinger Nachrichten of June 4,
1879, or Math. Ann,, Bd. xvii. p. 71, &c.).
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tions, Here that vast region opens out, single-valued transcen-
dant functions, with linear transformations into themselves, to
which general attention has recently been drawn from various
quarters, but particularly by M. Poinceré.* It is, of course,
impossible for me to enter more minutely into the questions
connected with this matter in the following paragraphs. My
exposition is only to carry us so far that the position of the
implest class of fancti g the others, viz., the elliptic
modular functions, may be clearly conceived. To this is attached
the proof (§ 7, 8) that the equations of the tetrahedron, octa-
hedron, and ikosahedron admit of solution in a similar manner
to that in which, say, a binomial equation is solved by logarithms,
a cubic equation (and also the general equation of the dihedron)
by trigonometric fanctions; and this proof I wished to bring
forward in its general outline, because it describes that point
on which in the theory of equations, and particularly of equations
of the fifth degree, the interest of mathematicians has been
continuously concentrated. We can, evidently, also combine
the generalisations here suggested ; we can study transcendental
functions of severa] variables with an infinite number of linear
transformations into themselves.t But more important for us
here are, I think, the considerations which I develop in § 9,
in q of which absolutely no material difference exists
between the two kinds of generalisation. Hence the per-
spective to which the consideration in § 5 of the finite groups
has already led us will be, so to say, extended to an infinite
distance.

§ 2. DETERMINATION OF ALL FINITE GROUPS OF LINEAR
SUBSTITUTIONS OF A VARIABLE.

The problem of determining all possible finite groups of linear

substitutions of a variable has been dealt with in various ways.

* Cf. the numerous communications of Poincaré in the * Cowmptes Rendus de
1'"Académie des Sciences,” as well as his mewmoirs in Bd. xix. of the Math.

Aunalen, and in Bd. i and ii. of Acta Math ica (1881-83). M , my
essay in Bd. xxi. of the Math. Ann. (1882) may also be consulted: “Neue
Beitriige zur Riemann'schen F i ie : * there, parti the litera-

ture of the subject is noted and described in dst.ul
+ The latest rescarches of M. Picard move in this direction; ¢f. Comptes
Rendus, 1882-83. also Acta Mathematica, Bd. i. ii.
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With my primary g ical method* is d the analy-
tical method of Herr Gordan,} then the general treatment by
M. C. Jordan,} by means of which he is in the position to solve
the corresponding question for the case of & larger number of
variables. I shall here use & method of consideration, based on
the function-theory, which I have already incidentally pointed
out.§ This sterts from the idea of taking into consideration at
once the equations, whose roots will be transformed into one

ther by the substitutions of the group, where it may easily
be shown that these equations practically return to the funda-

tal tions hitherto investigated. The process of thought,
which M Halphen has lately grappled with|| for a similar pur-
pose, is not essentially different from the ome here given.
Moreover, a determination of all finite groups of linear substi-
tutions of a variable is also implicitly contained in the i ti
gations of Herr Fuchs on salgebraically integrable differential
equations of the second order, T investigations which we have
already more than once cited in chapters ii. and iii., and to which
we shall again pay regard in the following paragraph. Wemay
say that these works of Herr Fuchs differ from mine in the
fact that he brings forward the standpoint of the theory of
forms quite at the beginning, while I commence with function-
theory considerations.

Let

Yo(@) =2 ¥y (@), Yo () . - .- o Y- (7)

be the N linear functions, which, equated to 2/, represent a
finite gronp of N linear substitutions of the variable z. Further,
let @, b, be any two quantities, so chosen that none of the expres-
sions Y (a) are equal to b, or, what is the same thing, none

* u8j beri der Erl physikali Gesellschaft of
July 1874,” Math. Aunnalen, Bd. ix, (1575)

+ “Ueber endliche Gruppen linearer Substitati einer Verduderl "~
Math. Annalen, Bd. xii. (1877).

% “Mém, sur les équati diff. lin. d @ lgébrique,” B ’s

Jaurnd Bd. 84 (1878); also “Sur la déterm. das groupes don‘ln fini contenus
dans le groupe linéaire,” Atti della Reale Accad. di Napoli (1880).

§ Math. Annalen, Bd. xiv. p. 149-160 (1878).

I Loc. cit., p. 114,

9 Gottinger Nachrichten of Angust 1875 ; Borchardt’s Journal, Bd. 81, 85
(1875-77).
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of the expressions y» (D) are equal to a. We then form the
equation :
5 (Yo (x) - a) (1 (®)-a) . ..... (Vy—1(z)~a) _ x

Fo @) =) @)=ty ... (b2 (9=8)~
Then we have evidently an equation of the N'* degree, which
remains unaltered for the N substitutions of our group, and
whose N roots, corresponding to an arbitrary value of X, there-
fore, in every case, proceed from one of themselves by our N
substitutions. In fact, if we substitute in (1), instead of «, any
¥ (%), the consequence is simply, since the y's by hypothesis
form a group, that the factors in the numerator, and likewise
the factors in the denominator of the left side of (1), are per-
muted with one another in a certain manner.

Our assertion shall now be this: that we shall be able to
transform the equation (1) into one of the fundamental equa-
tions hitherto considered by us by simply substituting for  and
X appropriate linear functions of 2 and X :

_ar+f3 Z= aX+b

7T cX+d

To prove this, we first ask for what values of X the equation (1)
may possess multiple roots. It is certain that if, for one value
of X, one set of v z-roots become identical, then all the corre-
sponding 2-roots coincide in sets of ». This follows from the
consideration of the substitutions y», just as we have proved
the same theorem in the first chapter with respect to the groups
of rotations, and those points on the sphere which remaiu fixed
for certain rotations. We will now assume that to the values
X=X, X, ... only y-tuple, v-tuple . . . roots correspond
in the sense explained. According to the explanations of § 4
of our third chapter, we have then for the functional deter-
minant of the (2N—2)% degree, which is computed from the
numerator and denominator of the left side of (1) [after we
have turned both into integral functions of z by multiplicati

by the denominators of the y s], - roots of maltiplicity (v,—1),

1'! roots of multiplicity (v,—1), &c. Hence:

' STV -n=an-s,
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or otherwise written

® pI GRS

Our method will now first consist in cmmdanng this equation

a.sa"’ yphantine equation for the i i bers v, N, and
all the sy of soluti thereof
This latter is done in an ext ly simpl Woe first

agree that the namber of the »/s ca.nnol'. be less than 2, nor
greater than 3 (inasmuch as we take N, as is self-evident, to
be >1). Namely, if the namber of the »;’s were equal to 1, the
left side of (3) would be <1, while the right side for N>1 is
greater than or equal to 1. But if the number of the vs were
>4, the left side of (2) would be =2, because each element

( -,1) of the sum is itself S}, and this would bo no less s
{2

contradiction.
‘We now first take the number of the »s equal to 2, and
therefore simply write instead of (2)

(-2)+(-2)-6-3)

1,12

=
n v N

or

Now it is self-evident that noue of the /s can be >N t.hem-

fore %ijlv We hence conclude that in the above case md —'—
il 2
must both be equal m}r Hence we have
3) n=n=>n,
where N i8 arbitrary ; and this is our first system of solution.
Let ny farther take the nomber of the s equal to 3, and
therefore pat, instead of (2), the equation

1. 1 1 2
@) ;+§+'—s=l+w‘
Then I say, in the first place: af least one of the v;'s must be equal
t0 2. Namely, if each of the three were »;>3, the left-hand side

I



130 GENERAL THEOREMS AND

of (4) would be <1, which is impossible. We therefore put,
say, »,=2. For the remainder:

1.1 1 2

Wi TIYE

It is now possible that a second v, say v, is equal to 2. We
then find :

Thus we have our second system of solution, which we will
denote as follows, understanding by = an arbitrary number :

() N=2n n=2 w=2 w=n

But if neither of the two numbers v,, v, is equal to 2, at least

one of them mast be equal to 3. For otherwisevl+'l would be
2 3

;:-, whereas it is to be >‘1, Accordingly, let us put v,=3.

There remain :

1 2

JRl

W 6N

Therefore anyhow r;<6. On the other hand, we can choose

»;=3, 4, 5, according as we wish. We get correspondiagly

N=12, 24, 60, and then in each case our conditions are all

satisfied. There are therefore three more systems of solution,

which we gather together into the following table:

{ N=12, =2, =3, 1,=3;
(6) N=24, =2, =38, =4,
N=00, =2, np=3, »,=5.

The five different systems of solution so found correspond exactly,
as we see at once, to our five fundemental equations: the bino-
mial equation, the equations of the dihedron, tetrahedron, octa-
hedron, and ikosahedron. We will now show that, according to
the system of solution (3), or (5), or (6), which we like to attri-
bute to our diaphantine equation, we can in fact in each case
transform our equation (1), in the way proposed, into the corre-
sponding fundamentul equation.
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Let us take the case (3) to start with. Instead of X we may
introduce in it :

Z="41,

‘We have then for Z=0 and for Z=co an N-fold root . Our
equation (1) therefore admits of being written as follows:

=5

and here we have only to put :

=% _,

z-m,
in order to have before us the binomial equation :

=12,
In the other cases we will choose :
g% X-X, X
x-x, X, x,
8o that for Z=0 merely v;-tople, for Z=co merely v,-tuple, for
Z=1 werely »-tuple, i.c., double roots enter. Denoting by
&, ,, P, appropriate integral fanctions of &, our equation (1)
takes then the following form:
Z:Z-1:1=@:(r) : &1 () 1 & (1),
where we must snppose for v, v, v, one of our systems of
solution introduced. We now combine with this the corre-
sponding fundamental equation to which we had previously
given the form :
Z:Z-1:1acFn@):Fn(z): Fs(a)

Our assertion will be proved if we show that, in consequence of
these two equations, z is a linear function of #:
ox + ﬂ
yx+d
To this end we recall the differential equation of the third order,
which we previously established for z as & fanction of Z (see
§ 8 of Chapter IIL):

z=

1.1 1
n?-1 -1 v_’+;’<,—2_1
Fh=spz-m*ar 2t 3z-0z
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On going throngh the steps of the proof which we used in the
establishment of this equation, we recognise that z in each case
satisfies the same differential equation with respect to Z. Now
all solutions of such a differential equation are, as we know,
linear fanctions of any particular solution. Hence z is also a
linear function of @, g.e.d.

‘We will sum up the result thos obtained more concisely. Our
object is to seek for all finite groups of linear substitutions :

F=d (), i=0,1,. ... (N-1),

We now recognise that we obtain all of them by choosing as
our sterting-point the finite groups which we collected in § 7
of the second chapter, and then introducing in the formule
there given, instead of z, an arbitrary #, by means of the

equation : z=;‘::_’:, whereupon, of course, # will have to be

replaced in a corresponding manner by # = _—,'_—+u B

§ 3. ALGEBRAICALLY INTEGRABLE LiNEAR HOMOGEXEOUS
DIFFERENTIAL EQUATIONS OF THE SECOND ORDER

Interrupting our general course of ideas, we mow concern
ourselves, as we proposed in § 1, with the problem: to present
all linear homogeneous differential equations of the second order
with rational coefficients :

(7) Y'+p.y+q.y=0.

which possess altogether algebraical solutions. In fact, this pro-
blem is solved on the basis of those developments, which we
have already brought forward in the third chapter, respecting
linear differential equations of the third order, and this so
simply that it would seem wrong to pass it over here.

Woe first replace the differential equation (7), as we did in
the third chapter (§ 7), by that differential equation of the third
order:

AR 1,
®) [lz= - Q(,T) =2-222-p'=1(2),

of which the quotient % depends on two arbitrary particular
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solutions ,, ¥,, of (7). Evidently 7 is algebraical, if g, and y,
are so. Let us now recall the formul (Chapter IIL, Equation

(33)):
9) =0 Yy y2=J§-e_MM,

then we see that we can reverse then, and only then, when
/pdZ is the logarithm of an algebraic function.® This s a first
condition underlying the coefficient p. Supposing this fulfilled
in what follows, we can altogether disregard the equations (7),
and now have further the problem, to establish all algebraically
integrable equations (8), where 7(Z) denotes an unknown, but
in any case rafional, function. We then treat this problem
by first presenting all algebraical infegral equations which, on
differentiation, lead to differential equations of the third order
of the kind we seek ; the establishment of the differential equa-
tions themselves will then follow from this very readily.

The function 7(Z), as an algebraical function of Z, will pos-
sess a finite number of branch-points in the plane Z; we will
connect these by a network of cross-cuts in snch a way that
the plane Z acquires a simply connected boundary curve. In
the plane so partitioned we then construct, to begin with, a
primary fanction-branch 7,, of necessity absolutely single-valued,
which satisfies the differential equation (8). The most general
fanction-branch which satisfies (8) will, by the fundamental
property of the differential expression {5]z, be a linear function
of this ,, Hence, as often as we carry 7, across one of these
cuts, it experiences a linear substitution (of course, only de-
pendent on the cat). We therefore obtain for our 7, a group
of linear substitutions, if we traverse all the possible cross-cuts
in any kind of combination or repetiti Now we require that
7, should depend algebraically on Z. Hence the number of the
function-branches which arise from 7, by traversing the cuts,
and thus also the number of the linear substitutions which 7,
experiences, must be jinite. We therefore come back at once
to the stat t of the question given in the preceding para-

* Since p is to be rational, we can equally well say that spdZ is to be the
logarithm of a rational i
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graph, and can express the result of it forthwith in the follow-
ing form :

If #, is to be algebraical in Z, there is & linear function z of
7, for which either z¥, or one of the other fundamental fanctions

f,’.’, remai ltered when any ts of the Z-plane are
traversed

This 2 is of course itself a soluhon of (8) On the other hand,
the expression which ltered, since it is to be an

algebraical function of Z, must be a rational function of Z.
Hence we have:

If the equation (8) is to be algebraically integrable, the in-
tegral equation must, with a proper choice of the particular
solution, be of one of the 5 forms :

(10) T-RD, -,

understanding by E(Z) a rational function of Z.

‘We now derive conversely, from any one of the equations
(10), the value of [2],. To this end we write for a moment:
F 2t () _

Fre)”

respectively ; then by our previous investigations:

v
=2,

111
NZ-1 »2-1 921 [ A

= — =l 2 — 2
Elo,=oni zp "= 83 (Z-1Tp* 02 722 TG, 1) Z,

respectively. Now we found, on the other hand, in § 6 of the
third chapter the general formula:

[12=(22) - [, + 2]

On here introducing for Z, its value R (Z) we obtain the follow-
ing differential equntions, which 7=z satisfies:

N2
[1)z= ONZ ] It‘? B2 +[R]y,

an 1,11,
W2
[7)z=R? o 2(3 11 % o,z Rz lj’R l)R +[R]z.
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These differential eq are evidently included under the
formul® (8), inasmuch as in them also a rational fanction of
Z occurs on the right-hand side. Hence we conclude that the
rational function R(2) introduced in the formule (10) may be
absolutely any rational function, and that, in this sense, the
equations (11), to which the equations (10) correspond as parti-
cular solutions, are the most general differential equations of
those we seek. Thus is the problem, which we fc lated at

the beginning of this paragraph, fally solved.*

§4. FINITE GROUPS OF LINEAR SUBSTITUTIONS FOR A
GREATER NUMBER OF VARIABLES.

Turning now to the first of the generalisations proposed in
§ 1, my intention is not to communicatet examples of finite
groups of linear substitutions for a great ber of variables,
or otherwise to enter into particulars with regard to these
groups. I am rather concerned just to explain, on general
lines, how fundamental problems admit of being formulated
corresponding to any such group.

Let our group be first written in the homogeneous form.
Then certain integral functions of the variables z, 2, . . . 2,_,
(forms) will be given, which are not altered for the substitutions
of the group. We will seek to establish the complete system of
these forms, 4.¢., those forms

FyFy ...... F,

* After Herr Schwarz in the oft.quoted memoir in Bd, 75 of Borchardt's
Journal (1872) had i igated for the diffcrentisl equation of the ‘“. g
metrical scries all the cuec wlnch are algebraically i ble, the of
the most general al; tegrable linear diff of the second

order with rational coefficicats was attacked by Herr Puchs in the essays just
mentioned (1875-78). In connection with the first of his communications I gave
(Sitzber. der Erlanger Soc., June 1876 ; see alvo Math. Ann. Bd. xi.) the simple
result now deducod in the text. Cf. here also Brioschi: “La théorie des formes
dans l'intégration des éq. diff. lin. du second ordre,” in Bd. xi. of Math. Ann,
(1876), also my second cssay, * Ueber lineare Diff. gleichungen,” in Bd. xii. of the
same (1877). Further questions also related to linear differential cquations of the
second order are dealt up by the same mothod by M. Picard (* Sur certaines éq.

diff. lm ) Compbes Rpml\u de I"Acad. des Soi t. 90 (1880). Jlalphen's re-
on iony of a higher order have been just mcnhoned.
+ For such pl seo the alread d works of C. Jordan, also my

essays in Mathematische Aunalen, Bd. iv. p. 346, &c., Bd. av. p. 231, &e. A
special case will have to bu dealt with in the third chapter of the following part.
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by means of which all other entirely variant forms admit of
being expressed as integral fanctions. Among them certain
identities must subsist which we compute collectively. We
suppose now the numerical values of the F’s given, in agree-
ment with these identities, but otherwise arbitrarily. Then we
have the form-problem which corresponds to our gromp on
requiring the calculation of the corresponding 2, z, . . . %,
from these numerical values, The form-problem has as many
solutions as the given group contains operations, and all these
systems of solution proceed from any one of themselves by
means of the operations of the group.

By the side of this form-theory conception that other pre-
sents itself which only takes into consideration the ratios of the
%oy 21y« + + %y, &nd therefore works with (n~1) absolute vari-
ables and fractional linear substitutions. Instead of the forms
F,, F,, . .. we shall now have to take into consideration certain
rational functions, Z,, Z,, . . . which are composed of the #’s—
or of such forms as only change by a factor for the homogeneous

bsti a tients of null di jons, and which must
be o chosen that all other rationsl fanctions, which remain un-
altered, mnst be composed rationally of them. In order, then, to
seek all the identities subsisting between these 2’s, let us suppose
the numerical velues of the Z’s given, in agreement with these
identities, but otherwise arbitrarily. We require to compute
from them the ratios of the 2's. Then we have that which I
will generally designate as the equation-system belonging to the
group. The equation.system has, in relation to the non-homo-
geneous substitntions of the group, properties quite similar to
those which the form.problem has in relation to the homo-
geneous.

Both problems—the form-problem and the equation-system—
can then be assigned a place in the scheme of the Galois theory.
‘We might evidently say, making use of the general mode of
expression of § 6 in the preceding chapter, that both are their
own Galois resolvents., Moreover, it is evident that the solution
of the form-problem carries with it that of the equation-system,
while the converse need not necessarily be the case.

‘We will not linger too long over such generalities. On the
other hand, we may convince ourselves that in a certain sense




SURVEY OF THE SUBYECT. 137

the entire theory of equunons, commonly so called, will be

d by these i If we are concerned with the
solution of an equation of the n degree f(z)=0, we can regard
it as being the same as if a form-problem for the = variables
Zo, &y o« . . Ty (i.e., the roots of the equation) were proposed
to us. The group of the corresponding linear substitutions will
be simply formed by those permutations of the z’s which make
up the ‘“ Galois group” of the equation; the forms #' coincide
with the complete system of those integral functions of the s
which, in the sense of the Galois theory, figure as “rationally
known.” With these remarks, nothing, of course, is primarily
altered in the substance of the theory of equations. But the
theorems to be developed in it acquire a new arrangement.
Those appear as the simplest problems which relate to groups
of linear substitutions, .e., just those problems with which we
have been dealing in the pest chepter. There follow, further,
the ternary problems, &e., &c.*

§ 5. PRELIMINARY GLANCE AT TaE THEORY oF EQUATIONS OF
THE Firro DEGREE, AND FORMULATION OF A GENERAL
ALGEBRAICAL PROBLEM,

The short remarks of the preceding paregraph saffice to
exhibit the developments of the d Part here following
under thet aspect which I suggested in § 1 of the present
chapter. Qur object will be, in onr second Part, to reduce the
solution of the general equation of the fifth degree, after adjunc-
tion of the square root of the discriminent, to the solution of
the ikosahedral equation. 'We have here, in the equation of the
fifth degree, as a conseq of the ption just expounded,
a form-problem with 5 variables, and a group of 60 linear sub-
stitutions, confronting us. On the other side we have, in the
ikosahedral equation, an equation-system (if this expression is
allowed for the case of only one variable) also, with & group of
60 substitutions, and this e group which, as we know, is holo-

* The ion thus lated was founded i in my essays in
Bd. {v. of the Mnhemnmchs Annllen (1871) “Ueber eine geometrische Repra-
der Resol gen.” See, too, the memoir in

Bd. xv. of the same, to be pleunt.ly mentioned.
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hedrically isomorphous with the group of the given equation of
the fifth degree. While dealing with our special question—and
this with geometrical reflexions which, under this form, only
find att in this connecti e therefore obtain a contri-
bution to the g 1 problem: to investigate thoroughly how
Sfar it is possible to reduce form-problems or cquation-systems, with
respectively isomorphous groups, to one another. By isomorphism
we need not necesserily, of course, understand holohedric iso-
morphism.

The formulation of this problem has a certain importance,
for we obtain thereby at the same time a general programme
for the further development of the theory of equations. Among
the form-problems or equation-systems with isomorphous groups,
we have already above described as the simplest that which
possesses the smallest number of variables. If, therefore, any
equation f(z)=0 is given, we will first investigate what is the
smallest number of variables with which we can construct a
group of linear substitutions which is isomorphous with the
Galois group of f(z)=0. Then we shall establish the form-
problem or the equation-system which appertains to this group,
and then seek to reduce the solution of f(z)=0 to this form-
problem or equation-system, as the case may be.

The limits of the matter, within which I should like to keep
in the present exposition, makes it impossible for me to enter
more minutely into the aspect thus described. I will merely,
while considering equations of the fifth degree, show cursorily
how we can treat equations of the third and fourth degree in an
analogous sense, by combining the former with the dihedral
equation of the sixth degree, and the latter with the octahedral
equation (or, if the square root of the discriminant is adjoined,
with the tetrahedral equation). I would the more earnestly
commend the consideration here of an essay (in Bd. xv. of the
Mathematische Annalen *) and the associated researches of Herr
Gordan.+ There the principles under consideration are so far
developed that a satisfactory theory of the equations of the

* #“Ueber die Aufissung gewlsser Gleichangen von siebenten und achten
Grade” (1879).

t See especially “ Ueber Gleick ieb Grades mit einer Gruppe von
168 Substitutionen ™ in BiL xx. of the Mathewnatische Annalen (1882).
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seventh and eighth degrees with a Galois group of 168 per-

tations can be established, a theory which appears as a
natural extension of the theory of equations of the fifth degree,
given in the following pages.*

§6, INFINITE GROUPS OF LINEAR SUBSTITUTIONS OF A
‘VARIABLE.

‘We now pass to the second generalisation of the previous
tat t of the questi We shall not alter the number of

the variables, but the number of the substitutions, inasmuch
as we start from infinite groups instead of finite groups.
Neglecting the form-theory standpoint, I will here only make
mention, in & fanction-theory form, of the most simple examples
of all4+ In the place of the rational functions of z (which
remain unaltered for the groups of a finite number of substitn-
tions), we have then transcendent but one-valued functions.

Let us first consider in this sense the simply periodic and the
trigonometric fonctions.

A periodic fanction of 2 satisfies the fundamental equation :

12) J(z+ma)=71(2),

where m can denote any positive or negative integral number.
'We have here, therefore, the group of substitutions :

(13) Z =2z +ma,

in relation to which the z-plane is decomposed in the well-
known manner into an infinite number of “ equivalent ” parallel

* If we wished to treat equations of the sixth degree in an analogous senee, it
would be nccessary, after adjunction of the square root of the discriminant, to
start from that group of 360 linear transformations of space which I have estab-
lished in Bd. iv. of the Math. Ann., Le., and to which latterly Signor Veronesc
has returned from the side of geonetry (“ Sui gruppi Py, Ilsso della fignra di sei
complessi lineari di rette,” &ec., Annali di Matematics, ser. 2, t. xi., 1883).

+ It would follow that we should make special mentmn of the doubly periodic

functions also. But these have a hat more comp thao the
other examples. Kor in their case there is no individusl fund 1

by means of which all the rest express themselves rationally ; we must rather start
from two ions, Z,, 2, ( which an algebraical relation of deficiency

p=1 cxists),
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strips, which are ¢ fandamental domains” for the group in the
sense before explained. The simplest periodic function :

2ms

(14) Sy

assumes within such & strip every value once; in consequence
of which all other periodic functions, which arrive at every value
a finite number of times in an individual parallel strip, express
themselves rationally in terms of Z. We see that this Z plays,
with regsrd m the group (13), the same rdle as formerly the
rati f tal function denoted by the same symbol
played in the case of the finite groups. We can also, a3 in the
case of the finite groups, speak of an “equation” which apper-
tains to our group. This is simply formula (14) conceived in
the sense of our requiring to compute z from & given Z, Let us

2imz
consider here that we can look upon ¢ * as the limiting case of
8 power with an increasing exponent, and accordingly (14) as
the limiting case of & binomial equation. To this end it suffices
to recall the well-known definition:

- z\"
@15) e=(142) .
We find the t ition to the trig tric fanctions on com-
bining with (13) the new substitution:
(16) ?= -z

and thus doubling the number of the snbstitutions to be taken
into consideration. To obtain appropriate fandamental domains
appertaining to the new group, let us draw the straight line
which contains the point z=ma, and decompose, by means of it,
each of the parallel strips hitherto considered into two parts.
In place of the fundamental function (14) the following now
oceurs :

3mz  —dims Sz
17 e“+e“=2cos"T;

our “equation” requires us therefore to compute, from the value of
the cosine, the value of the arg ¢. This tion is also &
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limiting case of the former one. Namely, let us write the
dihedral equation :

@ -2")? --Z
nlﬂkﬂ o
We have first the following :

f+},= -4Z+9,

let us then substitute 1+§- for 2, and allow n to increase be-

yond all limits; then the left side

CHMCH
is transformed into 2 cos 2.

Over and above these familiar examples, let us now consider
farther the elliptic modwlar functions, and certain other fanc-
tions related to them which Herr Schwarz was the first to take
into consideration in his oft-quoted memoir on the hyper,
metrical series (in Borchardt’s Journal, Bd. 75, 1872). In§8
of our third chapter we have, as was before explained, established
for the root z of the dihedral, tetrahedral, octahedral, and ikosa-
hedral equations in common, the differential equation of the
third order:

1,11
-1 S A

2
i Be=5(z=1p* 2,7, 2% 9 @- 127

where for v, ,, v,, Tespectively the numerical values in the fol-
lowing oft~used table were to be introduced :

|
s
Dihedron 2 2 n
Tetrahedron . 2 3 3
Octahedron . 2 3 4
Ikosahedron. 2 3 5
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and indeed these are, as we just showed (in § 2), the only
numerical values for which ’l + ’ll;+ :' is >1. The functions of
Herr Schwarz arise on inserting in (18) for vy, v,, vy, any other
three integers (whereupon ; +l + willbe < 1).

In order to give a representa.tmn of the march of these func-
tions, let us remark the following. In the chapter we have
seen tha,t., in virtue of our fundamental equations, the half-plane
Z will be represented on spherica.l triangles of the z-sphere, the

angles of which are respectively = —, :—' Just the same takes
1"

place in the case of the functions we are now speaking of, as
soon as we have fixed upon the particular solution of (18),
which we wish to take into consideration, and then develop
tbls analytically. But while, corresponding to the algebraical

ter of the fund tal equations, a finife number of
spherical triangles then sufficed to envelope the z-sphere, now
an infinite number of such triangles (no one of which infringes
on another) are placed side by side. We must here distinguish
when 3—‘+ 'l’ +_1—s is =1 or <1. In the first case, all the spherical
sides which bound the triangles pass, when produced, through
a fixed point on the z-sphere, and we approach nearer and nearer
to this fixed point as we multiply the triangles in succession,
without, however, actually reaching it. The function Z has &
finite value everywhere, except at this point.

In the other cases, the bounding spherical lines have a
common orthogonal circle, and this circle forms the limit which
we approach, by increasing the spherical triangles, as near as
we like, without, however, crossing it. Hence the function Z(z)
exists only on one side of the orthogonal circle ; the orthogonal
circle is for us what is described as a natural boundary.* As
regards the corresponding group of linear substitutions, let us
consider the spherical triangles in question alternately shaded
and non-shaded. The group then consists of all linear sub-
stitutions of z which change a shaded triangle into another
shaded triangle (or a non-shaded into a non-shaded triangle).

* Cf. throughout the memoir of Schwarz above cited, in which, moreover,
uppropriate figures are given,
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Amongst the fanction thus introduced, the elliptic modular
Jfunctions now form (to limit ourselves to the simplest kind) a
special case, the case =2, »,=3, y;= 0. The spherical
triangle of the z-sphere has then, corresponding to the value
of v,, an angle equal to zero. If we allow the limiting circle,
which Z(z) possesses on the z-sphere, to coincide with the meri-
dian of real numbers, we are able to ensure that the totality of
the corresponding linear substitutions is given by those integral,
real substitutions

, azZ+4 ﬁ

Ly ]
whose determinant (ad—By) is =1. Let g,, g,, be the inyariants
of a binary biquadratic form F(z,, z,) (see § 11 of the second
chapter), then it is known that 4=g,® —27g? is the correspond-
ing discriminant. Now put the Z in question equal to the

3
absolute invariant 97’. Then the (Z) is nothing clse than the
ratio of two primitive periods of the elliptic integral ;
[Hasns,
. NF (@,
therefore the % of the Jacobian notation.®

It is impossible to enter here more minutely into the various
relations thus touched upon. We will only bring forward this
remark, that, in virtue of the conception developed, the elliptic
modular functions appear, just in the same way as the expo-
nential fanction and the cosine, as the last term of a series of
infinitely many analogously constructed fanctions. Iut in for~
mula (18) », throughout equal to 2, v, equal to 3, and then
let v,, beginning with 2, assume successively all integral posi-
tive valaes. Then we have for y;=2 a case of the dihedront}
(only that v, is taken >, whereas we have usually elsewhere

* See Dedekind in Borchardt's Journal, Bd. 83 (1877), ulso my eseay “Ueber
die Transf i der elliptischen Functi " &c., in Bd, xiv. of the Math.
Ann. (1878).

+ It is the same case to which, as explained in § 7 of the sccond chapter, the
caleulation of the double ratio of four points leads, or of the modulus of the elliptic

, and which, , will form a starting-point in the sequel for the
solution of equations of tho fifth degree.
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arranged the »'s in the order of the magnitudes), for y;=3, 4, 5,
the tetrahedron, octahedron, and ikosahedron, in order; then
for greater values of v, an infinite series of ¢ dant func-
tions, whose termination for vy= oo is formed by the elliptic
modular functions.

§ 7. SoLuTioN oF THE TETRABEDRAL, OCTAHEDRAL, AND IKoSA-
BEDRAL EQuaTIoNs BY ELLipTic MopULAR FUNCTIONS.

Short ss the preceding suggestions are, they suffice to make
intelligible how it comes to pass that we can solve the equations
of the tetrahedron, octahedron, and ikosahedron (or indeed the
special case of the dihedral equation just mentioned) by means
of elliptic modular functions. Let us first consider the logarith-
‘mic solution of the binomial equation :

=2,

or what is quite analogous, the trigonometric solution of the
dihedral equation:
= -4Z+ 2.
Both equations admit of being regarded as a limiting case of &
trivial algebraical solution, which consists in first calculating
¢ from the equation :
{™=2Zor {™+{™=-4Z-2,
understanding by m any positive integral number, and then
finding z equal to a rational function of ¢:
z2=0"
The tr dent solution p ds from this on taking m = o,
whereupon ¢™ is transformed in ¢f just in the manner described,

[4
¢™ 4 £-" into 2 cos if, while z will become e".

The case is precisely the same now with the representation of our
JSundamental irrationalities by means of elliptic functions. We
convince ourselves, first, that each of the Schwarzian func-
tions vy, vy, v, admits of being represented uniquely by means
of every other v/, 1, »;. In particular, therefore, if we limit
ourselves to that series of functions for which », =2, v,=3, the



SURVEY OF THE SUBYECT. 145

only condition necessary for & single-valued representation will
be that »,’ is divisible by »;. But this is always the case if
v =oc. All JSunctions of our series, therefore, admit of a .nnylc—
valued representation in terms of the ellipti dular functi
and it 1s just this which is described as a solutum of the equatums
in question by the help of the elliptic modular functions.

I communicate here, without proof, the simplest formule
which p t th lves in this direction for the tetrahedron,
octahedron, and ikosahedron.* We write the three several
fundamental equations, as we have always done, in the follow-
ing manner:

L w3 s

v=% Tga~% maap=%

Then let Z, as just now, be the sbsolnte invariant 9—98 of an
elliptic integral of the first kind, * the ratio of its periods,

K
g=e ¥ . Then we have first, for the root of the octahedral
equation, the simple formula:

quw.
(19) PR e m—
D3

this arises from the known equation :

-3, 9)
‘Jk 340, 9
on introducing ¢?, instead of ¢, on the right-hand side.+

* Compare Bd, xiv. of the Math. Ann., pp. 157, 168, also tho essay of Signor
Bianchi: “Ueber die Normalformen dritter ond fiinfter Stufe des ellip. Integ.
erster Gatt.,” and my own note : “ Ueber gewisse Theilwerthe der ©-Functionen ”
in Bd. xvii., ibid. (1880-81).

+ This corresponds to the remark which we made above (p. 44 of the text) cun-
cerning certain researches of Abel's, In order to thoroughly understand the con-

nection of what is to follow in this direction, Jet us pute for the biq:
form (1 - 2*) (1 - &%) the ahsolute invariant gi. ‘We then obtain :
(1414883 + 1%

TosK (I- )"
and on ioserting here for V& the letter z, we have exactly the loft side of the
octahedral equation ; the symbols 9, &3, as also %;, which I employ in the text,
are the well-known Jacobian ones.
K
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‘We find, farther, for the ikosakedral irrationality :

0 Z=ﬁ-M 3 9 (2LK'_”, Q.)

R = iKT
(-1 g o)

an expression, therefore, which coincides with

&

1+¢2
when the term involving ¢° is disregarded.

The solution of the tetrahedral equation takes a rather more
complicated form, We will in this case first replace the z
hitherto used by a linear fanction of z, which vanishes at the
summits of ¥'=0, and becomes infinite at the opposite summits
of #=0, In this sense we write:

PP S CLEDY
SRRV Iy ey
For the § thus defined we have then, first, the equation :
1)
(21a) z=-96s o IN 253; ] g)a,

and, further, the transcendent solution :

2( 1) (25 + 1) gid+ae
(21b) B L —
2( 1) (Bx + 1) g+

‘We have thus for our three equations severally determined
one root; we obtain the remaining corresponding roots if we

K .
substitate in g=¢ * " for !KZ the infinite number of values:

]&+B
)
7%4-6

where a, 3, v, 5, are real integers of determinant 1. Here all
such systems a, B3, vy, 8, as coincide for modulus vy, or can be brought
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into coincidence by means of a uniform chunge of sign, always give
rise to the same root.*

§ 8. FoRMULE FOR THE DIRECT SOLUTION OF THE SIMPLEST
RESOLVENT oF THE SIXTH DEGREE FOR THE IKOSAHEDRON.

In accordance with the particular significance which we
attach to the ikosahedral equation, the d of the formulae
(19)—(21) of course has most interest for us. We have already
explained that the simplest resolvent of the sixth degree which
the ikosahedral equation possesses has been placed by Herr
Kronecker in direct relation with the modular equation of the
sixth order for & transformation of the fifth order of the elliptic
functions (see § 15 of the preceding chapter). The formula in
question has since been considerably simplified by Herr Kiepert
and myself by the introduction of the rational invariants.
Since, in our researches on equations of the fifth degree, much
regard will be paid to this very formula, it may also be com-
municated here, the proof being left out, and the symbols used
elsewhere being adapted.

‘We have in § 15 of the preceding chapter (formula (46))
given the following form to the resolvent alluded to:

7-10Z. 341222 7+ 522 =0,

Now let g,, 4 be the invariants, already so denoted, of an elliptic
integral, and let Z bo teken = %", Further, let 4’ bo that

value which is derived from 4 by any transformation of the
fifth order. Then the root of our resolvent is simply:

=9
(22) -

* pyis =3 for the tetrahedren,=4 for the octahelron,=5 for the ikosahedron,
For the special dihedral equation appertaining hereto, the same theoremn would
bold good for 3= 2.§ Compare for this, Mathematische Annalcn, Bd. xiv. pp. 163,
166.

+ Cf. Bd. xiv. of the Math, Ann., p. 147, also Bd. xv. p. 86 (1878), and fwrther,
Kiepert : Auﬂosung der Gleu:hungen 5. Grades,” and ‘‘Zur Transformations-
theorie der ellipti " (Borchardt's Journal, Bd. §7, 1878-79), and,
finally, the memoir of Hmmtz just mentioned.,
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If we like to express everything here in terms of X, <K', and ¢
respectively, and thereby to derive at the same time from each
other the six different roots (22), we have first to insert the
following values for g, and '3/4 .

(30, B e 25 )
va=(5)-0 ] Ja-r

and t.l;en for %/ to pl:lthe following six values respectively :
o) [[-em ),

@) ]

(24)

2

nx
where =0, 1, 2, 3, 4, and e is to be taken=c¢ 5, The indices
o, v, ure here chosen exactly as in § 15 of the previous chapter.
The formula (23) can at the same time be used to complete the
data of the preceding paragraph; namely, the absolute invariant
of the elliptic integral is given by them in the form:

1+240 Y 23, g\
(25) o1 (_ - _%_Lﬂﬁ') .
A 172842 i

H(] — gy

1

§ 9. SIGNIFICANCE oF THE TRANSCENDENTAL SOLUTIONS.

The signifi of the tra dental solution with which
we have now become acquainted is primarily & purely practical
one. Logarithms, trigonometric functions, and elliptic modular
functions have been long tabulated, in consideration of the
importance which they possess in other fields of analysis By
reducing the solution of our equations to the said transcendent
fanctions, we make these tables available for use, and avoid the
tedious calculation which would be necessary in carrying out
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the method of solution by means of hypergeometrical series
given in Chapter IIT.*

But there is a deeper ption of the t dental solu-
tions, by which the latter lose the foreign aspect which they
seem to have in the midst of our other investigations, and
rather become intimately combined with them.

Let us consider, in order to fix our ideas, say, the solution
of the ikosshedral equation as it is furnished by (20). As
[2:4
K
sponding linear integral substitutions, the z, in virtue of this
formnula, experiences one of the 60 linear ikosahedral substitu-

often as we subject to one of the infinitely many corre-

tions. The wp of the substitutions of 11{ therefore appears
gror K PP

isomorphously related to the group of the 60 ikosahedral substitu-
tions. 'The isomorphism is only, if we may so express it, one of
“infinitely high” merihedry: to the individual substitution of
'—;;— corresponds one, and only one, substitution of z, while to
every substitution of z cor

iK'
of &
ourselves there to jinite groups of linear substitutions, we re-
quired to bring into tion with one another such equation-
systems generally (or form-problems) as are related to isomor-
phous groups. We now extend this problem to infinite groups
of linear substitutions, and recognise that our transcendent
solutions realise special cases of the problem so generalised.
‘We have obtained these solutions by making use of the theories,
developed in other quarters, of certain transcendent functions.
This is evidently a process which, in connection with our pre-
sent considerations, is not theoreticelly satisfactory. We rather
require & general treatment by means of which the develop-
ments given in § 5, as well as our present transcendent solu-
tions, will be furnished. Our reflections thus lead to a compre-
hensive problem, which will embrace the theory of equations of

d infi VLstitutions

Y 'Iy many

Let us now recall the considerations of § 5. Limiting

* The unfortunate circumstance here ariscs, as regards the clliptic modular
functions, that Legendre's tables for the calculation of the elliptic integrals have
not boen formed in & way which would corrospond with Weierstrass's theory of
elliptic function.
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2 lugher degree, as well as the law of construction of the 9-
fi In proposing this problem, however, we have reached
the limit, as in § 5, which bounds our present exposition, and
which we may not pass.*

* I will, however, not omit to call attention here to certain developments of
M. Poincaré’s (on the general function which he denotes by Z) which behave just
in the way here alluded to ; see Mathematische Annalen, Bd. 19, pp. 562, 563
(1881).

I have, further, to append here the following q i which ble one
another in relating to works in which, with gmater or less completeness, the
theories expounded in our first Part are connectedly dealt with: (1.) Pachta,
“Das Oktaeder und die Gleichung vierten Grades,” Denkschriften der Wiener
Akadenie, math.-phys. K1, Bd. 91 (1879). This work might aleo he consulted
thronghout the following Part when we are concerned with the solution of equa-
tions of the fourth degreo (by means of the octahedral equlmn) (2) Cayley,

«On the Sch : ivative and the Polyhedral Fu of the
Cambridge ]‘hllwhlml Soexety. vol. xu.i. (1880). By the ¢ Sr.hwuznn deriva-
tive ” is there und pression of the third order, which we

established in § 6 of the thml chapter.—(3.) Wassilieff,  Ueber die rationalen
Functionen, welche den doppeltperiodischen analog sind,” Kasan (1880) (Russian).
Herr Wassilieff there makes the interesting mmnrk that Hamilton had already
considered the group »f the ikosahedral with ref to thelr genera-
tion from two op (“M d ing a New System of Non-
Commutative Roots of Unity,” Philesophical Mnguhe, 1856)
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CHAPTER L

THE HISTORICAL DEVELOPMENT OF THE THEORY
OF EQUATIONS OF THE FIFTH DEGREE.

§ 1. DermiTION OF OUR FIRST PROBLEM.

TaE considerations of the preceding Part have given us a deter-
minate problem with regard to equations of the fifth degree.
Now it would not be difficult to put the resnlts, which I have
to develop in this ction, s such in the foreground, and
derive them in & deductive form. I intend, however, to avail
myself of the inductive method here also, and this in such a
way that, on the one hand, I pay regard to the historical
vel t of equations of the fifth degree, and, on the other
hand, ‘mske free nse of geometrical constructions. I hope in
this way to unfold to the reader not only the accuracy of definite
results, but also the process of thonght which led to them.

In accordance with what has been said, our first task must,
in any case, be that of giving an account and review of works
hitherto published which are concerned with the solution of
equations of the fifth degree, so far as these works will be used
in the sequel. I shall here, for the sake of brevity, leave on
one side all such developments as we shall not be immediately
concerned with, however weighty and essential these may appear
from more general points of view. To these belong, above all,
the proofs of Ruffini and Abel, by which it is established that
a solution of the general equation of the fifth degree by extract-
ing a finite number of roots is impossible; and the parallel
works, likewise set on foot by Abel, in which all special equa-
tions of the fifth degree are determined, which differ in this
respect from the general equation. To these again belong the
efforts of Hermite and Brioschi to apply the invariant theory of
binary forms of the fifth order to the solution of equations of
the fifth degree; not that the use of the invariant-theory pro-
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cesses will be altogether dispensed with in the following pages,
only that in our case these relate throughont, as in the preced-
ing Part, to such forms as are transformed into themselves by
determinate linear substitutions, and not to binary forms of the
fifth order. Finally, we leave on one side the guestion of the
reality of the roots of eqnations of the fifth degree ; in particular,
therefore, the extended investigations by which Sylvester and
Hermite have made the reality of the roots to depend on the
invariants of the binary form of the fifth order.

If we limit our task in the manner here described, there
remain two fields of labour which we have to consider. The
object of both of them is to study the roots of the general eqna-
tion of the fifth degree as functions of the coefficients of the
equation, Both start by simplifying the functions in question,
80 that, instead of the five independent coefficients of the equa-
tion, & smaller ber of ind dent itudes will be intro-
duced Now the means which are employed for this purpose
are different; in the one case it is the transformation of the
equations, in the other it is the construction of resolvents.

The method of transformation goes back, as we kumow, to
Tschirnhaus.* Let

1) 2+ Az*"1+ B2"~2+. ... M+ N=0

be the proposed equation of the n** degree; then Tschirnhaus
put:
(2) y=a+Priyzi+. ... w2},

whereupon, by elimination of  between (1) and (2), he ob-
tained an equation for y, also of the n* degree, to which he
endeavoured to impart special properties by a proper choice
of the coefficients @, 8, v, . . . We will at once describe the
results which have been found by this assumption for the special
case of the equation of the fifth degree. Let us first agree
that with the y's the 2’s are also found, at least so long as the
equation for the 3's, as we manifestly assame for the equation
(1), possesses different roots. For in this case the equations (1)
and (2) [in which we now consider y as the unknown magni-
* “Nova method ferendi omnes i dios ex data eq -
Acta eruditorum, t. il p. 204, &c. (Leipzig, 1683). The title itself shows that
T>chirnhaus realised (ae Jerrard did later on) the range of his method.
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tude] have only one root  common, and this  can therefore be
rationally caleulated by known methods.

The method of the constrnction of resolvents has also long
ago been employed for the solution of equati of the fifth
degree. Notable in this respect is the year 1771, in which
Lagrange, Malfatti, and Vandermonde, mdependently of one
another, published their closely related investigations* How-
ever, the resnlts which these attained rather served to point
out the existing difficulties than to remove them. Herr Kro-
necker first succeeded, in 1858, in establishing a resolvent of
the sixth degree for the equation of the fifth degree, by which
a real simplification was effected.} We shall have to limit
ourselves in our further account, so far as the construction of
resolvents is concerned, to the exposition of K: ker's method
and the further researches connected with it.

The two fields of labour which we have thus placed beside
one another are concerned, per se, with purely algebraical pro-
blems. Howbeit the development of analysis has enteiled their
both appearing intimately connected with the more extended
problem: to effect the solution of equations by the help of
proper transcendent functions. We have shown in the last
chapter of the preceding Part} that such a use of transcendent
functions is primarily of merely practical value, and should not
be confounded with the theoretical researches on the theory of
equations. However, we must not neglect in the following
account to consider the different methods by which the solution
of equations of the fifth degree has been specially connected
with the theory of elliptic functions. For it has been just these
methods, as we have already suggested, which have led to a
tighter grasp of the purely algebraical problems also.

* L : “ Réflexi sur la résoluti 1gébri des éq M-
moires de I’Académie de Berlm for 1770-—/1 or (]:.uvn-_s . dii.
Malfatti : *“ De isitio analytica,” Atti dell’

Accad. dei Fisiocritici di Sum, 1771; nlso, “ Tentativo per la risoluzione delle
cquuom di qmnw grado, thid., 1772,

Vi 1 “Mémoire sur la
I'Académie de Paris, 1771.

+ Compare the later references.

+ Ishall in future denote refcrences to the preceding Part by letting the nuniber
of tho chapter, representod by an arabic mmnber, succeed the roman number I.
Cf. therefore in this case 1. 6, § 7, 9.

des ions,” Mdinot de
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For the rest, let it be observed that there is no essential anti-
thesis between the two fields of labour which we are contrast-
ing. If we have succeeded in turning a proposed equation of
the n** degree by transformation into another which contains a
smaller number of parameters, we can afterwards derive re-
solvents from the latter, and consider these as peculiarly simple
resolvents of the original equation; or conversely, if we have
come into possession of a special resolvent of the initial equation
by any of these methods, we can return from it, by renewing
our formation of resolvents, to an equation of the n'® degree,
which latter will then admit of being transformed directly from
the proposed equation.

§ 2. ELEMENTARY REMARKS ON THE TSCHIRNHAUSIAN
TRANSFORMATION—BRING'S FoRrw.

In order to compute the equation of the n* degree which the
y's of formula (2) satisfy, it is most convenient to compose its
coefficients directly, 2s symmetric functions of the y's, from the
symmetric fonctions of the #’s. In this way we recognise at
once that the coefficient of y*—* is an mtcgral homogeneous
JSunction of the « degree of the indetermi
a, B, ....v. Hence we have a linear equation wnth n
unknowns to solve, if we wish to expel the term involving y*—*
from the transformed equation, and a quadratic equation of the
same kind appears in addition if the termn involving 3*~*is to
vanish also. We satisfy both these equations together if we
consider n—2 of the unknowns as parameters, and determine
one of the remaining ones by means of a quadratic eqoation
after eliminating the last unknown. I shall describe an equa~
tion in which the terms involving y*~?, y"~2 are wanting as a
principal equation for the future. The Tschlruha.usm.u trans-
formation, therefore, allows us to reduce every equation to a
principal equation with the help of merely a square root. On
the other hand, we meet with difficulties as soon as we require
that another term in the equation of the y's shall vanish.
In fact, we then come upon elimination-equations of a higher
degree, which we do not know how to treat by elementary
means. It is here that a more searching investigation has
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brought to light an important and—for our future exposition—
fundamental result. The equation of elimination of which we
speak will be of the sixth degree if we require that the terms
y*~Y, y*~% 4% shall vanish simultaneously ; it has becn shouwn
that by proper choice of coefficients of transformation for n>4 the
said equation of the sixth degree can be reduced to an equation of
the third degree by the solution of a quadratic equation.

The result thus described is usually ascribed to the English
mathematician Jerrard, who made it known in the second part
of his Mathematical Researches (Bristol and London, 1834,
Longman). But it is of much earlier date so far as equations
of the fifth degree are concerned. As Hill remarked in the
Transactions of the Swedish Academy, 1861, it had already been
published in 1786 by E. S. Bring in a Promotionschrift sub-
mitted to the University of Lund.* I should, nevertheless,
have retained in the following pages the practice, generally
diffused at the present time, of describing it in connection with
Jerrard, had not the latter in his works relating to this matter
brought forward, gst some interesting results, a lot of
thoroughly false speculations: he believed (just as Tschirnhaus
did) that he could remove, by the help of his method, all the
intermediate terms, not only from equations of the fifth degree,
but equations of any degree, by means of elementary processes,
and did not lay aside this view in spite of incisive refutation
from the other side.t I shall therefore in fature speak of

* The full title runa: * Mel h circa fe
tionem mquationem algebraicarum, quee pmnde E. 8. Bnng . modeste suh-
jicit S. G. Sommelius.” We might, perhaps, have been Ied by the title to
suppose that Sommelius m the author, but. I learn from Herr Bu:k]nnd of
Lund that would certainly be as the P
were then composed entmly by the unduhwq, -nd ouly served the examiners

for

as & suh The l points of Bring's treatise are

inted in tho ication, already ioned, of Hill to the Swedish
Audemy, and agsin in the Q ly Journal of Math ics, vol. vi.,, 1863
(Harley, “A Contribution to the History,” &c.), and, finally, in Grunert’s Archiv,
t. xli., 1864, pp. 106-112 (with remarks by the editor),

+ Jerrard's forther publications are found principally in the Philosophical
Magazine, vol. vii. (1835), vol. xxvi, (1845), vol. xxviii. (1846), vol. iii. (new
series) (1852), vols. xxiii, xxiv., xxvi. (1862-63), &c., and are, therefore, for the
most part, later than the report (as lucid as it is voluminous) which Hamilton fur-
nished in 1836 for the British Association for the Ad of Science (Reports
of British Association, vol. vi., Bristol). Further, Cockle and Cayley repeatedly
opposed the assertions of Jerrard (Phil. Mag., vols, xvii.-xxiv, 1859-62).
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Bring’s equation. Let us write the principal equation of the
fifth degree (as it is to be written henceforward) in the follow-
ing form:

3) ¥+ bay?® + bby +¢=0.

Then it will be to the purpose to retain the coefficient 5 in
Bring’s form also. On substituting at the same time z for g,
for the sake of distinction, we have:

“4) 2B+ 5bz+e=0.

Bring’s equation still contains, as we see, at first two coeffi-
cients. We can, however, at once remove one of them by
putting z=pt and then suitably determining p. We can, there-
fore, by a proper Tschirnhausian trensformation, effect that the
five roots of the eqnation of the fifth degree shall appear to
depend on a single variable magnitude. This result is more
pecnliarly important because we are much more completely

ters of the functions of a single argument than of those
of & larger number of variables. Let us write (4), ¢g., a8
follows (as Hermite has done in his researches to be quoted
immediately) :
(5) t5-1-A4=0,
then it is very easy, on the one hand, to exhibit by Riemann’s
method how the five roots ¢ depend on 4, and, on the other
hand, to establish for any valnes of 4 appropriate developments
in ascending and descending powers which allow the five roots
t to be computed to any app

‘When we have thus become acqnainted with Bring’s result,
we may postpone a deeper p on into its basis, and also a
criticism on its significance, till later, when we shall have far-
ther occasion to do 8o in counection with our own developments.
I also omit to enumerate all the numerous commentaries which
the researches of Bring and Jerrard respectively have received
in the course of years. One of the first expositions of this
method, and, at the same time, the one most widely known,
is perhaps that in Serret’s “ Traité d’algtbre supérieure” (1st
edition, 1849). Hermite has also dealt with Bring’s transfor-
mation,* aiming, however, as already observed, at the appli-

$rat

* In the comprehensive treatise (which will he often mentioned): *Sur
1'équation du cinguidme degré,”” Comptes Rendus, t. Ixi,, lxii. (1865-66). Cf.
porticularly t. Ixi. pp. 877, 965, 1073, t. Ixii. p. 65.
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cation of the invariants of binary forms of the fifth degree;
we must remark that Hermite has determined the irrationali-
ties necessary for the transformation much more completely
than is usually done.

§ 3. DATA CONCERNING ELLIPTIC FUNCTIONS.

The special questions in the theory of elliptic fonctions on
which we must now inform onrselves lie in the region of the
theory of transformation. With the usual notation let x be the
modnlus of an elliptic integral :

dx
®) [
A the modulus which results from a transformation of the a*
order, where n is to denote an uneven prime number. Then,
according to Jacobi* and Soknket respectively, there exists
between ~/x=u and ¥/A=v an equation of the (n+1)* degree
in each of these quantities, the so-called modular equation :

(6) S, v)=0,
which, e.g., for n=>5, runs as follows:
() 0 — o8+ 5ule? (u? - v%) + duw (1 - u*v) =0,

Here u may be expressed in various ways in terms of q=e"§,
e.g., as follows :
- 1 z‘qmwm
8 u=2.¢8. &L
() S
we obtain the (n41) values of v, which satisfy the modular
equation on inserting in this formnla in order:

a 1 Rl n-1 1
(O] ¢ ¢ ety ... a g
2iw
where a=e™. The modular eguation therefore gives us an
example of an equation with one parameter which can be solved

* ¢ Fundamenta nova theorie functionum ellipticarum" (1829).
+  Zquati dul pro i functi ellipti ”
(Crelle’s Journal, t. xii., 1834).




160 THE HISTORICAL DEVELOPMENT OF

by elliptic modular functions.* The p eter is u; we find
from it the corresponding ¢ on reversing the formula (8), or
calculating the magnitedes K and K~ from (5) :

1
dz
(1) K- [:ﬁ:f:l':,z}’ f I :t’ 1-.:'“ 1=e

where x?=1—«% The (n+1) roots » are then obtained by
means of the substitutions (9).

‘We now ask whether it is not practicable to effect, by the
help of the modular equation, the solation of other equations
also. To this end we shall have, above all—in accordance with
the explanations which we have given in § 1, 4—to determine
the group of the modular equation. This is what Galois himself
has slready accomplished.t Corresponding to the substitutions
(9), Galois denotes the roots of the modular equation by the
following indices:

(11) Voo, 1;,, Uy o o v Vpoy
If we then disregard mere numerical irrationalities,} the group

of the modul tion is formed of those permutations of the
v,’8 which are conhmed in the following formula :

12) v -;,_If mod. (n),

which we have already considered above in special cases (1. 4,
§15; 1.5,§7). The coefficients a, 8, v, &, are here otherwise
arbitrary integers which satisfy the ocondition (ad—g8y)=1
(mod. =),

We interpret this result specially for n=>5. The group (12)
will then be, as we saw before, holohedrically isomorphous with
the group of the 60 ikosahedral rotations, i.c., expressed in the
abstract, with the group of even permumwns of Sive th‘mgs. We
hence conclude that the modul

P r v

* We bave already become acquainted with other examples above, 1. 5,§ 7, 8 ;
slnce, however, we have here to explain the historical development of the theory,
these are for the present not conaidered.

+ See " (Euvres de Galois,” Liouville’s Jourusl, t. xf. (1846).

% According to the researches of Hermite, tha single numerical irrationality

here coming under l:onudenhan is "/ (- l) 5 - (,Y the exponhon in C.
Jordan’s * Traité des ions et des & d ” p. 844, &e.
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of the fifth degree, whose discriminant, after adjunction of &
numerical irrationality (~/5, ding to Hermite), is the square
of a rational magnitude. Will it be possible to put the general
equation of the fifth degree, after adjunction of the square
root of its discriminent, in connection with such a resolvent
by means of & Tschirnhausian transformation? Or, conversely,
shall we be able, after adjunction of the square root of its dis-
criminant, to establish a resolvent of the sixth degree of the
general equation which proceeds from the modular cquation
(7) by appropriate transformation? These are just the two
ways of attacking the solation of equations of the fifth degree by
elliptic functions which have been taken in hand and worked
out by Hermite and Kronecker respectively. Before we enter
on an account of their results, we have an important addition
to make from the theory of elliptic functions.

‘We mentioned just now the idea of subjecting the modular
equation itself to a Tschirnhausian transformation. This has
already been donme in a certain form by Jacobi, who placed
alongside of the modular equation (6), properly so called, a
series of other equations of the (n41)™ degree which can
replace it. It isno part of my plan to cormmunicate a rational
and comprehensive theory of the infinite number of equations
which thus come under consideration.¥ We must confine our
thoughts to an especially important result which Jacobi had
esteblished as early as 1829 in his “Notices sur les fonctions
elliptiques.”+ Jacobi there cousiders, instead of the modular
equation, the so-called multiplier-equation, together with other
equations cquivalent to it, and ﬁnds that their (n4-1) roots are

composed in o simple manner of - elements, with the kelp of

merely numerical irrationalities. Namely, if we denote these
elements by Ay, A, . . . Ay, and, further, for the roots = of
2

the equation under consideration, apply the indices employed by
Galois, we have, with appropriate determination of the
root occurring on the left-hand side:

* Cf. for this, so far as modular equations proper are d, my d
ments : *Zur Theoric der elliptischen Modulfunctionon,” in Bd. xvii. of Mnt.he
matische Annalen (1879).

1 Crelle’s Journal, Bd. iii. p. 308, or Werke, t. i. p. 261,
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a3) {“/""\/“”’ A

Vo =Ag+ oA + A L L c(u;,)"-An-.'

2ir
for y=0,1, . .. (n—1) and e=e¢™*, so that, therefore, the fol-
lowing relations hold good bet the Nzs:

ZJ?,:./(-])T.».J&
STerrfims,

(14

where XV is to denote any one of the 21 pon-residues for

b
modulus 7.

Jacobi has himself emphasised the special significance of his
result by adding to his short communication : “ C'est un théoréme
des plns importants dans la théorie algébrique de la transforma-
tion et de la division des fonctions elliptiques.” Our further
report will show how true this remark has proved. In the
hands of Kronecker and Brioschi, the formul (13) (14) have
attained & general importance for algebra, inasmuch as the
savants just mentioned determined to oonsider Jacobi’s equa~
tions of the (n+1)" degree, 4., therefore equations whose
(n+1) roots satisfy the established relations, independently of
their connection with the theory of elliptic functions.®* But in
particular, on the exist of the Jacobien equations of the
sixth degree (which correspond to »=5), rests Kronecker’s
theory of eqnations of the fifth degree, as we shall soon have
to show in detail.

§ 4. ON HEmare's WoRK OF 1858,

‘We have now all the preliminary conditions for understand-
ing Hermate's first work in this connection, the oft-mentioned

* I follow through the notation and ) of Signor Brioschi, as I
did in my earlier publicati Herr K differs parti ly in writing
=, j’, lnd thus obtumng equations of the (2n42)® degree, whereupon linear
ding to the f lz (14) exist hetween the magnitudes f. I

do not see that '.hu possesses many advantages,
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memoir of April 1858.*% Hermite had even earlier been con-
cerned (as also had Betli) with the proof of Galois’ data con-
cerning the gronp of the modular equation. But the object
was, 50 far as the case #=35 was concerned, to actually esta-
blish, in the simplest form, that resolvent of the fifth degree
which the modular equation (7) onght to possess. This is what
Hermite now attained to, when he put:

(13) Y= =) (=) (2= 1)

and found the following corresponding equation of the fifth
degreez:

(16) 95— 24.5%, ud (1 -0y y— 20 55 o (1~ )2 (1 +45) = 0.
We have here exactly the Bring form with which we became
acquainted above, and, in fact, it is casy to identify any Bring
equation with (16) by a snitable choice of . It is sufficient to
return to the simplitied form which we communicated in (5):

#-t-A4=0.
‘We reduce (16) to this form on taking :
an Y= T2 t,

the coefficient 4 will then be equal to the following expres-
sion :
2 lew

(18) NIRRT (1-u) 4
and here we determine u from 4 the more easily in that we
have to do with a reciprocal eqnation with regard to ». Hence
the solution of any Bring equation is furnished by the formale
of Hermite, and with it indirectly the solution of the general
equation of the fifth degree by means of elliptic functions.

Hermite’s work has, as follows from this short account, no
kind of relation to the alycbraical theory of equations of the
fifth degree. Rather it moves throughout in the field of elliptic
modular functions, and, moreover, the series of further researches
which Hermite has published on the theory of modular func-

* Comptes Rendus, t. 46: “Sur la résolution de I'équation du cinqui
degré.”

t For the proof cf., say, Briot-Bouquet, *Théorie des fonctions elliptiques "
(Paris, 1875), p. 654, &c. °
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tions took its origin in these. This is the reason why Hermite's
solution of the equation of the fifth degree only comes cursorily
under consideration in our following exposition ; for the use
of elliptic functi ltogeth dary to the oon-
ception which we shall henceforward maintoin. This would, of
course, be at once changed if we wanted to take into account
in detail the general ideas which we formnlated in the Tud
ing paragraph of the preceding Part, a course which must be
deferred to future expositions.

Together with Hermite's first work we advisedly mention two
communications of Brioschi and Joubert, who both compute the
resolvents of the 5th degree for the multiplier-equation of the
6th degree (a special Jacobian equation, therefore, of the 6th
degree), and hence likewise obtain the equation (16).* XKro-
necker had also, as he informs Hermite, dealt with resolvent
constraction of this kind.+

§ 5. Tne JACOBIAN EQUATION OF THE SixTH DEGREE.

Continuing our account, let us now first turn our thoughts to
the researches which Brioschi and Kronecker have made on the
Jacobian equations of the sixth degree.f Let us first remark
the following facts. Wt two investigators have worked
ot the same subject simultaneously and in relation to one an-
other, it is difficult to distinguish what first issued from the
one, what from the other. The chronological method, which
refers to the dates of the individual publications, is certainly
not always accurate ; but it is, after all, the only one which can
be handled with any certainty. In this sense we shall now
proceed on the basis of this method. I begin with recounting
the works which Signor Brioschi has published in the first
volume of the Annali di Matematica, Serie I. (1858).

* Brioschi: “Sulla risoluzione delle equazioni di quinto grado” (Annali di
Matematics, Ser. I t. i., June 1858), Joubert in a comwmunication from Her-
mite in vol. 46 of the Comptes Rendus (“Sur la réwlution de I'équation du
quatritme degré,” April 1858).  See also Joubert: “ Note sur la résolution de
I'équation du cinguidme dugré,” in the Comptes Rendus, t. 48 (1859).

4 Letter to Hermite, June 1858, Sce Comptes Rendus, ¢, 46.

% Compare the exposition of this relation Ly fermile in his memoir, already

tioned . “Sur I'équation du cinquidme degré,” Comptes Rendus, particularly
t. 62 (1666), pp. 245-247.
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After Signor Brioschi had first proved * (l. ¢.) the data of
Jacobi, he concerned himself with the actual establishment of
the g 1 Jacobian equation of the sixth degree. His result
is as followsf Let Ay, A,, A,, be three magnitudes which occur
in (13) corresponding to n=>5; farther, let:

= Ao’ + A A
B=SAIAA, - 2AJAAL+ APAS - A(AS + AS),

(19) {C=320AA2A2 — 160A'A A, + 20A7A *Aj¢ + GASAS

—4A(AS+ AS) (3IAS - 20AAA, + SAZA)

+AM0 LA
Then the g 1 Jacobi: quation of the sixth degree will
be the following :
(20) (2= A) - 44(z ~ A5 +10B(z ~ Ay - C(z — A) + (512 — 4C) =0,

Brioschi further seeks to construct a resolvent of the fifth
degree as simple as possible for this equation, and to this end
first 1 puts (following Hermite's example):

(21) Y= (20 —2) (@~ 2 (%~ %),
but then remarks, in connection with a letter of Hormito's, that
the square root of this expression is already rational in the A’s,
and gives rise to an equation of the fifth degree§ Lct x be
this square root ; then Brioschi finds for the five values of which
xis rA‘lI theA‘Il (] gﬁ 1. .
(22) o= — A ($A2 - ALA,) +2(2A A2~ AY)

+ O —2A A2+ A + WA A2 - AA),
while for the corresponding equation of the fifth degree he finds
this:

4

(23) 4+ 1082 + 590 - 4Oz -, / E=0,

where IT is the discriminant of the Jacobi quation (20).|
The multiplier-equation of the sixth degree for elliptic func-

tions (to which Jacobi’s remark first related) is of course con-

tained in (20) as a special case. Brioschi finds that it is

* P, 175, 1. ¢. (May 1858). + P. 256, . ¢, (June 1858),

% Loc, cit. § I 826, 1. c. (Scpt. 1858).

Il T bave here, in opposition to the original formula of Brioschi, given the
aumerical ooeﬂicnmt.s. 'as Joubert had done later on (“Sur U'équation du sixidme
degré,” Comptes Rendus, t. 64, 1867).
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essentially characterised by the condition B=0, whereupon
(23) becomes a Bring equation. To Herr Kronecker is due the
credit of first directing his attention to the case 4=0, and
also of effecting its solution by means of elliptic functions. We
need not communicate here in detail his primary formul® as he
noted * them in his letter to Hermite, and as Brioschi then
proved them in the memoir (to be presently described more in
detail) in the first volume of the Atti of the Istituto Lombardo.t
For they are considerably simplified if, instead of the modulns
I (which Herr Kronecker used), the rational invariants of the
elliptic integral gy, g5, 4, are introduced, and we have already
become acquainted (I. 5, § 8) with the formul of solution in

stion in this simplified form. In fact, the Jucobian equation
of the sixth degree with A=0 1is nonc other than that simplest
resolvent of the sixth degree which we have established in 1. 4,§ 15,
in the casc of the ikosahedron. We have only to put:

(29) Ag=2z2y A =2%, A= -2,
and correspondingly :
(25) =-fC=-H

At the same time, for 4 =0, the resolvent of the fifth degree
(23) is transformed into the following :

*/m
26) 5410825+ 455 - o /1

which agrees with formula (27) of L. 4, § 11. I mention these
relations only cursorily, to return to them later more in detail.
It remains to consider one final direction of investigation with
regard to the Jacobian equations of the sixth (or indeed of any)
degree, that which Herr Kronecker first took in hand { in his
algebraical communications from the year 1861 onwards, and
which was then followed up further by Signor Brioschi in
particular in the first volume of the second series of the Annali
di Matematica (1867).§ The object is to construct from one

* Comptes Rendnw, t. 46, June 1858.

+ “Sul metodo di K ker per la ri ione delle equazioni di quinto grado ™
{Nov. 1858).

IM berichte der Berliner Akad

§ “La soluzi, pin g le delle equazioni del 5. grado.” See also “Sopra

alcune uuove relazioni modulari,” in the Atti della R. Accademia di Napoli of
1886.



EQUATIONS OF THE FIFTH DEGREE. 167

Jacobian equation a new one by a Tschirnhausian transforma-
tion. Herr Kronecker remarks that this is possible in two
ways, inasmuch as the roots Z», Z,, of the transformed equation
(which correspond to the 2=, 2, of the original equation) either
just eatisfy the formula (13), (14) (where € can be replaced by
€® at pleasure, understanding by B a quadrati idue of = ;
this only signifies a change in the order of the roots); or they
satisfy those others which proceed from (13), (14), on replacing €
by €, where N s to denote an arbitrary non-residue to the modu-
lusn. Let n be, as we will now assume, equal to 5; then we

can in the first case put +/Z equal, for example, to ')6—;/12 or

equal to * b_"b_/_—, the most general expression for ~'Z here coming

under consideration arises on combining ~z and the two mag-
nitudes mentioned multiplied by arbitrary constant factors :

@7 NZ=r. Jz+n 6»\/-_‘_"4_)_.,/_;;.

‘We solve the second case on first constructing for it a particular
example, which is furnished, say, by :

(8) 2=, 4 omeao
afterwards we treat the Jacobian equation corresponding to this
example exactly according to formuls (27). We shall return
later on more in detail to the principle of these transformations.
Meanwhile let us find room for the following remark. If we
calculate for the ~/Z of formula (27) the expression 4, this will
be an integral homogeneous function of the second degree of
the A, »,». We cen make this zero by, for instance, putting
y=0 and determining A : u by means of the resulting quadratic
equation. We can ther¢fore by mere extraction of a square root
transform the general Jucobian equation of the sixth degree into
one with A=0.

Signor Brioschi has since collected® his researches here in-
dicated, as also the further ones to be described presently,
which relate specially to the theory of equations of the fifth

* “Ucber die Aufiésung der Gleichungen funften Grades ™ (1878).
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degree, in Bd. xiii. of the Mathematische Annalen; and they
are all the more welcome because his original publications,
widely scattered as they were, could have been only with diffi-
culty ible to many mathematici Herr K ker has
also since returned to the theory of the general Jacobian equa~
tions,* but the questions there treated by him lie beyond the
limits which are p ibed for onr p t exposition.

§ 6. KRONECKER'S METIIOD FOR THE SOLUTION OF EQUATIONS
OF THE F1rTH DEGREE.

Having premised the theory of the Jacobian equations of the
sixth degree, we can with ease describe the nature of that
method of solution which Herr Kronecker has developed in his
oft-cited letters to Hermite (Comptes Rendus, t. 46, June 1858)
for the general equation of the fifth degree. The Jacobian
equations of the sixth degree are very intimately bound up with
the theory of elliptic functions, but they also represent, as we
have already remarked (aud this in virtue of formulz (13), (14)),
a remarkably simple type of algebraical irrationalities per se.
Herr Kronecker's particular discovery is this: that from the
general equatwn of the ﬁfth degfee after adjunction of the square
root of the discri resol of the sizth degree can
be estadlished which are Jucolnan equations. To this is appended
the further remark, which we led up to just now: that we can
transform the Jacobian equation in question by the help of only
one additional square root into one with A=0, therefore into a
normal form with only one essential parameter,t whick admits of

lution by elliptic functi

In Herr Kronecker’s original communication the two points
bere separated are, however, not clearly distinguished. Iferr
Kr ker limits himself to icating the following
rational function of the five roots of an equation of the fifth
degree:

* Monatsberichte der Berliner Akademie of 1879: ‘Zur Theorie der alge-
braischen Gleichungen.”

1 Ilere again we reduce it to only ono parameter by putting z=p¢ and deter-
mining p suitably.
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in which he supposes v so determined that 3f%*=0, and then
remarks that the several f’s, which arise from (29) by even
permutations of the s, satisfy an equation of the twelfth degree
of the following form :

(30) F2-10¢. 5+ 542 =, f2,

which will admit of solution with the help of elliptic functions.
Here (30), provided we put f2=2, is the Jacobian equation with
A=0, and the vanishing of 4 corresponds to the vanishing of

We are indebted to Signor Brioschi for having made the
deeper meaning of Kronecker’s method accessible to the mathe-
matical public in a lucid and at the same time a more general
form, and this in the memoir mentioned just now : * Sul metodo
di Kronecker,” &c., in the first volume of the Atti of the
Istituto Lombardo (Nov. 1858). We do not here recur to the
contributions which Brioschi has there made to the general
theory of the Jacobian equations of the sixth degree. What
here interests us is that ke establishes a gencral rule of construc~
tion for the Toots z, of wlich a special case occurs in formula (29).
Let :

(31) 0 (s 2y Ty X Z,)
be a rational function of the five a’s which remains unaltered
for the cyclic permutation :

(B Xy Ty Tyy 2,)

further, let :

(32) V' =0 (% Ty Ty Ty X,
Brioschi then puts

(33) v-v=u,

and derives from this function five new functions u,, u,, u, 1, %,,
by first subjecting the «’s to the substitution

. ' i, ate ‘
Ty =Ty Iy =y Xy =y Sy =Ty Ty =Ly,
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and then bring into the cyclic permutation
already mentioned. Then the. Jollowing expressions are in general
Jound to be the Toots of a Jacobian equation of the siwth degree,
which remains unaltered for all even permutations of the s, and
hence p as cocfficients rational functions of the coefficients of
the equation of the fifth degree and of the square root of its discri-
minant :

2 = (u N5y + g+ Uy g + )

29 = (g + Uy N5 =ty + Uy +uy ~ 0,
(34) 7 = (u, =yt 5 — gty

2 = (U, + Uy~ 1ty + Uy N5 —ug + )2,

2y = (U, + Uy + Uy — Uy + g /5 — )2,

2y = (1, = Uy + Uy + Uy — Uy + %y /)2
Thege formulz become still more concise if we note the elements
A, ,Ay, A, of which the +/Z's, in accordance with (13), are com-
posed. The comparison gives simply :

AgB=u 5+ ug+uy+uy+uy+u,
1 -
(35) 9 A B =up+ édu, + Suy + €y + euy,
,l, Ay W5 = uy+ euy + €ty + Sug + ebuy,

2im

where e=¢ % ,//5=c+e—e®—e3. The formule (29) are, as we
have already pointed out, included in (34) as a special case.
Herr Kronecker has here from the first endowed the functions
v or % which he used with a parameter » occurring linearly, in
order to be able to satisfy the additional condition 4=0. Signor
Brioschi gives, for another case connected with the invariants
of the binary form of the fifth degree, the full calculation of the
final equation of the sixth degree.

We have just become acquainted in (23) with Brioschi’s
simple resolvent of the fifth degree for the Jacobian equation of
the sixth degree. Now considering the Jacobian equation of
the sixth degree in its turn as a resolvent of the general equa-
tion of the fifth degree, we recognise the possibility of trans-
formmg the geneml equation of the fifth degree by means of a
Tschirnh formation, whose coefficients are rational
after adjunction of the root of the discriminant of the

4
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proposed tion, into an equation (23), i.e. an equation in
which the fonrth and the second power of the unknown are
wanting.* In particular, if we annex, besides, Kronecker's
auxiliary equation for v, we can make 4=0 in this equation,
a.nd thus obtain the form (26), wlnch like the Bring form, only

one Hermite, and after him
Brioschi again, have dealt in detail with the problem of con-
structing the Tschirnhausian transformation in question in an
explicit form. We should have to go into these works more
minately, if it were not that they are principally controlled by
the oft-mentioned postulate: to bring into play the invariants
of the binary form of the fifth order. Let us therefore only
briefly refer here, first, to the elegant communication which
Hermite makes to Borchardt in Bd. 59 of the Journal fiir
Mathematik (1861) ; then to his oft-mentioned saccinct memoir,
“Sur P'éqpation du cinquidme degré,” of which the second half
(Comptes Rendus, t. 62 (1866), pp. 715, 919, 959, 1054, 1161)
is devoted to the exact accomplishment of all the calculations
which app y in Kronecker's method ; and finally to
a series of remarks which Signor Brioschi has then appended
to the developments of Hermite. (Comptes Rendus, t. 63
[1866, 2], t. 73 [1871, 2], t. 80 [1875, 1]).+

§ 7. Ox KroneckER'S WORK OF 1861,

Though Herr Kronecker in his first communication to Her-
mite had only cursorily and by an example, so to say, demon-
strated his method of solution of equations of the fifth degree,
he has since (1861) gone into} the nature and principles of it
more thoroughly. Our account of it must be the more complete
in this place because the reflexions in question in many respects
lie at the root of our own developments in the sequel, and on

* The mode of expression in the text premises what we shall presently remark
concerning the irrationality of L/g

+ Cf. also M. Roberts in the first volume of the 2d series of the Annali di
Matematica (1867) ; “ Note sur les équations du cinquidme degréd.”

% Namely, in the already mentioned communication in the Berliner Bfonats-
berichten, of which that part which relates to cquations of the fifth degree was

printed in Bd, §9 of Borchardt’s Journal.
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the other hand Herr Kronecker has given a peculiarly scanty
exposition of them, omitting all proofs.

First, Herr K ker expressly distingnishes bet the
tr dental and the algebraical part of the solution. The
latter, the more particularly important, consists in the assem-
blage of all those algebraical operations which are necessary in
order to replace the g 1 equation of the fifth degree by a
normal form, the simplest that can be chosen: how we elect to
calculate the roots of this latter given case by convergent infinite
processes, or by empirical tables, or what not, is a question per
se which will not be farther touched upon. Hence the Jacobian
equations of the sixth degree for Herr Kronecker now only
come under consideration in virtue of their algebraical peculi-
arities, not in virtue of their connection with elliptic functions.

Secondly, Herr Kronecker remarks that we must draw an
esgential distinction between the irrationalities which are in-
troduced for the purposes of the reduction of algebraical equa-
tions. The irrationalities of the first—we might call them the
natural ones—are those which depend on the roots  which are
to be determined, the same, therefore, as we have described in
the fourth chapter of the preceding Part as roots of “ rational ”
resolvents.  Alongside of these appear the others, which we
might call accessory, because they are irrational functions of the
a's. Such accessory irrationalities need not be more compli-
cated than the natural ones, ¢g., they may involve the square
root of a coefficient of the proposed equation. This is the case
with the expressions (29) which we just considered; these in
themselves denote natural irrationalities, which, however, be-
come accessory if the » is determined in the way explained with
the help of a quadratic equation.

In accordance with this distinction, Herr Kronecker further
asks to what point we can go in the solution of equations of
the fifth degree when we impose the restriction of only wishing
to employ natural irrationalities. The Jacobian equation of the
sixth degree contains primarily ¢hree parameters, to wit, the
three magnitudes which we have denoted by 4, B, . Herr
Kronecker remarks that by appropriate modification of his
method, without leaving the circle of the natural irrationalities,
we can replace these parameters by two only, a and 0. On the
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other hand, he asserts, it is impossible, without accepting the aid of
accessory irrationalities, to construct from the general equation of
the fifth degree a Jacobian equation with only one parameter, or
any resolvent at all with only one parameler.

As regards the first of these two propositions, we can at once
give account thereof. We will show, viz., in the fourth chapter
following, that, alongside of the expressions of the d, sixth,
and tenth degrees in A, A,, A,, which we called 4, B, C, yet
another expression of the fifteenth degree, .D, is rationally
known, whose square is an integral fanction of the 4, B, and C.
‘We have already encountered this D as the fourth root of the
discriminant (divided by 5°) of the Jacobian equation, in the
constant term of (23) Let us now, in the resolvent of the
equation of the fifth degree, replace the expressions A,, A,, A,
35), by Aot B A A4, by functions of null dimen-
sions proportional to them. Thus, in the place of 4, B, C,

. A¥ AR, B A, C 4%
D, appear respectively o T po i Here we can
substitute for D throughout the integral function of 4, B, (,
which is equal to it. Then the new 4, B, C, D, depend, in
fact, on only two parameters, viz., the quotients of null dimen-
sions:

B C
@6) asTh b= g
whereupon the required proof is fulfilled.

The proof of the second assertion is essentially more difficult,
and we must defer it till the conclusion of our main exposition.
It there appears as a consequence of properties of the ikosa-
hedral substitutions which we have before brought into promi-
nence, and flows so naturelly from them that the particular
basis of the theorem in question seems to be disclosed by means
of them.

I come to the conclusion of Kronecker’s work. Herr Kron-
ecker calls attention to the fact that, in the case of those
algebraic equations which admit of solution by the extraction
of roots, and indeed on the ground of the original develop-
ments of Abel, the accessory irrationalities can be dispensed
with altogether. Accordingly, Lie postulates the same for the



174 HISTORICAL DEVELOPMENT OF

solution of higher equations: he only wants to see their reduc-
tion brought in each case so far as the use of the natural
irrationalities carries it. This is, therefore, the last step of
the original method of Kronecker, as we have just become
acquainted with it: to push the reduction back to an equation
with 4 =0. Or rather, the theory has to confine itself to
placing the equations of the fifth degree (in the way just sng-
gested) in connection with Jacobi tions which contain
two parameters; to investigate the dlﬂ'erent kinds of reduction
here possible; and, finally, to see how, conversely, the roots of
the equation of the fifth degree are now represented in terms of
the roots of the said Jacobian equation of the sixth degree.*

As regards our own exposition, I should like, in the sequel,
not to retain the requirement here detailed. True, we shall
have to investigate—and this shall be done in the fullest manner
—how far we can get with the use of natural irrationalities
only. Bub, over and above this, the question arises, what is
the state of affairs with regard to the accessory irrationalities
which aid us in the further reduction; what are the simplest
results which we can attain to with their help? The analogy
with those equations which are solvable by extraction of roots
does not seem to me to have much force. If, for the latter, the
use of accessory irrationalities is superfluous, we may perceive
in the necessary occurrence of these irrationalities, in the case
of higher equati haracteristic feature of these latter, and
should the rather pmceed in the case of equations of the fifth
degree, as the lowest case of higher equations, to fathom the
nature and signifi of the 'y y irrationalities.
‘We shall the less be able to neglect these investigations, b
the treatment of the natural irrationalities is, as we shall see,
in a certain sense furnished by them.

* Here I should like to direct ion afresh to the ludi: h of
1. 5. If the illustrations there given are acourate, we can consider the use of
clliptio functions as an introduction of aecessory irrationalitiea of infinitely high
order. If we, therefore, wish to retain Kronecker’s postulate, we may not seck,
say, to solve the equation with two parameters, which we have obtained by
weans of elliptic functions, afterwards ; rather, these equations form a point
beyond which we can in no wise advance,
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§ 8. OBJECT OF OUR FURTHER DEVELOPMENTS.

At this point we break off our historical account, inasmuch
as it seems to the purpose to interweave the description of the
works still to be mentioned with the progressive exposition of
the following chapter.* The object of this exposition is, as we
have repeatedly pointed out, to place the solution of equations
of the fifth degree in connection with the theory of the ikosa-
hedron in a manner as simple and comprehensive as possible.
That such a connection is possible follows in several ways from
the exposition which we have so far given: for the Jacobian
equation with 4=0 is, as we saw, a resolvent of the ikosahedral
equation ; and we can even conceive the Bring form as such, if
we suppose in I. 4, § 12, the ratio m : n so determined that the
term involving ¥2 in the principal resolvent vanist

However, it is not our intention to introduce the ikosahedron
in such an indirect manner. We desire rather to expound the
theory of equations of the fifth degree connectedly, and in such
a manner from the outset that the significance of the ikosa-
hedron will be recognised as -y and fund tal. I here
employ freely constructions in the sense of projective geometry,
as I have already repeatedly noted. No doubt we can through-
out replace these by purely algebraical reflexions. Nevertheless
I believe that they are essentially useful, and am of opinion
that they must be also of importance in a similar form in higher
problems of the theory of equations.

* These are first the different essays which have been published by Herr
Gordan under the title, “ Ueber die Auflosung der Gleichungen fiinften Grades,”

and by myeelf as * Weitere U iiber das Ik der.” The first are
found respectively in the Erlanger Berichten of July 1877, in the official report
of the Naturforsch at Munchen (Sept. 1877), and in Bd. xiii of

the Math. Annalen (1878) ; the latter in the Erlanger Berichten of Nov. 1876,
January and July 1887, and, finally, in Bd. xii. of the Annalen (1877). See also
& communication from DBriocschi to the R. Accademia dei Lincei of Dec. 1876
(Transunti), and another to the Istitato Lombardo of April (1877) (Rendiconti
(2), X). To this add, further, Kiepert's “ Auficsung der Gleichungen fiinften
Grades” in the Gottinger Nachrichten of July 1878, completed in Borchardt’s
Journal, t. 87, Aug. 1878 ; also my own works : ‘‘ Ueber die Transformation der
elliptischen Functi und die Auflé der Gleichungen 5, Grades” (Bd. 14
of the Annalen, May 1878), and “ Ueber die Aufit i Gleich von
7. und 8. Grado” (Bd. 16 of the Annalen, March 1879)
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The details of our following exposition are distributed in four
chapters.

Our first object is to bring the main idea of the theory of
equations into a geometrical form. Here I unnex a mode of
exposition which I gave in 1871 in the fourth volume of the
Mathematische Annalen,* and develop in particular, by pursumg
this further, the geometrical ption of the Tschiruk
transformation and of resolvent construction. With a view to
what follows I append thereto a short excursus on the elements
of line geometry and the corresponding properties of the surface
of the second degree.

The following third chapter is devoted to the special theory
of the principal equations of the fifth degree, i.c., those equations
which contain neither the fourth nor the third power of the
unknown. On the basis of the theorem that surfaces of the
second degree possess two systems of rectilinear generators,
there arises for the said equations a peculiarly simple connec-
tion with the ikosahedron, whence our earlier developments
concerning the principal resolvent of the ikosahedral equation
(.4, §12) lead to explicit formulze for the roots of the proposed
equation. By this means we obtain in particular, as I develop
cursorily, the meaus of putting the Bring transformation into
a definite shape and understanding its real essence.

Our fourth chapter then explains the position of the ikosa-
hedron in the theory of the general Jacobian cquations of the
sizth degree. It is shown that the latter, in the sense of L. 5,§ 4,
represents a ternary form-problem, and indeed such as arises
from the binary ikosahedral problem hitherto considered, by a
certain simple process of translation. In the same way, all the
manifold results, which we have attained in the theory of the
Jacobian equation of the sixth degree, present themselves as it
were spontaneously and in part in an improved form. In par-
ticular, I shall develop how we accomplish the solution of the
general Jacobian equation, after adjunction of an accessory
square root, most effectively by the help of the ikosshedral
equation.

Two ways arc now open, as we conclude in the fifth chapter,

""Uebereme, ische Interpretation der Resol Igebraisch
Cleichungen.”
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for solving the general equation of the fifth degree by means
of the ikosahedral equation, inasmuch as we are at liberty, viz.,
either to transform the given equation by a Tschirnhausian
transformation into a principal resolvent of the fifth degres, or
by construction of resolvents to place it in connection with the
ternary form-problem just described. The one gives, if we like
to say so, a simplification of the method of Bring, the other a
modification of that of Kronecker. But, at the same time, we
recognise that the operations which are used in the two methods
differ not in their nature, but only in regard to their order. We
thus have the means of comprehending the whole of the older
works described in the preceding paragraphs from one point of
view. And here we also succeed in proving that indirect theorem,
established by Herr Kronecker, of whwh we Just. now gave an
account, and which can be ived as a fund

not only of the problem of solution in its abstract form, but also
specially of our own considerations.

It is, perhaps, particularly interesting that, in virtue of our
exposition, the theory of equations of the fifth degree is again
brought near to that of equations of the third and foarth degree.
‘We have paid regard to this, wherever it seemed useful, in brief
footnotes,




CHAPTER II.
INTRODUCTION OF GEOMETRICAL MATERIAL.
§ 1. FoUXDATION OF THE GEOMETRICAL INTERPRETATION.

THE geometrical interpretation of equations of the fifth degree,
with which we shall work in the following pages, rests on the
simple idea of using the roots @, ®,, %y, &;, @,, of the equation as
homogeneous point-coordinates (where, of course, only tbe ratios
of the z's are actually interpreted). Were we not to add hereto
a farther limitation, we should have to start from a space of four
dimensions. But this would be doubly inconvenient: we should
have to forego the pregnant terminology which is at our dis-
posal for space of three dimensions, and should be unable to
assume results in a specific form. We will therefore introduce
a limitation which will be effected in every case by an easy
auxiliary transformation, viz., by laying down the condition that
in what follows we are aliways to take:

(1) Se=0,

and that, thercfore, we shall only consider equations of the fifth
drgree of the form :

) B +art+ bl +ex+d=0

(in which the term in z* is wanting). 'We can then, and in fact
immediately in virtue of (1), denote the ratios of the 2’s as point-
coordinates of ordinary space, its so-called pentahedral co-ordi-
nates. Such pentahedral co-ordinates are only formally different
from the ordinary tetrahedral co-ordi of projective geometry ;
we migbt define them directly in this way, that we consider four of
then as tetrahedral co-ordinates, and introduce the fifth in virtue
of (1) as a linear combination of the rest; only the symmetry on
which we lay the greatest weight in the sequel is then lost.*

* The i duction of rfi Jinates, which are then connected by a
corresponding number of Imzm' identities, is utllerwnw uscful in geometry. Cf,
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The geometrical interpretation here described derives its pri-
mary importance from our considering the different arrangements
which we can impart to the roots z. To one and the same
equation of the fifth degree correspond in this sense at the ontset
120 points of space, in general distinct, which are only known
in the aggregate; the solution of the equation will then consist
in supplying the means of selecting the individnal points from
the 120 introduced in this form.

The points gpoken of here are, of course, not independent.
An arbitrary per ion of the pentahedral co-ordinates, e.g.,
that which replaces z; by «;, can be denoted geometrically as a
transformation of the whole space, viz., as that collineation
tl f which ponds to the formula:

(3) ) =2z,

The 120 collineations which correspond in this sense to the 120
permutations of the ’s are clearly defined geometrically by the
fact that they all transform into itself the pentahedron which
determines the co-ordinates. The geometrical connection of
the 120 associated points is just this, that they all proceed from
one of themselves by means of the said collineations.

I have here restricted the development of these fundamental
ideas to the equations of the fifth degree. This restriction,
however, is quite unimportant; a perfectly analogous kind of
geometrical meaning is possible for equations of the = degree,
provided we start from projective space of (n—2) dimensions;
thus, for equations of the fourth degree, from the plane; for
equations of the third degree, from the straight line. We can
here indeed take account of the Galois-affect of the equations
by considering, instead of the possible permutations of the
n~roots and the collineations corresponding to them, only a sub-
group thereof. It is unnecessary in what follows to treat the
matter under such general conditions. Howbeit, I might just
point out here the perfectly similar geometrical meaning which
we shall use in the next chapter but one, in our investigation of
the form-problem there discussed.

¢.g., Paul Serret's ¢ Géomctrie de direction” (Paris, 1869). The system of penta-
bedral co ordinates in particular was, I beliese, first used by Hamilton in his
rescarches on the geometiical net of Mobius, v hich can be derived frow five points
inspace.  Sec Hamilton’s “ Elements of Quaternions” {(Dublin, 1866°, pp. 57-77.
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§ 2. CurassiFicatioN OF THE CURVES AND SURFACES,

‘We remark now that we can classify the curves and surfaces
of our space (or in general the geometrical figures existing
therein) according to their behaviour with regard to the 120
collineations (3). In general, an irreducible curve or surface is
not transformed into itself by any of the 120 operations; it
appears then as one of the 120 asociated figures, of which each
possesses the same properties both in itself and in relation to
the co-ordinate pentahedron. But it can also be transformed
into itself by the n-transformations of a determinate sub-group
g contained in the aggregate 120 transformations. Then the

number of the co-ordinated figures is only % ; each one remains

unaltered by the n-transformations of a sub-group which is
asociated with the group g within the main group. Evidently
the same distinctions occur here which we found in the fourth
chapter of the first Part in treating of the theory of resolvent
construction.

‘We will introduce & definite terminology in connection with
this. If a figure is transformed into itself by all the 120 colli-
neations, we call it regular; half-regular, on the other hand, if
this is only the case with regard to the 60 collineations which
correspond to the even permutations of the 2's, and which we
may denote shortly as the even collineations. In all other cases
we shall speak of irregular figures. The half-regular figures
group themselves together naturally in pairs, for the group of
the GO even collineations is self-conjugate within the main
group ; therefore if one figure is transformed into itself by the
60 even collineations, so will also the other be which proceeds
from it by an arbitrary uneven collineation.

The classification here described will be of importance for the
purposes of the theory of equations, inasmuch as we now con-
sider equations which contain parameters. We will only count
these parameters as they affect the ratios 2, 2y : z,: 23 : 2, Then,
if we have an equation with one parameter, the 120 corresponding
points z trace out, by the variation of the parameter, a curve in
space which will be transformed into itself by the 120 collinea-
tions, and which we shall call the image of the equation. Simi-
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larly, we obtain, as the image of the equation, a surface when
the number of essential parameters is two; the surface is also
transformed into itself by the 120 collineations. The question
whether this curve or surface is reducible or not is evidently
intimately connected with the group of the given equation of
the fifth degree. To fix the ideas, I shall assume that our para-
meters enter rationally in the coefficients of the equation. At
the same time, we will lay no stress on mere numerical irration-
alities; we shall, therefore, regard arbitrary rational functions
of the parameters as rationally known. Then the Galois group
of the equation [in conformity to I. 4] is transformed into that
which Hermite* has called, by way of definition, the group of
monodromy, t.e., the aggregate of those permutations of the
roots & which occur when we consider the z’s as algebraic func-
tions of the parameter, and then let these, starting from any
initial values, so vary in the complex domain that they finally
return to their initial values. The point 2 moves by this
process of variation in the same irreducible portion of the
geometrical image corresponding to the equation, and

therein, by suitable variation of “the path, all possxble posu;lon&
‘We conclude from this that the irreducible portion in question is
transformed into itself by just so many collineations amony the
120 which ewist on the whole as there are permutations of the «'s
contained in the group of monodromy. It will not be diffienlt
to confirm this general proposition in the particular examples
which we now enter upon.

§ 3. THE SmaPLEST SPECIAL CASES OF EQUATIONS OF
THE F1FTE DEGREE.

With respect to our earlier developments, we now consider
the simplest special cases of equations of the fifth degree,
namely, those which proceed from (2) by equating one or more
coefficients to zero, in which the other coefficients (in so far as
they influence the relations of the roots «) will have to figure
a8 parameters.

* Comptes Rendus, t. xxxii, (1851) : **Sur les fonctions algébriques ;' see, too,
C. Jordan, ““Traité¢ des substitutions,” &ec., p. 227, &c,
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First, let e=0; then we have, by (1):*
4) 22%=0,

i.e., a0 equation which represents a surface of the second order.
If we eliminate by means of (1) the z,, and form the discriminant
from the left side of the equation then existing:
T2+ 22+ 2y g+ (g + ) + Xy +25)° =0,

we arrive at + 5, a value, therefore, which does not vanish.
We conclude from this that our surface of the second degree
not only does not split up, but is never a sphere. It is this
surface—regular in the sense agreed upon—which will play the
most important part in our further geometrical developments.
I shall therefore describe it as the Drincipal Surface, which
tallies with the fact that we have already called an equation
which satisfies the relations (1) and (4), & Principal Equation.

We proceed to the following case: b=0. Again making use
of (1), we obtain for the corresponding «'s :

) =0,

We are therefore led to that irreducible surface of the third
order which Clebsch has incidentally described as the Diagonal
Surface,t because it contains the diagonals of the co-ordinate
pentahedron, i.e., those fifteen lines which, moving in one of the
five pentahedral planes, connect any two opposite angles of the
quadrilateral marked out in this plane by the other co-ordinate
planes. An equation with b=0 is, accordingly, to be described
in the following pages as a diagonal equation. The general
Brioschi resolvent, which we have become acquainted with in
§ 5 of the preceding chapter [formula (23)], is clearly the general
diagonal surface, a circnmstance to which we shall return more
in detail.

* We recall in whbat follows the forinule of Newton, which connect the coeffi-
ciente of the equation with the sums of the powers s,=2s", For our equation
(2) these formulee become :

8;=0. 82+204=0, 53+35=0, 8;+as;+4c=0, &c., &e.
+ See tl\e euay (which will be again quoted): * Ueber die Anwendung der
titation anf die Gleich 5. Gradee und die geometrische
Theorie des ebenen Fiinfseits,” in Bd. iv. of the Math. Ann. (1871). The diagonal
surface has otherwise become of importance in the theory of surfaces of the

third degree ; consult, e.g., my work, “ Ueber Flachen dritter Ordnung,” in Bd. vi.
of the Mathematischo Annalen (1873).
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We next put a=0, b=0, at the same time. Then the rela-
tions (1), (4), (5), hold simultaneously, while the equation (2)
assumes Bring's form. Bring's equations will be therefore repre-
sented by the eurve of interscetion of the principal surface and the
diagonal surface. In general, a surface of the second and a
surface of the third order int t in an irreducible curve of
the sixth order, and of deficiency 4.* We shall show later on
that these properties present themselves unaltered in Bring’s
curve. Bring's curve is therefore certainly regular, just as the
principal surface and diagonal surface are.

The other cases follow in which at least one of the coefficients
¢, d, vanishes. We will not here treat of these individually in
detail, inasmuch as we have not to enter specially into the con-
sideration of them. We would only note here that, in the case
d=0, the figure in space would break up into irregular com-
ponents, these being the five planes of the co-ordinate penta-
hedron which correspond to the case d=0.

§ 4. EQuaTioNs oF THE FIFTHR DEGREE WHICH APPERTAIN
TO THE IKOSAIEDRON.

‘We return now to the ideration of those equations of the
fifth degree which we have presented in the fourth chapter of
the preceding Part as resolvents of the ikosahedron equation,
and seek to arrange them in accordance with the ideas just
developed. They are equations with only one essential para-
meter Z (on the right side of the ikosahedron equation), which
are therefore to be denoted by curves. These curves split up,
as we shall show more precisely, into two regular portions. In
fact, the group of monodromy is given in every case by the sixty
ikosahedron substitutions.

Let us begin now, say, with the so-called resolvent of the u's
of L 4,§11:

) 480 (1 - Z) - 40u* (1 - Z) + 150 - 12=0.
Calculating the sums of the powers, we find :
5 o _ 5 g
85=0,8= SA= 2y 5,=0,8,= 36 (12" &e.,

* See, ¢.4., Salmon-Fiedler’s “ Analytical Geometry of Space” (3rd cdition,
Teubuer, 1880).
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therefore :

(n 8, =208,

We obtain from this as geometrical image of (6) & curve of the
twelfth order which s the indersection of the diagonal surface
with the surfuce of the fourth order (7). 1 say, now, that this
curve splits up into two half-regular portions of the sixth
order, of which each represents a rational curve in space. In
fact, the roots u, of (6), apart from their arbitrary arrangement,
are proportional to the octahedral forms previously introduced:

(8) 4 (2 2)=e™2" + 26202 — By 'z} — Beby ! — 2922° + ¥z,
where 2, z,, are connected with Z by the ikosahedral equation :

H (2 2)
® TR 7 2

If Z is an arbitrary variable, so is :; ‘Wo shall therefore obtain

& portion of the twisted curve in question if we introduce &
factor of proportion p, and write the following equations :

(10) =1, (2, Z),

and now consider z, : z, as current parameter. This clearly gives
a rational, and therefore irreducible, twisted curve of the sixth
order.* 1 say, now, that this is half-regular, and therefore our
twisted curve of the twelfth order supplies, besides (10), a second
rational twisted curve of the sicth order, which is derived from
(10) by an arbitrary odd permutation of the x,’s.

To prove this we show, first, that the curve (10) actually
admits the even collineations. This cannot indeed be otherwise,
since the curve of the twelfth order remains unchanged for all
the 120 collineations and 12=2. 6 ; but we will prove it directly.
We allow 2, :z, starting from any initial value, to vary con-
tinuously in such a way that it assumes successively all the 60
values which proceed from the said initial value by means of
the 60 ikosabedral substitutions. Then the point 2—since we
ore concerned throughout with continuous variations—moves
forward on the same irreducible cnrve, while, at the same time,

* The formule (10) cannot represent some curve of lower order repeated, for

we can 23 : 54 rationally from the ling z,'s.
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as we know beforehand, the #,s have undergone at the end all
the even permutations. The curve, therefore, is in fact trans-
formed into itself by all the even collineations.

‘We prove, moreover, that our curve cannot admit further
collineations, viz., if this was the case, then would Z (which in
consequence of equation (6) can be represented as a symmetric
function of the %,’s) assume the same value not only in 60, but
in 120 points of our curve of the sixth order, while yet to every
value of Z corresponding to the ikosahedral equation (9) only
60 values z, : 2, belong.

With this our primary assertion is fully proved. We should
evidently have been able to confirm this by only making use of
the formule (9) and (10), and leaving aside the consideration of
the sums of the powers and formula (7). In this way we will
now discuss those curves which belong geometrically to what
we previously called the principal resolvent of the ikosahedral
equation (L. 4, § 12). We have there given a definition of the
roots ¥,, which we can here reproduce with the addition of a
factor of proportion p, in the following way :

(11) eY,=m. W, (2, 2). T (2, 2,)

+12n .4, (2), 2,) . W, (21, 2,) . 2 (2 25) ¢
here ¢, is the given form of the sixth degree, fand T are the
usuval ikosahedral forms, and W, is equal to the following ex-
pression :
(12) W= —é¥z8 + 2,72, — Te?2 02,2 — Terz) 52,8

+ Tetvz 92,5 — Tz 22,8 — €2 2,7 — 28
If we now allow 2,:2, to vary, the point ¥ in virtue of (11)
traces out, as m:n changes its value, an infinite number of
rational curves of the 38th order, among which a curve of the
eighth order for n=0, and a curve of the 14th order for m=0,
are incleded.* A/l these curves are half-regular. They will
therefore be accompanied by one of two curves of tho same
order, which arise from (11) by an arbitrary odd permutation
of the ¥,’s. First, both curves together—in general, therefore,

* Ileave for the time undiscussed whother or mo other carves of the system
suffer a reduction of order, and also the question on what— g ically speaking
—this reduction actually depends,
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a curve of the 76th order—are the geometrical image of the
individual principal resolvents. We consider, moreover, that
all these curves are situated on the principal surface; for 3 Y2
is in general for the principal resolvent equal to zero. The
closer investigation of how these curves move on the principal
surface, and what relations exist between them and the linear
generators of the principal surface, will occupy us more in
detail in the next chapter.

§ 5. GroMETRICAL CONCEPTION OF THE TSCHIRNHAUSIAN
TRANSFORMATION,

In order now to make the Tschirnhausian transformation of
the equations of the fifth degree accessible to our geometrical
interpretation, we will, in correspondence with the condition
(1), in consequence of which the sum of the roots of the eqna-
tions iu question must always vanish, introduce the following
notation :

3, &, 8, N
1] f (M 2 ) — ,» 9 9 p—— N
(13) &M-nt - P ==Y a = B =t

(where, of course, 2,/ is only written for x, for the sake of uni-
formity). Then the most general transformation which we will
consider is this:

(14) h=p. 20 +q. 2, +r. 2%+s. 2,9,
understanding by p, ¢, 7, s, any magnitudes at first indeter-
winate,

We have hitherto only considered such expressions as are
transformed into themselves for the particular fundamental
permutations or linear transformations, and which are therefore
invariants with respect to the transformation group. In a
corresponding sense we could describe the expressions (13) as
covariants of the a,’s, inasmuch as they are permuted simulta-
neously with the ,’s) and in like manner. 1 will not explain
farther here how we construct geometrically the covariant points
a® a® o, from the given points z=2«" in the most effective
manner. On the other hand, I should like to call attention to
the fact that, in virtue of (14), an arbitrary point y will be
constructed from the four fundamental points x™, 2%, 2, 2%, by
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the help of proper multipliers, p, g, 7, s, in just the same way as
this is usually done in the projective geometry (since the bary-
centric calculus of Mobius). The p, g, 7, s, are ther¢fore nothing
else than new projective co-ordinates of the point y, which are
related to covariants of 2:; or, to express it in the more pregnant
sense of modern terminology: the assertion (14) denotes that
instead of the original co-ordinate system of % a typical co-ordinate
system 1is introduced.* In the application of the Tschirnhausian
transformation we are concerned with the problem so to deter-
mine p, g, 7, s, that the transformed equation in y which results
may have any special properties with respect to the variability
of its coeflicients. Geometrically speaking, we must constrain
the point y to move only on predetermined surfaces or curves.
‘We will therefore write down the equations of these surfaces
or curves, and see how we can find any system of values for
¢, 7, 8, which satisfies these equations.

We have already given in § 2 of the previous chapter some
elementary remarks on the problem here enunciated. More-
over, the distinctions which were just now developed in § 3 will
here be of importance. For it is evidently sufficient, where the
main sorface or curve which we are considering is reducible,
to write down tho equation of only a single irreducible portion
of the sarface or curve. If m is the number of those of the 120
collineations by which the portion in question is transformed
into itself, then the coefficients of those equations which we
use for the expression of this portion in our new system of
co-ordinates will so depend on 2,", z,*, &c., that they remain
unaltered for the said m-permutations of the 2’s, and for these
only. The coefficients will therefore only be symmetric func-
tions of the x,’s when we have to deal with regular figures, but
two-valued functions (which, after adjunction of the square root
of the discriminant, are rational) when half-regular figures are
considered, &c.

1t follows from this that in the solution of cquations of the fifth
degree the Tschirnhausian transformation will be only of use in
those cases where reqular or half-regular figures are given. For
if we wanted to include irregular figures, we should first have
to adjoin, merely for the purpose of constructing their typical

* Cf. Clebsch, “ Theory of Binary Algebraic Forms,” p, 300, &c.
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X

quations, such functions of the z,’s that no essential problem
remained for solution exceeding the requirements of quite
elementary processes, Here comes into play the somewhat
incidental circumstance that the group of 60 even permutations
of five things is simple, and therefore loses its more distinctive
characteristics by any further adjunction.

§ 6. SPECIAL ATPLICATIONS OF THE TSCHIRNIAUSIAN
TRANSFORMATION.

In order to determine a point on a given surface or curve
of the #' order, the readiest method in any case is that, for
which an auxiliary equation of the n!* degree will be required,
of cutting the surface with a known straight line, or the curve
with a plane. For the Tschirnhausian transformation as it is
given by (14), this gives the following general lemma. We
take two or even three sets of known magnitudes:

Py, Q, R, S; Py Qu Ry, Sy; Py Q By, Sy,
and then put either

(15) Pl 0Py g =0Q + 00y r=o 1 + Ry,
s=08 +5S,

or

(16) P=0Py+ el + Py e

If we then introduce these values into the equation of the
surface, or the equations of the curve, as the case may be, we
obtain for p, : p, an equation, or for p, : p,: pg & system of equa-
tions of the n' order; each root of this equation or of this
system of equations (as the case may be) gives us a Tschirn-
hausian transformation of the required properties. The irra-
tionality which is thus required for the production of the
transformation is evidently in general an accessory one. For
there is no a priori reason why the discrimination of the
a-points of intersection of an arbitrary straight line with the
surface, or of a plane with a curve, should have anything to do
with the distinction of the collineations which transform this
surface or curve into themeelves.

It need hardly be said that the general process thus described,
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practically speaking, does not take us far. If we tried to treat
the different special cases (enumerated in § 3, 4) of equations of
the fifth degree by its means, we should be brought at once
after the first two cases to auxiliary equations of higher degree
than the fifth. We will ther¢fore in the sequel only use our
general process, or suppose it used, in order to transform the
geneval equation of the fifth degree into a principal equation.
In fact, we shall afterwards (in the fifth chapter) bring forward
proof that in this special case the general process cannot be
improved, inasmuch as it is in no way possible to get rid of the
accessory square root which is introduced by our p On
the other hand, we shall succeed in all the other cases in find-
ing more simple methods for the production of the transforma-
tion. These methods were partly touched upon in the develop-
ments of the preceding chapter; we add here a few supple-
mentary remarks.

First, as regards Bring's transformation, we have stated
already that it is possible, instead of the original system of
equations of the sixth degree with which we have to deal, to
snbstitate a sequence of quadratic equations and a cubic equa-
tion. We can now, in reli on our g trical method of
representation, express this mach more precisely. The theory
is marshalled in detail as follows. We first of all trausform the
general equation of the fifth degree, in the way above described,
into a principal equation (where we require a first square root
and an accessory square root). DBut then arises, geometrically,
the important fuct that through every point on the principal
surfuce pass two linear generators thereof, of whiclh each meets
Dring's curve in only three other points. We shall therefore, in
order to pass from am arbitrary point on the principal sar-
face to a point on Bring's curve, first require another square
root in order to define the generator passing through the
point, and then, in fact, obtain an equation of the third de-
gree, which determines the points of int tion of the ch
generator with Bring’s curve. It has been already stated
that we shall bring forward later on (in fact, in the third and
next chapter) explicit formalke for all the steps required for
Bring'’s theory. We only observe here, therefore, what was for
the most part passed over in laying down the theory, that the
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second square root (which defines the two generators of the
principal surface) is not an accessory one, but coincides with the
square root of the discriminant of the equation of the fifth
degree. The irrationality which will be introduced by the
cubic auxiliary equation is, on the contrary, again an accessory
one; the cubic eqnation is also in Galois’s sense general, i.e.,
such as possesses a gronp of six permutations.

We discuss, moreover, the equations of the fifth degree brought
forward by Brioschi, which d d on the J tions
of the sixth degree. By the exlstence of Kronecker’s resolvent
a method is indicated, as we remarked before, of transforming
the general equations of the fifth degree into these special ones.
In the first place, we have here to deal with the diagonal equa-
tion of the fifth degree. Our previous account shows that only
the square root of the discriminant, and therefore in no way an
accessory square root, is required in order to turn the general
equation of the fifth degree into a diagonal equation. If we
assume an accessory square root, we can ensare that A=0 in
Kronecker’s resolvent. The corresponding diagonal equation
is then essentially identical with the equation of the #’s which
we just considered in § 4. The curve of the w's was of the
twelfth order, or split np into two half-regular carves of the
sixth order. Our general proposition would, therefore, for this
also lead to an auxiliary equation of the sixth degree after
adjunction of the square root of the discriminant. Nevertheless,
as has just been stated, a single additional square root is
sufficient.

§ 7. GEOMETRICAL ASPECT OF TUE FORMATION OF
RESOLVENTS.

"The algebraical principles of the construction of resolvents
have already been thoroughly explained in I. 4 for arbitrary
algebraical equations. Their specification for equations of the
fifth degree needs in itself no corollary. If we retarn to this
here, it is only to give a new application to our former remarks.

We premise, in the first place, that we shall only introdace
sach rational functions of the s :

(g 1y Ly gy )
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a8 roots of the equation, as are homogeneous in the ’s; if we
then multiply all the «’s by the same factor A (where the point
of the image, which we shall call 2, remains unaltered), the
ratios of those values:

b0 Py - o+ Pu-n

which ¢ in q of our permutations, are shown
to be invariants for every case, and we can therefore, by deno-
ting the ¢'s as homogeneous co-ordinates, interpret the forma-
tion of the resolvents in a geometrical way. This is a limita-
tion which we make merely in favour of our geometrical inter-
pretation ; it has no deeper significance, and can hereafter be
dispensed with.

Corresponding to the basis of analytical geometry, two pos-
sibilities now occur at the outset for the interpretation. Either
we consider the introduction of the ¢'s as a mere change of the
system of co-ordinates, or, in Pliicker's sense, as a change of the
ekmmts of space. In the first case, the ¢'s appear directly as

, and in g I carved co-ordinates of a point,
between which (n—4) identities necessarily exist. In the
second case, the ¢'s are primarily independent magnitades,
which we denote as the co-ordinates of any g trical figure.
The choice of this figure is only restricted by the condition that
its co-ordinates, on the introduction of the 120 or 60 collinea-
tions of space which we are cousidering, experience just the
same permutations as the ¢'s undergo as functions of the a’s.
Putting then the ¢'s equal to the said functions of the x’s, we
establish a covariant relation between such o figure and the point
«. The solution of the equation of the fifth degree by the
formation of resolvents consists, therefore, in finding first, in-
stead of the point «, another figure covariant to it, and then
retarning finally from this to the point ..

In what follows we shall for the most part keep to the second
and more significant representation of the formation of resol-
vents, and indeed so much so, that we shall choose it at once as
the starting-point of our further considerations. The simplest
figures of space are, in respect of their exhibition by means of
projective geometry, the point, the plane, and the straight line,
We can consider in their order the resolvents which arise when
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we start from these very figures, determining our co-ordinates
in the simplest way possible.

The consideration of covariant points, related to the original
pentaked on, tells us, of conrse, nothmg new, but len.ds back to
the Tschirnh t i y posed of. We
have only here to introduce p, g, 7, 8, as invaviants of the «’s,
1., as symmetric functions of them, or as functious which
remsin unaltered for the sixty even permutations. The use of
covariant planes is not more profitable, viz., if we consider, as
we naturally may, as co-ordinates of the plane the coefficients »
of its equation :

(17) Uy + UTy + Uy + k) + U =0,

where we suppose this equation so regulated by the help of
Sx=0 that S is also always = 0, then to every plane there
belongs a covariant point with just the same co-ordinates. This
is its pole with respect to the principal surface 322=0. In fact,
if # . . . 2/, are the co-ordinates of the pole (where 52’=0), the
equation of the polar plane is easily found to be:

(18) Ty%o + T\ 2y + ¥ g2y + X oty + & T, =0,

and is therefore identical with (17) if we make the several u's
equal to the ’s respectively. Consequently the same five mag-
nitudes can always be looked up either as point- or as plane-
co-ordinates, and a special consideration of the plane as the
1 t of space is usel

Thus there remains as the simplest resolvents which we can
consider those which start from a straight line covariant to the
point x. Before I go farther into this, I shall make* a few
prefatory remarks coucerning line co-ordinates in space and
on the general principles of line g try ; first, b this
matter, apart from the sphere of geometry proper, may still be
little known, and also becanse we shall have to consider, instead
of the usual tetrahedral co-ordinates, a pentahedron.

* See Phicker's “ Neue Geometrie des Raumes, gegrindet auf dic Betrachtung
der geraden Linie als Raumelemeont " (Leipzig, 1868-69) ; as well as the new edi-
tion of Salmon Fiedler's * Analytical Geometry of Space.”
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§ 8. ON LiNe Co-ORDINATES IN SPACE.

The special principle of line co-ordinates in space, which we
can retain as well by the use of pentahedral as of tetrahedral
co-ordinates, was given by Grassmann as far back as 1844 in
the first edition of his “Aunsdehnungslehre” (Leipzig, Wigand).*
Let X, ¥, be two points on the straight line, then we consider
as homoy line co-ordinates the entire set of binary deter-
minants, which can be constructed with the co-ordinates of these
points. Let us take first as our foundation, keeping to the
usual mode of representation, a co-ordinate tetrahedron. We
then denote the co-ordinates of X, ¥, as follows:

X, Xy Xy X3 ¥, Vo ¥y X

putting

(19) Pu=X Y- VX,
we have in the first place:

(20) Pu= =~ o

by means of which the twelve different pg’s which occur are
reduced to six linearly independent ones, for which we choose,
say, the following :

(E2) P Py P Psw Pap Do

Between these there then exists in addition the following easily-
proved identity :

(22) P=pyypg + pispus + PraPes=0.

Two lines intersect when a bilinear relation obtains among
their co-ordinates, which we can denote briefly as follows :

, oP
—=0.
23) ZI"" dpu

The summation has here to extend over the six combinations
(21). This is clearly not the general linesr equation for the
pu’s, for the p’s are also sabject to an identity of the form (22).
Understanding by a arbitrary magnitudes, and keeping to the

* Republished 1878.
N
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table (21), we will write the general equation in question in the
following form :

oP
3 Sau- ;> =0.
& u P

The assemblage of the straight lines which satisfy an equation
of this kind is what Dliicker has called a linear complrz, while
Mobius in 1833 has discussed it more completely. We will not
here concern ourselves with the geometrical properties of the
linear complex any further. We will only add that we shall
denote the coeflicients a,, as co-ordinates of the lincar complex,
where we may introduce, if we please, in accordance with
formula (20), beside the a,,'s other symbols ay:

(25) ap= - a,.
If:
(26) @y gy + (ygys + @ 19y =0,

we can replace the a;'s by the p'y's of the formula (23), the
complex is then a special one, and consists evidently of all
stroight lines which intersect the fixed line p". If we combine
by addition two special complexes g, p”, and so constract:
@ =NPu+ N P,

we have, apart from particular cases, a general complex. Every
general complex can be obtained by adding together six given special
complexcs with the help of proper multipliers; only the special
complexes must be linearly independent, 7.e., they must not satisfy
by their co-ordinates the same linear homogeneous equation.
In this sense, in particular, the six straight lines are available
which form the edges of a tetrahedron.

So mauch for the usual conventions of the line-geometry. If
we now replace the co-ordinate tetrahedron by a pentahed
the only modification is this: that the ber of the co-ordinat
appears changed, but, to meet these, new equations of condition
occur. First as regards the point co-ordinates, we have for
X, Y, now, just as before :

]

Xo Xp X, X, X5 ¥, Y, Y. Y,
with JX'=0, ST=0. DBut then we have twenty determinants :
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@7 =LY, -Y.X

to distinguish. We have again, of course:
(28) Pa= "3

but besides this, evidently :

(29) Z Pa=0, or also kz Pu=0,

where the summation extends over those four values of ¢ and %
respectively, which are different from the corresponding / and 1.
Besides this, there exists the quadratic relation (22) in addition
to the others which proceed from it by means of (28) and (29).
Agsin, we can also speak of co-ordinates of the linear complex.
There are twenty magnitudes a; which, while satisfying the
linear relations (28), (29), are otherwise unrestricted variables.
‘What was said with regard to the composition of general linear
complexes out of special complexes remains valid. All these
matters are so simple that we can now break off’ any further
consideration of them.

§ 9. A ResoLvENT OF THE TWENTIETR DEGREE OF EQUATIONS
oF THE FIFTH DEGREE.

Let us go back again to the considerations of § 7. We wished
to consider those equations on which the pentahedral co-ordinates
of a straight line in space depend. We can evidently, instead
of these equations, at once take into consideration the more
general ones by which the co-ordinates of an arbitrary linear
complex are determined. We thus obtain in general equa-
tions of the twentieth degree whose roots ay, in conformity
to the formalac (28), (29), are connected by the following linear
relations :

(30) Qg = — Ay Za“ =0, Za“- 0.

A certain similarity between these equations and the Jacobian
equations of the sixth degree (in so far as we regard the latter,
as Herr Kronecker does, as equations of the 12th degree for the
~2'8) is from the very first unmistakable; we shail learn later
on (in the fifth chapter) the intimate connection that actually
exists in this respect.
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Our business now is to make the magnitudes a; equal to
proper functions of the a's, and to turn equatious of the 20th
degree into resolvents of the equation of the fifth degree. The
plan is, as we expressed it in § 7, to connect the linear complex
(whose co-ordinates are a;) with the point z as a covariant.
We effect this in a simple manner if we rely on § 5. We have
there constructed the 2" 2%, % '), as the simplest covariant
points of the point x; we shall obtain the simplest covariant
straight lines if we consider the lines which join these points.
The co-ordinates p,, of this line:

(C2Y) Yo =alaf - aPaf)

are linearly independent, for we have to do with the six edges
of a tetrahedron. Therefore we shall obtain the most general
values of ay by combining these py's with the help of proper
multipliers :

32) =3 gl
Here the ¢*™s are to be introduced as symmetric or as two-
valued fanctions of the s, ding as we ch to id

all the permutations of the a's, or only the positive permutations
thereof ; but otherwise they are to be chosen so that the law
of homogeneity that we accorded is satisfied.

§10. THEORY OF THE SURFACE OF TBE SECOND DEGREE.

I conclude the present chapter with some remarks on the
anstitution of parameters for the linear generators on surfaces
of the d deg The p ters in question are linear
multipartite functions of the projective point co-ordinates.* We
obtain them most simply by bringing the equation of the
surface (as it is possible to do in an infinite number of ways)
into the following form:

(33) XX, + X, X,=0.
If we put then, firstly, in correspond with this equation :
* The iutroduction of this p ter is an equivalent, icall, ki

of the projective generation of the two families of ruled lines on t‘he‘mrlm:,
which, for example, Steiner makes the basis of hig considerations.
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X, X
(34) PP
secondly :
= X, X,
(33) 7:: _,_Y:=”"

A remains constant when we move along a generator of one
kind, which might be called the first, while x remains con-
stant when we proceed along a generator of the second kind.
Therefore A, u, are two numbers which are characteristic of
the individual generators of the first or second kind, .., they
are parameters which can be used to distinguish the generators.
Here we observe that each of the formule (34), (35), embraces
two equations. We may therefore, without changing the mean-
ing of A, u, g lise their definiti hat. Kor A, for
example, by combining the two equations (34) with the help of

arbitrary magnitudes p and o, we can write :

_ —pX + X,
@6) » +pX, + X,

We succeed in making tor and d inator of A
vanish together for an arbitrarily ch g tor of the d
kind :

L
w=".
P
The g tor ch in this shall be called the basis of
the introduction of A

‘We will now first consider the behaviour of A, u, with respect
to such space collineations as transform our surface into itself.*
The collineations in question arrange themselves, as is known,
into two kinds, according to their behaviour with regard to the
generators of the surface: either they transform each of the two
systems of generators into iself, or they interchange the two
systems. In the first case, to each gemerator corresponds, in
virtue of the presapposed collineation, one, and only one, gene-
rator A’; and conversely, in the same way, to every u corre-

* Cousult, say, Bd. ix. of the Math. Aun., p. 188, &c. The theorems intro.
duced in the text are also often used in other departmenta of modern research. A,
more thorough proof would take us too far.
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sponds one u’. Therefore we have, on fanction-theory principl

corresponding to sach a collineation, formule of the following
kind necessarily appertaining :

_aA+b , du+l
@n ol T cu+d
In other cases A’ by analogy will be a linear function of u; u’
such a fanction of A. I do not stay to show that these propo-
sitions can also be reversed, and that therefore a corresponding
space collineation is obtained if the formule (87) [or the corre-
sponding ones in which X and u are interchanged] are written
down quite arbitrarily.

‘We remark, moreover, that the \, u’s furnish a determination
of co-ordinates for the points on onr surface.* In fact, at every
point one generator of the first kind and one of the second
intersect, whose A, x, we can transfer to the point. It is here
to the purpose to replace X by A, : X, u by g, :u, to make
them homogeneouns. An algebraical equation :

(39) F (M A5 ey 4) =0,

homogeneons and of degree I in A, A,, of degree m in p,, py,
then expresses a curve of the ({4 m)* order lying on the surface,
which intersects a generator of the first kind m-times and one
of the second kind l-times. We can now combine (34), (35),
in the following manner:

(39) P CED CED. CED. T WIREIED WSS WTIEE WS

Introducing these values of the X’s into the equation of a surface
of the n'* order:

(40) F(Xv Ay, - £ ‘Y4)=0:

we recognise that our sarface of the second degree is intersected
by (40) in a curve which, written in the form (38), is of the n*®
degree both in the A\’s and g's. Conversely, too, by means of
formula (39), every corve (38) which is of equal degree in the

* See Plicker in Crelle’s Journal, vol. xxxvi, (1847). The discussion of the
corves (38) was undertaken in a systematic manner almost simultaneously by Mr.
Cayley and by Chasles (1861) ; see Phil. Mag., vol. xxii., aléso Comptes Lendus,
vol, liji.
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3

A, w's can be repr a8 the complete intersection of the
surface of the second degree with an accessory surface (40).*

‘We determine, finally, the line co-ordinates of the generator
\, u, retaining the tetrahedron as laid down in (33). Putting
first w, =0, then u,=0 in (39), we obtain for two points lying
on the generator A:

respectively.

Hence we calculate by (19) for the p,’s which belong to them
the following relative values:
(1) P1p=0, pry=22 Pro=MPg Psy=0, P =22, Pas= = M
Analogously we get for the u-generator :
(42)  Pio= =’y Py =0, Pry=tspopy Py =", Py =0, 1y = 1y,

‘We now assume that the equation of a linear complex is intro-
duced, which runs as follows:

or
2. W

By mseﬂnng herein the expressnons (41), (42), we obtain the

£11, 1

two ing q q
(#3) ApA? + (Agy = Ay) 22, + 41207 =0,
(34) = dgu® + (dyy + 4y) ey + A e, =0,

Hence:

In general to a lincar complex belony two, and only two, yenc-
rators of cuch system.

But it may happen that one or other of these equations

* I might perhaps add one remark, which Is not immediately counected with
the toxt, but rather reverts to the developments of the first part, viz, this : that
Riemann’s interpretation of x4 iy on the spherc can be applied as a special case
of the d ination of A, g, co-ordinats spol.(-n of in the text, nmnzly, ulmx,
all the linear gencrators on the sphere are inary, two conj
generators interscct in every real point thercof. 1f we now mtroduce AN ,u,
properly, and call the A, which lelongs to a real poiut on the sphere, z+ iy,
then the corresponding p will be z - iy, For fxing the real point, ther fore, it
suffices to give only onc value, ¢ + iy, and this iv just the wethod of Riemann, ws T
cunnot further explain here. G, Muth. Annalen, Bd. ix. p. 189 (1875).
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vanishes identically. This gives three linear conditions for the

Ag's, so that three of these still remain arbitrary. Hence:
‘The generators of the first and second kind on our surface

belong each to a threefold linear family of linear complexes.*

I must pass over the actual establishment of the equations of
these families.

* Cf. throughout Pliicker's * Neue Geometrie des Raumes,” &c.



CHAPTER III.

THE PRINCIPAL EQUATIONS OF THE
FIFTH DEGREE.

§ 1. NoraTioN—THE FUNDAMENTAL LEMMA.

THE new chapter which we now begin is to form in every
respect the centre of our developments. We treat of the prin-
cipal equations of the fifth degree and their simple relations to
the ikosahedron. Here we borrow from what precedes, espe-
cially from the Bring transformation, the one fundamental idea
of considering the rectilineal generators of the principal surface.
T denote here, as T did there, the principal eqnation of the fifth
degree as follows :

(O] ¥ +5ay®+ 58y + =0,

where the factors 5 for a and B respectively are applied for the
sake of convenience. I will also communicate at the outset the
value of the discriminant. Using the somewhat long formula
which we frequently find* given for the discriminant of the
general equation of the fifth degree, we have for (1):

@ T (y, - )* = 3126v7,

where V2 is put for Lrevity in place of the following expres-
sion :

(3)  v2=108a%y — 1350462 + 90u’B)? — 320a%y + 2565 + 7%,

We now at once annex the developments just given (in the
concluding paragraph of the preceding chapter) by supposing
the two different generators of the principal surface to be de-
noted by parameters A, . Let:

* Cf. ¢g, Pai di Bruno, edited by Walter, “Enleitung in die Theorie der
Linaren Formen  (Leipzig, 1881), p. 817.
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4) Yo Y1 Y Y» Ys

be the roots of (1) in a definite order. We then snppose those
60 generators A and 60 generators u constructed which contain
one of the 60 points of the principal surface, whose co-ordinates
proceed from (1) by an even permutation of the y’s. The X, u's
are, a3 we know, linear fractional functions of the y's; the 60
values of A or u in question therefore depend on an equation of
the 60th dogree, which is a rational resolvent of our principal
equation, and the coefficients of which are accordingly rational
functions of the a, B, vy, y. MNow I assert—and here we have
the particnlar lemma required for our further developments—
that our resolvents of the 60th degree, for an appropriate tntro-

duction of the N, w's, are rily ikosahedral equations, and
therefore will admst of being written without more ado
H ) HS(w)
® TT3s7 ()~ 2 113875 uy = 2
where Z,, Z,, alone depend on e, 8, v, .
The proof p s itself immediately on the grounds of our

previous data. We have just divided the collineations of space
which transform a surface of the second degree into itself into
two parts, according as they transform the individual system of
generators into itself, or interchange it with the other system.
Now the principal surface of the second degree passes into
itself for the 120 collineations of space which correspond to the
permutations of the y’s. We will at first leave undetermined
how the systems of generators of the surface behave towards
the totality of these collineations. If all the collineations were
not to transform the individual system of generators into itself,
at all events half of them would necessarily do so. This half
of our collineations must here necessarily form a group per se,
and indeed a self-conjugate group in the main group; it can
therefore only consist of the cven collineations. Hence, in any
casc—and this is a first result—the 60 even collineations have the
property of transforming each of the two systems of generators of
the principal surface into itself. We now recall that, in accord-
ance with the formula just given in (37) [IL. 2, § 10], the para-
meter A, as also the parameter u, experiences on its part a linear
transformation for each collineation of this kind. 7'he 60 values
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A, which satisfy our resolvent of the 60th degree, therefore depend
on each other as linear functions with constant cogfficients (and
similarly the corresponding values of w), or the equations for N
and p are transformed respectively into th lves by a group
of 60 linear substitutions. But hence the accuracy of our asser-
tion follows immediately in virtne of the developments of I. 5,
§ 2, as soon as we add that the group of the linear transforma-
tions which A or u experiences is holohedrically isomorphous
with the group of even permutations of the 3’s. The unknowns
A, p, which occur in the canonical forms (5), are here proper
linear functions of the original parameters denoted by these
letters ; we will call them the normal parameters, not forgetting,
bowever, that they can be chosen in sixty different ways in
correspondence with the 60 linear transformations by which
each of the equations (5) is transformed into itself.

Having thus proved our primary assertion, we can go a step
farther in the same direction. I say first, again taking up the
question just mooted, that for each uneven collineation the two
systems of generators of the principal surface are necessarily
interchanged, namely, if the individual system were trans-
formed into itself for the whole of the 120 collineations, a group
of 120 linear substitutions of a variable would be given, on the
grounds of the formula (37) just cited, which would be holo-
hedrically isomorphous with the group of 120 permutations
of five things, which, however, by L. 5, § 2, is impossible. If,
therefore, we have represented A (the parameter of the gene-
rators of the first kind) in any way as a fractional linear function
of the y's, we obtain a parameter x of the generators of the
second kind by subjecting the y's occurring in A to any uneven
permautation. I particular, we oblain the sixty normal values
of u if we apply to one of the normal values of N the whole of the
uneven permutations of the y's. For these uneven permutations
the coefficients a, B, ry, of course remain unaltered, while ¢
changes its sign. The magnitudes Z,, Z, occurriug in the
equations (5), only differ, therefore, in the sign of y. We can
give this theorem another application by introducing the sixty
points y, whose co-ordinates are derived from the scheme (%)
by uneven permutations of the 3's. We have, namely, for
the representation of the genevators of the first and second kind
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which pass through these points, the following equations respec-
tively :

I3, H
(6) (>) P ()

1150~ %0 TR

§ 2. DETERMINATION OF THE APPROPRIATE PARAMETER A.

The formulee which we will now establish for the normal A
are in themselves peculiarly simple and easy to verify. If I
nevertheless devote some space to deducing it, it is because I
again wish to derive each individual result from reflexions which
involve no computation.

As the generative operations of the ikosahedral group we
have previously (L 2, § 6) found the two following :

8: 2=
) { —(e- Z+ (c’—c‘)
T:7= (¢ — ez + (- )
‘We saw, further (I 4, § 10), that the octahedral forms ¢, are
permuted as follows with respect to these substitutions:

® {S: t.',=t,+,'

Tty =ty ) =ty ty=ty, =1, /=ty

The same formulic of permutation hold good for the roots of
the several resolvents of the fifth degree for the ikosshedron

* 1 first gave the reasoning developed in the text (as well as the corresponding
fornnulz of the two followi hs) in two ications to the ki
Societat on November 13, 1516 and January 15, 1877 [“ Woeitere Mlittheilungen
uber das Tkosaeder I, II”]. T will now append, besides, the case of the equations
of the third and fourth degrees for comparison. Let usdenou the three routs x of
an eqnation of the third degree having Zz =0, in accordance with what has gonc
before, on a straight line. Let us then denote an arbitrary point of this straight
line in the usual way by 8 parameter A ; then A, for the whole of the six permu-
tations of the &'s, exp linear sub i of the dibedral type, aud
satisties, when properly propared, a dikedral equation of the sizth degree.

For tho equations of the fourth degree we transfer the geometrical represen-
tatmn to the plnne, uncl add to the eunclmol\ Z(z)=0 the second one Zz*=0,

fore to “ princi " We again rop t, in
the umal manner, by a parameter X the polntn of the selected conic. This para-
meter then undergoes linear substitutions for the whole of the twenty-four permu.
tations of the z's, and therefore satisfies, when properly prepared, an octakedral
equation (or, aftur adjunction of the square root of the discriminant of the equa-
tion of the fourth degree, a tetrahedral equation).
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which we there established (I. 4), and in particalar—a point to
which we shall soon return—fpr the roots of the principal re-
solvent. We shall want to arrange our new formule® so that
they fit in with those there given as closely as possible. We
shall therefore so choose the normal N from among the siazty valucs
of the parameter which come under considcration, that it undergoes
exactly the substitutions (7), if we sulject the y's to the two per-
mutations indicated by (8).

The value of A is fixed hereby, but not so its form as a func-
tion of the 7’s. First, we have yet to decide which generator
of the second kind we will make the basis of the introduction
of A in the sense previously explained (II. 2, § 10). Secondly,
we can modify numerator and denominator of A by addition of
arbitrary multiples of Sy (which is identically = 0). In both
respects we will make delinite conventions.

For each linear substitation of A or u two values of the vari-
able, i.c., two generators of the first or second kind respectively
remain fixed. We consider now in particular the operation S,
and make the basis of the introduction of A one of the two
generators of the second kind which remain fixed under its

action. Let A, on this sapposition, =3; , where p and ¢ denote

two linear functions of the 3's. On effecting in p, ¢, that per-
mutation of the y's which is likewise indicated by S, p’, ¢’ arise.
IMere p'=0, ¢"=0, have by hypothesis the same straight line in
common as p=0, g=0; therefore for any y:

P =ap+bg+m-. Sy,

¢=c+dg+n-Zy,
bnthi,=k' is, in accordance with formula (7), to be equal to en

for all points of the principal surface; and the points of the
principal surface are not distinguished from the other points of
space by any linear relation among the co-ordinat Hence
the foregoing equations are necessarily transformed into the
more simple :

p=e-p+rm-Iy,

¢'=d-q+n-Zy,
where d, m, n, are primarily unknown, We can modify these
equations as follows :
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m_ _ __m )

7 +€-'I ""1/_“1(1”«_1 .._l/),
’ n

q +d_—l.§_‘y=d(q+d_—l . Ey)‘

‘We shall now be able, without affecting the equation A-Jq) , to

denote the expressions p + (l7 i <2y, g+ d- 1-.»._1/, which occur,
in a concise manner, by p, . Then we have simply :

y=e-p,
® { q'=d-g

The result of this reflexion is thus as follows: we can put, and
this in two ways (since one of two generators of the second kind

had to be chosen), our A=§ in such wise that, after application

of the permutation 8 to the y's, the equation (9) is identically true.
Now, however, it is known (and, moreover, easy to prove)
that, for the permutation § of any magnitudes gy, no other
linear functions of the y's alter only by a constant factor save
multiples of the expressions of Lagrange:
Dy=Yo + €y + €y + Sy, + Ay,
Py=Yo+ €Y+ eyt g+ Sy,
Pa=Yo+ €Y + Yy + Yy + €Yy
=Yo+ €Y + €y + Eyy+ ey,
with which 3y, as an expression which remains entirely un-
altered, would also be associated were it not in our case
identically zero. As regards the changes of the p,’s for the
permutation S, p,=¢*-p,. Hence the only three expressions
for A which satisfy the relations (9) are the following :

10

),

(1) A=gp- Pl A=cpe j:* )\=ns.;7i;
of these expressions, the first and the third are available, but
the second must be rejected. It can be shown, namely, that
the line of intersection of p, =0 and p,=0, as also that of p;=0
and p,=0, belong, in fact, to the principal surface, but not the
straight line p,=0, p;=0. This is best proved by introducing
the p,’s in place of the ,'s in the equation of the principal sur-
face. We have from (9), on joining thereto Jy=0:
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(12) 5y, = p) + &p, + ¥p, + ey,
and therefore :
262 =10 (g1, + PaPs)

so that the equation of the principal surface, relatively to the
co-ordinate system of Lagrange, will be the following :

13) D\pytpapy=0;

whence the accaracy of our statement follows directly. From
(13) it follows, farther, that :

P _Ps.
P )’
if, therefore, we put, corresponding to the first formula (11),
A=¢- ;—}‘, we must also put it =—e¢,- By
2

4

It will now only remain to determine the factor ¢ which occurs
here. We construct A’ by submitting the y's to the permuta-
tion 7T, according to formula (8), and then inserting it in the
corresponding formula (7). The equation thus arising cannot
be an identity, because the generator of the second kind, which
we used in establishing the A, does not remain fixed under the
action of 7. It must, however, be & valid equation if we take
account of the relations 3y=0, 5y*=0. We obtain, on com-
paring the proper terms on both sides, the value — 1 for ¢,
Hence our normal A is determinate :

14, PR T

S5 Py

in exact agreement with the value which we had adopted for
the parameter A in the concluding paragraph of the preceding
chapter (formula (34)).*

* If we wish to establish in a similar manner for the equations of the third
and fourth degrees, which we just mentioned, tho roots of the dihedral equation
and octabedral equation respectively, we obtain accordingly :

_ %o+ 0%+ 0%, and A= ‘\/§(ra+121+zz 24 1%25) _ = (20 + 2%, + ¥ + 123)
“x+ @ xl+m' = @+ v atny) ‘\/Z(:o+t‘z|+1'z‘-1 1":;,)
where ad=:¢=1, 80 that, therefore, the quoti of the expressions of L

are here also introduced.
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§ 3. DETERMINATION OF THE PARAMETER .

The normal parameter w, which we had in view for the
generators of the second kind, was to proceed from the para-
meter A by means of an uneven permutation of the y’s. We
satisfy this requirement if we take, again in agreement with the
concluding paragraph of the preceding chapter (formula (35)) :

=P D
a8 A= p Ty
In fact, this value results from (14) if we replace yo, ¥, ¥, ¥s ¥,
bY Yo Ya Y1 ¥s. ¥ respectively, and therefore permute ¥y, ys, ¥4, ¥,
cyclically.

But now we can evidently deduce the formula (15) from (14)
in yet another way, viz.,, by replacing in (14) € by € through-
out. This change is then, of course, carried over to the sub-
stitations S, 7' (7), and the ikosahedral substitutions arising
from them. The substitutions, therefore, which p and N undergo
Jor the even permutations of the y's, though by no means identical
individually, are so, at any rate, in their totality ; or rather we
derive the one set from the others by changing e into € throughout,
a theorem which is fundamental in what follows. Inagreement
with this we obtain, on applying to the u the operation men-

tioned, not A again, say, but — ; This is that valne which

arises from A in virtue of the ikosahedral substitution denoted
previously by U. To it corresponds the simultuneous inter-
change of g, with g, and of y, with y,.

We will forther adopt the formula (39) of IL. 2,§ 10. In
virtue of this we now have, on replacing N by A : 2, p by
Hy i pest

(16) PriPgi Pyl = Mgt = Aty 2 Mty Rgtty
or, on introducing a proportion-factor p:

an PUy=€ My = € Nyu 4 €, My + € Aguy.
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§ 4. THE PRINCIPAL RESOLVENT OF THE IKOSAHEDRAL
Equamon.

Having found the normal parameters A, g, for any principal
equation of the fifth degree, we will apply our formul® in par-
ticular to the principal resolvent of the fifth degree, which we
previously constructed, IV. 1,§ 12, by supposing any ikosa-
hedral equation :

HS (2, 2) _,
8 98 (o )~
to be given. We obtain in this manner a peculiarly simple
result, which is of proportionately great importance for the
further progress of our development.

The principal resolvent was defined by the formulax :

(19) Y,=m.v+n.n0,
where

12r2.¢, 127. W,
(20) e _’”_ :

understanding by £, H, T, the ground-forms of the ikosahedron,
by ¢, W,, the oft-mentioned forms of the sixth and eighth
degrees. Let us now consider that we can write W, and ¢, W,
in the following manner :

[e3)) W= (b, — 2,) (— 2,7 + Ty22,9)
(@ 4 en) (= Ttz — )
(22) 1, W, = (g, — &975;) (— 262,19%,3 + 892,528 + 2,19)

+ (642, + €2y) (—2,1% + 3922, + 262,%,1°).
Hence Y, in formula (19) assumes the following form:
(23) Vo= (2, — o) R+ (€92, + e2)) S,
where R, S, are linear functions of m, n. The expressions of

Lagrange (which we also here denote by capital letters) become
therefore :
P= 52,.R, Py=0z.5,
&) { Py=—5z,. R, Py=5z,. 8.
Hence we get simply :
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S

We have therefore at the outset: The parameter N is identical
with the unknown 2,:z, of the original ikosahedral equation, or
expressed geometrically: The point

(26) Yo=m. 0, (A) + 1. uy(A) . v, (A)

lies on a generator of the first kind, whatever m and n may denote.
If we here consider A as a variable magnitude, the point y,, as
we saw in the fourth paragraph of the preceding chapter, tra-
verses a half-regular rational curve, which is in general of the
38th order. For the proof of this, we had replaced the formula
(26) by the following (a proportion-factor p being introduced) :

@7 ep=m. W, (A, ). T (A, Ag)
+ 1206 (0, Ag) (W (M, 2g) 2 (A 2).

‘We now recognise, first, as was cursorily remarked, the reason
(geometrically speaking), why the order of the curve thus ob-
tained can sink to 14 for m=0, and to 8 for n=0. It is be-
cauge, in the first case, the aggregate of the 12 generators of
the first kind (7, 2,)=0, ted twice, is separated from the
general curve of the 38th order; in the second case the aggre-
gate 7'(n,, \)=0, counted once. But we have now, besides,
the following theorems for our curves (27). We find that our
curves meet the generators of the first kind only once, and therefore
the generators of the second kind 37 times. In fact, we have for
every generator A by (27) only one point of the carve. We
find, moreover, that through every point of a generator \ only one
curve (27) passes, so that the principal surface is covered by the
Jamily of curves (27) exactly once. 'The individual points of the
generator A, viz., are given by the corresponding u, which deter-
mines the generator of the second kind which passes through
the point. But if we sappose A, u, in (25) to be known, the
corresponding m : n is puted linearly.

‘We append to this two further remarks which will be useful
later on. First, as regards m and n, we can compute these
linearly from the y,’s previously given in accordance with
formula (26), not merely relatively, but determining their
absolute values. These formule are not altered if we permute

(25) A=, w=2
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the y,’s evenly in any way. For by the agency of the ikosa-
hedral substitations of A, the u,(A)’s, »,(\)'s occurring on the
right-hand side always undergo the same even permutations
as the y,’s placed on the left side. Z7e m, n, therefore depend
rationally on the y,’s in such wise that they remain undltered for
even permutations of the y,’s; or, to express it otherwise, the
m, n, are capable of rational representation as functions of the
given magnitudes a, B, oy, V. We consider further the relatiou
between A, u, which is farnished by the formula (25). If we
subject N to any of the ikosahedral substitutions, the u, inas-
much as it depends on the corresponding ¥,’s (exactly in the
way we saw in the preceding paragraph), undergoes other
ikosahedral substitutions which proceed from the given ones by
changing e into ¢%. Following the terminology which was
introdnced in this connection by Herr Gordan, we will describe
the changes of w as contragredient to the changes of A. The
Jormule (25) provide us with infinitely many rational functions
of N which, in this sense, are contragrediently related to \.*

§ 5. SoLuTioN oF TBE PRrINCIPAL EQUATIONS OF THE FIFTH
DEGREE.

‘We have already, in § 1, 2, given the means of reducing the
solution of the principal equations of the fifth degree to an
ikosahedral equation :

H(
(9 173875(0)
by determining A as a function of the y's. If we now wish to
express conversely the ,’s by means of the individual root A,
we can evidently employ the equation (26). I will now write
it so that m, n, are provided with an index 1, so that the con-

-2,

* The theorems proved in the text, as well as the principles for the svlution
of the principal equations of the fifth degree to be developed immediately, were
brought before the Erlangen Society by Herr Gordan and tnyself simultaneously
on the 21st of May 1877. Herr Gordan there started from essentially different
points of view from those to which we afterwards return. My own exposition,
t00, was in some measure different from that now given in the text, and in many
leepech Ies- simple, CYf. here tbroughout miy comprehensive memoir, * Weitere

gen uber das I der,” in Bd. xii. of the Mathematische Annalen
(Aug\mt. 1877).
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nection of our formula with the ikosahedral equation (28) may
be evident. We have then:

(29) Yo=my - t(A) + 1y - uy(A) - (M) ;

when we afterwards consider p instead of A, Z,, m,, n,, will
have to be simultaneously transformed into Z,, m,, n,. In order
that the solution of the principal equation by the help of the
ikosahedral equation may be complete, we have evidently only
to further determine the Z;, m,, n,, as rational functions of the
magnitudes a, 8, v, V, previously given.

‘We shall see later on how the calculation thus required can
be carried out a priori. In the meantime, let us follow a much
more elementary method. We have in I. 4, § 12, explicitly
computed the principal resolvent of the ikosahedral equation by
considering Z, m, n, as arbitrary magnitudes, and in § 14 have
given the corresponding square root of the discriminant. It
now follows from the considerations of the preceding paragraph
that every principal equation of the fifth degree, after a fixed
value has been determined for 7, admits of being put, in one
way only, into the form of the principal resolvent. We shall
therefore be able to determine Z,, my, n,, in a rational manner by
simply comparing the coefficients of the general principal resolient
and the square root of its discriminant with the coefficients a, B, vy,
of the given principal equation (1) and the adjoined value of the
corresponding 7. We will here always define v, as we did in
1. 4, § 14, in the following way:

(30) 255 v= l l (0

vy
which is reconcilable with the formule (2) and (3) of the
present chapter. Comparing now, first, only the two sets of
coefficients, we obtain :

emn? + 18
Zu=8md+ 12m®n + Lnlﬁ_:zf »

z.8 6m2n? + 4mnd 3n¢
@ —g ~ AT T v
Z.y 5 40n3n8  15mnt + 4
I U B it vy I
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I have here at the outset written Z, m, =, instead of Z, m,,
ny, because Z,, my, n,, satisfy these equations equally well.
The further computation now takes the following form.*
From the first of the equations (31) we obtain:
72 12Bm .-y,

(32 1227 712

On the other hand we form:

2B 9 P )~,
—m7+1 7 —4Z(4m —1 7

4 3

2— o, — 9283)2= 2 ’
@i (3mu+ 2B) (4m A

(33)

and hence :
4 1

-Z
al— B (3me +2B)2 = (my 1 BZ
‘We need only introduce here the value (32) of I%Z' in order

to obtain for m a quadratic equation. If we rearrange this by
multiplying up by the denominator, we have:

B4 16mi (- B4 afy) - gm (116 + 28y — )
+ ; (64a2B3 = 2Ta%y - By?) =0

On solving this we find :

(35) ma(l IE:B +2B% - ay?) £ aV

M- rapy)
where V* exactly agrees with (3) (as we may verify), and the
sign + remains for the time, of course, undetermined. With
this value of m the other unknowns are at once determined too.
First, as regards the value of Z, it is sufficient to introduce the

value of ;— from (32) into the first of the equations (33); we
thus ﬁnd :
(36) Z= (48am®— 128m — y)*

64@7[19 (117 ﬁ’)m—ﬁﬂ

* I borrow the process of elitnination used in the text from & lecture of Gordan's
in the winter 1880—81 Herr Kiepert has also !nmlluly employed the comparison
with the princi (“ Auflisung der G gen funften Grades™) in
the Gottinger Nachrichten of July 17, 1848 or Borchardt’s Journal, t. 87 (1879).
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We obtain  in a corresponding manner if we write the first
of the equations (31) as follows:

2 2
(12m’+ r >n=aZ—8m3~6m~ L

1-2 1-Z
and now consider m and Z as known. The final formula is:
96am? + T2Bm? + 6ym — 12227

@n n=- T44am? + 12Bm +y

In order now to determine the sign of V in (35), and there-
fore in (36) and (37), in a way corresponding to the priority of
the A and the notation m,, n,, Z,, let us compare (30) with the
difference-product of the principal resolvent previously noted.
Tt here suffices to consider a special case. We take, say, m =1,

n=0, in the general principal resolvent, and therefore have,
in consequence of the formula (31):

3
7
At the same time we obtain by 1. 4, § 14:

S124(1 -
| l(y.— ¥ -5 202,
and thus by formula (30):
12¢(1-2
v--12022
Now, by formula (35), the m becomes in this case :
~11.20-3.120. Z+4.12%(Z-1)

WIITB. Z ¢

12 144
B=-z 1=7

therefore if, as we assumed, i is to be equal to 1, we have to
apply the lower sign in (35).
Thus we have in general :
. (111'34-2827—1:7_’!—112
8 R T Ty )
and heace by (36), (37), the Z, and #,. 'The corresponding values

of my, Z,, m, proceed from this by reversing the sign of ¢
throughoat.
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§ 6. GORDAN’S PROCESS.

The method just developed for the computation of m,, n,, Z,,
has the advantage of working throughout on elementary lines,
and with the use of results previously deduced. It cannot,
however, be denied that a certain amount of skill, though of a
very simple kind, is required to introduce the right combina~
tions of the equations (31), and that, therefore, this method does
not fit in well with the mode of exposition which we have
otherwise maintained, in which we have endeavoured to always
have an insight a priors into the results of calculations, so far
as regards their nature. I will therefore briefly go into the

ature of the computation originally given by Herr Gordan, and
this the more readily because certain other aspects are connected
with it which are of use for our main conception of the problem
of solution.* Let us first make clear the difficulties which

ppose a direct computation of the magnitudes Z,, m,, n;. We
had, for example, the defining equation :

_ H*(N

4™ gz gy

where we may sabstitate for A the one value :

A=D1,

by
Then we have in Z, a rational function of the five roots g, . . . ¥,
before us which remains unaltered for all even permutations of
the y's. But now this latter only occurs because the #'s are
ted by the equations of condition 2y =0, Z3*=0; it does
not occur if we consider the y's as arbitrarily variable magni-
tudes. To express it otherwise, Z, is for the even permuta-
tions of the y’s actually, though not formally, invariant. Now
all rales which we meet with in the usual expositions on the
compatation of symmetric functions, &oc., relate to functions of
formal symmetry; these rules are, therefore, not immediately

available for our purpose.

* Cf., besides the note just mentioned, a communication of Gordan's to the
at Munchen (Sept. 1877), as well uthel.lrgel memoir,

““Ueber dle Auflésung der Gleichungen vor filnften Grade,” in Bd. xiii. of Math,
Annalen (January 1878).
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Herr Gordau surmounts this difficulty by satisfying the
equations of condition Jy=0, Zy*=0, in a general manner by
functions of independent magnitud He then has henceforth
to do altogether with fanctions of independent variables, and can
establish for them an algorithm which is analogous to a certain
extent to the process already mentioned relating to symmetric
fanctions.

The dependent variables from which Herr Gordan starts are
essentially none other than the homogeneous parameters A, A,,
and p,, u,, We have above already expressed the ratios of the
4’8, and, on the other hand, the ratios of the y,’s in terms of
these magnitudes [formule (16), (17)]. Herr Gordan renders
the formulee in question concise by supposing the absolute values
of the A\, ’s determined appropriately, and writing accordingly
as follows:—

(39) Py =5Mtty, Pp= =50y, Py= Ay, Py = Shgus,

whereupon y, becomes equal to the following expression :
(40) Po= e Moy = Mgy + €L Mg+ € Ay,

Before going further in the description of Gordan’s process, we
will express all the magnitudes, given and required, by the A, u's
thus introduced. I first bring together the formula for the
coefficients a, B, v, of the proposed equation of the fifth degree
and the corresponding 7. 'We have :

~

=

(41) e= - '1'5 = =P = Mg = A ATy + Al
Zyt Py B A B4 2,2, 2.2 3,4
42 B=- 90 = ~ Mt Mgt + 30 PAGu ug® = 2250

+ Mgt gy
E'-/ﬁ S0 5 5 YR} 3,2 8y 2 4
(3) 7= = =250’ )+ 10A g ” = DOASA gy
= TOA A T4y = TOA 2y g® + Ag(py® — i),
T -9

Sl Y= 5
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= 200,19 + 11 5pagd  1g19) + A0 — 10— 1 L1a, 80,8 + 1519
+ MPA(350,%g" = 50, ") + Ag®( — 500, "hsg? ~ 250, %ust)
+ A BAR(— T5u,8ug + 25 u,%) + A WA S( — 25021y — 75"'1 ,44-2“)
+ATAS( — 5085 — 150u, 4u°) + A SAT(+ 150ml gt — 50u,1,°)
+ A OAA(1500, 7,8 + TS0, 2,8) + A 4AS( + THyPuy? — 1500, %u,")
AT L1y = 50451 — 1141).
Of the magnitudes required, Z, is known to us immediately
as a function of the N's: *
H3 (M, A)
“5) 2= 172850, )
but the m,, n,, also readily admit of representation in terms of
A, p.  If we introduce, viz., into the defining equations:
Y= - 0 hy, Ag) + 1y - (R Ag) - U (P, By)
or:
- S, a) WAy 2)
Yp=12m, 22N i, ;‘2)‘ 2+ 1440, .
f s(7‘1- 1) zVO‘v )‘2) WV()‘l_Az)
HN) T )
the values (40) for the y,’s, we get on solation :
M, Ny Ty %)
0w ™™ 1L 50y
where J,, N,, denote the following two forms, linear in p,, py:

(46) m=

_ I‘l()‘ln - 397‘157‘25 - A76)‘13)‘2“’)
(47) Ml - { -m(267‘1l°"2° - 397‘1.'118 - ;‘213)'
(48) Ny = g (TAONE 4 A7) + (= A7 + TA A5 ¥

We have now to represent the magnitudes Z;, m,, =,
rationally in terms of a, B, v, ¥, on the basis of the formula
(41)—(48) now given.}

* The magnitudes Z,, m3, %z, which are assoclated with Z,, m,, n,, are owitted
for the sake of brevity.

+ As a verifi of the expressions furnished for M), V), we may observe
that the determinant

oM oM,
[ B

'

PoN, Ny

' ™

i~ simply equal to H (A, A2).
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§ 7. SUBSTITUTIONS OF THE A, s's—INVARIANT FoRms.

‘We must now become acquainted with the changes to which
Ay Mgy My, fp 8re subject when the y's are permuted. These
changes are not, however, per s¢, completely determined. For
of the fonr magritudes A, u, one is superfluous, even if we take
account of the absolute values of the y,’s. We found above
that, for the even permutations of the y,'s which we denoted by

Sand T, ;l andergoes the ikosahedral substitutions so named,
'2

while I'—:: is subjected to substitutions which are derived from
these by transforming € into ¢, We further remarked that %:
proceeds from % by the cyclic permutation (¥, ¥ ¥ ¥s), and
that a repetition of this operation allows—;: to proceed from

’:Tz. On the basis of these theorems we shall now define for

Ay Aoy By fig B g linear substituti of d inant
1, in such wise that conversely from it, in virtue of (40), the
proper permutations of the y,’s follow. To this end let us first

put, employing homog ikosahedral substitations of deter-
minant 1:
(49) SN =S\, Wo= €Dy p = ey, g =eluy;

VB N = —(e—e) A 4 (E-B) Ny,
J5. A',:(c’—c’) )‘l“‘("“) N;
VB = (= )y + (= )
VEody= (= )y~ (&) g,
where the formulwe for the u's again proceed from those for the
\'s on replacing € by €%.*

Applying these substitutions to (40), there follows in fact
necessarily :

(50) T:

Sy =Yrn
Ty =Yn 1 =Y Y2, =% Y5 =VYp ¥ = Vs

* Here V3=c+e - ¢~ ¢, as must not be overlooked, changes its sign.
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Here the permutations of the s which arise by composition of
S and T m, of courss, only hemihedrically lsomorphous with

the corresponding substituti of the A, u’s: there are 120
snbmtnl;lons of the A, w's, and only 60 permutations of the y’s.
This ci t: is explained by the fact that, among the sub-

stitutions of the A, u’s, the following is found :

N == A= =Ny =y =y,
for which the y,’s in altogether unaltered as bili fanc-
tions of the A, w's.
‘We proceed to introduce the following substitution, which we
describe shortly as an interchange of A and s:
1) =0y g =g N =g Mg =
From the formula (40) we then get:

W =Ym
therefore, in fact, the nneven permutation of the y,’s previously
employed. In agreement likewise with what precedes, we get
on repetition of (51):
MM M= NG o = =y
4.¢., the homog ikosahedral substitution otherwise denoted
by U.

Instead of the two-valued or symmetric homogeneons func-
tions of the y,’s, we shall now fix our attention altogether on
such rational and, in pn.rtlcnlu-, integral homogeneous functions
(forms) of the M, A, as Itered for the substituti
(49), (50), and (51) respectively. If this is only the case for
(49) and (50), they are to be called invariants simply, while we
will speak of complete invariants if invariance also occurs for
(51). It may happen that an invariant merely changes its sign
for (51); we then call it alternating. If an invariant is neither
complete nor alternating, it will, in virtue of (51), be co-ordi-
nated with a second. The relation of the two invariants is then

tual, for the repetition of (51) is an ikosahedral substitution,
and therefore leads back to the original invariant.

Evidently @, 8, and vy are complete invariants, ¥ an alter-
nating one. The forms which we have elsewhere unsed, /' (A, Ay),
H(\, 2N), T(M, Ny), M,, N, represent the more general type.
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Calling the first three f;, H,, T}, for the sake of brevity, the
forms which are derived by interchange of A and u shall be
denoted by f,, H,, Ty My, N

§ 8. GENERAL REMARKS oN THE CALCULATIONS WHICH WE
HAVE TO PERFORM.

The stat t of the question given in § 6 requires that
certain rational invariants shall be expressed rationally in terms
of a, B, 7, V. To this end we may first ask: what integral
invariant functions (forms) are integral functions of a, 8, vy, ¥ ?
Evidently all those, and only those, which are integral functions
of the ,’s. But these are all such forms as Lave the same degree
N Ay, Ay, and p, po, Tespectively. For, on the one hand, every
integral function of the y,’s certainly gives an integral function
of the same degree in the \'s and the u's, and, on the other
hand, every form of the A, u's which is of the same degree in
the \’s and u's can be written in the form of an integral func-
tion of the terms A juy, Ay, N sy, Aoy, and these terms are,
disregarding numerical factors, equal to p,, 2y, s Py, .., inte-
gral functions of the y,’s.*

On the basis of this theorem, our method will now be to so
dispose a given rational invariant, which we are to represent as
a rational function of a, 8, v, v, by t.he a.pphcnmon of appro-
priate factors in the tor and tor, that the
numerator and denominator, taken by themselves, ara invariant
forms of the same degree in the A, w’s, and then computing

tor and d inator individually as integral functions
ofa, B, v, V.

Now, as regards the evaluation of such integral functions, we
remark that every invariant form of the same degree in A, A,
and pu, pg, admits of being split up nto a complete and an
alternating invariant, In fact, let F, be the proposed form,
F, the co-ordinated form which arises from it by interchange of
Aand p. We then simply pat:

F +F, F -F,
(52) F1=_sz+ Y 2,

* Cf. the analogous remark in the last paragraph of the preceding chapter.
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Hore 11 ; ‘—v’, as a complete invariant, is an integral function of
a, B, v, alone, while F ;f-’, ag an alternating invariant, breaks
up into the product of 7 and an integral function of a, 8, ¥.
The few rules thus esteblished allow us to grapple with the
computation of the magnitudes m,, #,, Z,, by direct means.

§ 9. FRESH CALCULATION oF THE MAGNITUDE 1,
In our new notation:
(53) M
™= Tgf,
‘We will now first multiply numerator and denominator by such
an invariant form that there results on both sides the same
degree in the A, ws. It is evidently simplest (though not
necessary everywhere) to choose f, as such a factor. We thus
write :
- M/,
(54) my = 195
In this formula the denominator is in itself a complete invariant ;
but we subject the denominator to the splitting-up process just
described. We thus obtain:

(Mo Mpf)) + (B, - Mofy)
241/,

I

the computation of s, is therefore r d to replacing tle two

complete invariants :
M fy+ M,y and £ify,
as well as the alternating invariant :
Moo= Mofy
by appropriate integral functions of a, 8, v, and of a, 8, v, V,
respectively.

‘We solve the problem which now lies before us by taking
into consideration, on the one hand, the degree of the forms in
the A, p’s which have to be compared, and, on the other hand,
returning to the explicit values of our forms in the A, u’s (as we
gave them in § 6). The invariants just mentioned (M, /,+ M, 1)),

(55) ”,
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&o., are respectively of degree 13, 12, and 13 in the A, w's. On
the other hand, a, 8, v, ¥, exhibit, with respect to the same
variables, the degrees 3, 4, 5, 10. Hence we conclude, in the
first place, that (M, f,+M,f,) must be a linear combination of
the terms a’B, ay®, B%, and then, further, that f,f, is equal to
just such a combination of a, 8%, afy; finally, that (X, f,— M, f,)
coincides with ayy, save as to a numerical factor. In order to
compute the numerical coefficients still undetermined, it is suffi-
cient to pay regard to a few terms only in the explicit values
of the individual forms, say, then, to the leading terms which
present themselves when we arrange the forms according to
descending powers of A, and ascending powers of A;. I com-
municate here, for the sake of completeness, the leading terms
of the forms which we have to consider, each to the extent to
which we shall actually want it. We find by § 6:

My fo+ My fy
=218 (2050 + 1L T — 1) o+ A2, (= 2610,8 + 39y 5y
+u)+ .,
Sulp =M (1 Mg+ Mg = ™) + .+,
M, fo~ My f, =7\ 2+ . ..,
likewise :
@3B =217 + ARG (= ey g’ + Bppsf) + .
@y =131 (2T + gt + 2%, (0) + .,
B2 =24 (g + 2" + ) + A (0) + .,
AR LR YW WAL T
B= =N Vp® 4 B A B+,
@y = = 2% (uhs’ + mg’h®) + Mg (g + 100,00 — ) + .,
ay= =MVt
From these values we now infer immediately :

{ M fo+ M, f, = 11630 + 232y — a9?,

(56) Sfp=ot =+ afly,
M fy— My fi= - ay,

and therefore finally :

(57) my = (Eﬁ ti)ﬁ?__afuv

24 (at- B +afy)
which is exactly the valne communicated in formula (38).
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In the same manner we could now, of conrse, compute 7,
and Z, also: the calcnlations in gnestion would only be some-
what more elaborate, because ir them we are concerned with
constructions of a higher degree in the A, u’s, We shall be
able to d p these calculations, as we always can in
similar cases, by proper principles of reduction into a greater
number of smaller steps (compare Gordan’s work). We do not
enter further on this, becanse we have already, in § 5, obtained
simple formule for 7, and Z,, and the principle of Gordan’s
method of computation will be sufficiently known by the
example of m,.

§ 10. GEOMETRICAL INTERPRETATION oF GORDAN'S THEORY.

In the preceding paragraphs Gordan's theory has been ex-
pounded from a purely algebraical point of view : we shall bring
it closer to our other considerations if we reflect briefly on its
geometrical significance. We have here to interpret as co-ordi-
nates on the principal surface the ratios M, : Ay and g, : u,, 88
we regarded them in the last paragraph of the preceding chapter.
An equation:

Fy X5 pp ) =0

then defines a cnrve lying on the principal surface, whose inter-
sections with the generators of the first and second kinds are
determined as regards number by the degree of F in x and A
respectively. If F is an invariant, the corve in question is
transformed into itself for the sixty even collineations, and is
therefore half regular so far as it is irreducible. The curve
becomes regular, on the same condition, if the invariant F is
complete or alternating.

If we interpret in this sense the invariants occurring in the
preceding paragraphs, we are merely led to curves whose sig-
nificance is either immediately manifest or is @ priori known.
The curves a=0, 8=0, y=0, have come before our notice above
a8 curves of intersection of the principal surface with the diagonal
surface.*

* Employing for a the representation given in (41), we can now essily prove

the assertion previously made, that the carve a=0, i.e., Bring's curve, possesses
no true double points, is therefore irreducible, and belongs to the deficiency p=4.
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v =0 gives a curve which evidently splits up into ten plane
portions; f,=0, H; =0, T, =0, represent certain aggregates of
twelve, twenty, or thirty generators respectively of the first
kind. But what do M,=0, N;=0, denote? It follows imme-
diately from the form of M, NV,, that we have to do with curves
of the fourteenth and eighth order respectively, which cut the
individual generators of the first kind only once. These are
the same curves which we have before represented by formulse
of the following kind :

(58) PU=t(yy Ag) . Wi(2y 2)
= WAy, Ay

In fact, we shall be led back to these formule if we determine
from M, =0, or N,=0, the ":—: as a rational function of ;:, and
insert the value found in the formulae (40):

Y= Ny — ENopy + €Ay + EAgp,,
In the same sense the equation:
(59) m. T (g Ng) - Ny + 12072 (0, A,) . M, =0

represents the whole family of those curves of the 38th order
which we considered in § 4 of the present chapter (see formula
(27)).
‘We now turn in particular to the computation of m, given in
the preceding paragraph. Originally we had by (53):
M, |
my= 12/
m, is therefore a function on the principal surface, which
vanishes along the curve of the 14th order, A7, =0, and becomes
infinite for the twelve generators of the first kind f; =0. Writing
now, as was done in (54),
Mg,
B
we have evidently raised the two curves 2f,=0, f,=0, by addi-
tion of the curve f,=0, 7.c., an aggregate of twelve generators of
the second kind, to the complete intersection of the principal
surface with the accessory surface ; the intersecting surfaces can

m,
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then, in particular, be so ch that they th lves are trans-
formed into themselves for the 60 even collineations, and are
therefore rep ted by eq: g to zero integral functions of
a, B, v, v. Hence the structure of formula (57), and also the
measure of its arbitrariness might be made manifest. I leave
it to the reader to interpret in a similar manner the significance
of formulee (36), (37), for Z; and .

§11. ALGEBRAICAL ASPECTS (AFTER GORDAN).

‘We have so far expounded the Gordan theory as it originated,
viz., a8 & direct method for computing the magnitudes occurring
in the solution of the principal equations of the fifth degree.
Herr Gordan has, however, in his exhaustive memoir published
in the 13th volume of the Annalen, chosen a much higher stand-
point; he has proposed to himself the problem: to construct
the full system of invariant forms F (A, As; g, 4,), and as many
relations as possible between these forms. He thus finds 36
systems of forms, of which those which are different from a, 8,
v, ¥V, are connected by permutation of A and x. We cannot go
more fully into these results, but must consider the method
which Herr Gordan has employed for their deduction. Let us
recall how we previously deduced H (N, A;), T'(\;, Ap), from
JF (A, Ay, by means of processes of differentiation appertaining
to the invariant theory. In just the same way Herr Gordan
obtains his forms, putting at the head of them :

a= =A% g = A gptg® — Aoy ® + Auy?
as a ‘“double-binary ground-form with two series of indepen-
dent variables.”

Let us first explain, in respect to this, how f(\,, A;) [the
ground-form of the ikosahedron] is now to be defined. Consider
A Ay, 88 constant in @, ie., ¢ as a binary form of the third
order of py, po, only. Then, I assert, f is the discriminant of
this form of the third order, disregarding a numericol factor.
‘We confirm this by direct calculation. We first construct, in
accordance with the usual rules, the Hessian form of &, and
find, save as to a factor, the following invariant, quadratic in
the w's:

P
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(60)  r=p2 (=A% = BAAS) + 10pu;poArBAG® + 1 (BA,505 - AF),
which we shall again use later on. We further compute the
determinant of 7, and come back, in fact, disregarding a numeri-
cal coefficient, to:
S=210+ TIA0 - A1
Let us further explain how Herr Gordan obtains the formulase

of inversion, which we were able to establish in § 4 by applying
those data which we obtained above, I. 4, § 12 (somewhat in-

identally), by the formation of the principal resolvent of the
ikosahedral equation. In Herr Gordan's method those in-
variants which are linear in u,, w, form the starting-point.
He shows that four different invariants of this kind exist, among
which those two which are of lowest degree in the X’s are exactly
identical * with our N, M,. Now by formula (40) the y,’s are
themselves linear forms in u,, p,:

Yo= Ay — S Agpy + P, + N,
Hence we can write, from the outset :

(61) ayy=b,. My +¢,. N,
where the coefficients a,, b, ¢,, are to be taken from the identity:
Yr My R
we oM, o,
oy ou,y ouy |=0.
L, M,
| 0wy Oy Oy

Here a, as the functional determinant of 3, and N, is itself
an invariant; we have seen above that it is idemtical with
H(M,\,). On the other hand, b,, ¢,, are necessarily five-valued,
like the 3,’s themselves. Computing them as functional deter-
minants of y, and N, y, and M, respectively, we then get
the same magnitudes as we before denoted by W,(A,, A,) and
t(\, A - Wu(Ay Ay).  In fact, formula (61), written in our
earlier notation, must run as follows:

* One of these four invariants, if we multiply it by [7;, is contained in the
general form m. T). Ny+12n.£;?. M,, the vavishing of which represents those
corves of the 3»th order which we have previously considered. Among these
curves, in addition to M, =0, N} =0, a third presents itself whose order reduces
to a lower number, viz,, to 18,
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(62) H(q, %) . o= Wity Ag) . My +8(Ay, 35) . Wi(ry, 25) . Ny

compare, say, formula (46) supra. We can say that Gordan’s
development of this formula, a3 we have explained it, is just
the reverse of ours. The further course of the calculation is
then the same in both. In order to express the y,’s by means
of tbe X’s and the other given magnitudes, we introduce in (62),
instead of 2f,, V;, the expressions:
A N. T,

™T1gy MT1 P
i.e., quotients which are both of the first dimension in A, A,
and g, p,, and then compute these as rational functions of
a, B, v, V, in the same way as was done in § 9 for m, in
particular.

We pause for another moment over Gordan’s derivation of
formula (62). We can evidently put it into words as follows.
Since the y,’s are bilinear forms in A, A, and g, p,, their
determination requires (if we have assumed A, arbitrarily—as
is allowed—and then found A, : A, from the corresponding
ikosahedral equation) only the knowledge of u,, u,, in addition.
We now obtain these by annexing the two invariants, linear in
By By, Lo wit, M, N, and compute them as rational functions of
My Ay and of a, B, 9, ¥. In fact, we have thus two linear
equations for u,, u,; if we solve these for ,, u,, and insert the
values which arise in the formula for %, we have the result
which we sought, the same which is presented in an abbreviated
form by (62). Or we can also put it thus. If we put M, =0,
we determine in the binary manifoldness g, : u, a first element
contragredient to the elements A, :),, or—to express it more
generally—a covariant element. We obtain a second element
of the same kind if we take N;=0. Our problem is to find
that el t in the manifold o, : g which is represented
by ,=0. We solve this problem in (62) by composing y, with
the two covariant elements 3f, and N, by the help of appro-
priate coefficients, thus proceeding according to the same fun-
damental theorems of the “typical representatmn which we
employed above in describing the Tschirnh formati
The mode of conception thus denoted will often come into play
later on in a generalised form.

mn
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§ 12, TrE NorMAL EQUATION OF THE r,'s.

In our general survey of the different paths struck out for
solving the equation of the fifth degree, we have above (II. 1,
§ 1) separated the method of resolvent construction from that of
the Tschirnhausian transformation, remarking, however, that we
can always replace the one method by the other. When we
solved the principal equations of the fifth degree directly by the
help of the ikosahedral equation, we followed the method of
resolvent construction, If we are to expound the method of
the Tschirnhausian transfc tion in place of it, we shall have
to start from one of the resolvents of the fifth degree, which we
have established in I. 4, for the ikosahedral equation, as a
normal equation.

The resolvent of the 7,’s which we constructed in § 9, loc. cit.,
and to which we then imparted the form :

(63) Z:Z-1:1=(r-3(r2-11r+ 64)
17 (12— 10r + 45)?
: - 1728,

seems to be in this respect most adapted to our purpose. In
fact, we have already (supra, § 13, loc. cit.) represented the u,,
2,, rationally in terms of ,:
12 1e
Y= E 10,4450 “Tr-3’
if we insert these formule in our present one:
Y=y Uy + 0y Uy Uy
we obtain immediately the representation of y, by means of the
roots of the normal equation (63):
_ 12(r, - 3ym, + 144n,
(64) Y= 3 (2 - 10r, + 45)°

The only further question that arises is how we are to compnte
20y, 2)

Tv= -
O
as a rational function of the %,’'s. We will here strike out a
path similar to that just taken (§ 9) in the computation of m,.

For brevity, let:
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LAy )=ty by ) =tn sy
then we write in turn:

r=h
1'J2
- AR O/ R R Rl LR O e % ) fl]
2N ha

Here f; - f; is, a8 we know, equal to (a*—S8%+aBy). We can
now compute, in a perfectly analogous manner, the two por-
tions of the numerator (by returning to the explicit values in
A, Ap and gy, p,). Let us for a moment suppose the y's to be
introduced in place of the A, u’s, then these components are
such integral functions of the y's as remain unaltered when
we permute those four y's, which are different from our fixed
Y in an arbitrary manner and in an even manner respectively.
Now the sums of the powers of these four #'s are integral
fanctions of ¥,, a, B, v, but their difference-product is equal
to 5% : (3. +2ay,+B8), where (3*+2ay+8) denotes the differ-
ential coefficient of the left side of our principal equation
divided by 5. Hence [42 ;- fo+L% 4 f,] will be an integral
fanction of y,, a, 8, v, but [4,% ;- fo—142 5 f;] will split up into
the product of such an integral function and the magnitude

—_V— . . . .
LI Yy It is not necessary for me to go into the details
of the calculation ; I will therefore only communicate the resalt.*
Woe find:

(65) 2(at- B +afy) 7,
=[(ay + 282 9,4 + (a3 — By) .8 - 5B - 9, + (4n?y + 13aB?) y,

+(11a% + 9a8)] - [(uy.,’ Buta) ZZ%_+ 3].

Summing up, we have the following result: e have in (65)
the Tschirnhausion transformation which transforms the given
principal equation into the normal equation (63); if we have then
determined the roots 7, of the latter, (64) gives us the explicit
values of the y,’s which we sought.

* See Math. Ann,, t. xii, p. 556,
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§ 13. BRING’S TRANSFORMATION.

I have communicated in detail the formala of the preceding
paragraph the more willingly because from them, as I shall now
show, all formule can be derived which are required in the
execution of the Bring transformation* Let o, ¥y, Ysy Y3 ¥s
and ¥y, %y ¥5, ¥s» ¥ be the co-ordinates of two points on the
priucipal surface which belong to the same generator of the first
kind. Then we obtain for the corresponding principal equations
the Z and #2,’s,;t while we distinguish the other magnitades
which present themselves therein for consideration by addition
of an nccent and will therefore put o, 8, '/, V', m/, n, in the

b ite a, 8, vy, V, m,, 7, in the first. I say
now tha.l; a double a.pphcatlon of the formulse (64), (65) is suffi-
cient in order to transform one of the principal equations into
the other, and the roots of the one into those of the second.
We will, for brevity, denote by (64), (65" the equations (64),
(65) when they are written with accentuated letters. Then the
whole process which is here necessary evidently consists in
expressing first, by means of (63) the 7,’s in terms of the y,’s,
and then, by means of (64), the 3,”s in terms of the 7,’s (which
is the transformation we sought); and then, conversely, com-
puting by means of (65°) the »,’s as fnnctions of the 7,’s, and
so finding from them the 3,’s by means of (64).

The Bring theory is furnished by a special case of the general
method thus given. The generator of the first kind, viz.,, which
carries the point g, meets the curve a=0 in three points: we
obtain the Bring transformation if we choose one of these points
as . This means, analytically, that we are so to determine
m,, n, that, in the principal equation for i, the term involving
4 disappears. A glance at the general principal resolvent
(L. 4, § 12) gives us at once the cubic equations which my, ny',
must satisfy in consequence ; in other words, the cubic auxiliary
equation which the Bring theory required; it is as follows:
6mn?+nd _

1-Z

* See the analogous formule in Gordan’s paper in Bd. xiii. of the Math. Aunn.,
p. 400, &c.

1 Or more correctly Z; and 7., 1's, as we might have written in the preceding
paragraph.

(66) 8m?+ 12m?n +
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It depends, as is clear a priori, not on the individual point
¥, but only on the generator of the first kind on which this
point is situated, and on the sixty generators which arise from
the one mentioned in virtue of the even collineations. We have
nothing further to add concerning the Bring theory ; the most
we can do is to call attention to the fact that (657) now be-
comes very simple, inasmuch as a’=0.* It will also be usefal
to give prominence to the fact that, in the trinomial equation
which we obtain by carrying out the Bring transformation, we
always know, a priori, the square root of the discriminant.

§ 14. Tee NorMAL EQUATION OF HERMITE.

Now that we have brought the Bring theory so simply into
connection with our developments, we will seek to do the same
with the normal form on which Hermite bases the solution by
elliptic functions. As we saw above (IL 1, § 4), this runs as
follows :

(67) P —28.5% ut (1-af)2. F—20/55, w3 (1 - )2 (1 +48) =0,

where «®=«2.  'We shall inquire if this equation is contained as
a special case in the general principal resolvent of the ikosa-
hedral equation, when we put Z, the right side of the ikosahedral
equation, equal to:
3 -2 4)8

as we did above (1. 5, § 7) in dealing with the solution of the
ikosahedral equation by elliptic modular functions; we shall
inquire why Hermite in his investigations was led, at the outset,
to the Bring form, while every principal equation of the fifth
degree can be solved by the help of elliptic fanctions (through
the intervention of the ikosahedral equation), and the Bring
form is by no means the simplest g the infinitely many

* In a manner similar to that in which the Bring transformation is effccted by
means of (66), the problem is solved by the help of an cquation of the fourth
degree : from the given principal cquation to establish another for which 8:=0.
To the feasibility of this problem it seems that Jerrard first called attention
[Mathematical Researches, 1834].
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principal equations with one p: ter which p t them-
selves.

In order to answer these questions, let us insert for Z in (66)
the function of «? given in (68). ZThe result is that the cubic
quation (66) b reducible. In fact, it is satisfied, as we can
verify i diately, if we choose:

min=3x%:2 (2~ bx%+ 2d),

I will accordingly put:
(69) m=3x2(1+22), n=3(1+2%)(2—5a2+2n%),
The coefficients of the principal resolvent given in I. 4, § 12,
are then considerably condensed, so that we obtain the equa-
tion :
(70) #5—24.35.5. %10 (1 — ). y—20. 310, 12 (1 — a®)2 (1 + #2)=0.
Here we need only further snbstitute for y:

JF
(71) ¥y="5.L,
Ix¥
in order to find precisely the Hermit ti

Our first qwtwn s tlm‘eﬁm to be answered in the afirmative.
At the same time we discern the answer to the second question in
the circumstance that Hermite operated, not with the rational in-
variants g,, g, but with &* throughout.

If we now compute for the Hermitian equation, or, what comes
to the same thing, for (70), the corresponding Z,, we naturally
come back, a proper choice of the sign of \/ being made, to
"%a." But a very simple value arises for Z, also; we find, on
reversing the sign of ¥ in the expression for Z,:

_(1+ 1422+ 24)8
72 1= 108 (T—xp T
This, as is shown in the theory of elliptic functions, is one of the
three values which arise from gA” by & quadratic transformation of

* We have here to take (for (70)):
=212, 32, x"('l x’)‘(l 62+ x).
t Cf. Gordan, loc. c:t or my already tioned, in the Rendi-
conti of the Istituto Lombardo of April 26, 1877.
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the elliptic integral. We cannot, unfortunately, follow up
forther in this place the interesting connection of the Bring
curve with the quadratic transformation of elliptic fanctions
which here presents itself.*

Breaking off for the p t these devel ts, we here
content ourselves with the fact that the Bnng and Hermitian
formul® fit in with ours. In the fifth chapter we shall return
to our present results from a general point of view, and seek
to decide what theoretical value they possess.

* Cf. my memoir: * Usber die T jon der elliptischen F

und die Auflésung der Gleichungen fiinften Grades,” in Bd xiv, of the Math,
Annalen (1878), especially p. 166, &c., of the same,
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CHAPTER IV.

THE PROBLEM OF THE A’'s AND THE ¥ACOBIAN
EQUATIONS OF THE SIXTH DEGREE.

§ 1. Tue OBJECT OF THE FOLLOWING DEVELOPMENTS.

IN the preceding chapter we have considered two series of
binary variables, A,, A,, and Fa Py wlnch were simultaneously
subjected to hc ike titations, and besid
to a process which we called the ml:arclmnge of A, p. We have
further had under investigation certain bilinear forms of the
A, p's which we called y,. The y,’s undergo on their part, for
the transformations of the A, u's in question, linear substitations
of the simplest possible kind, to wit, mere permutations, and
indeed permautations of the whole set; if we are therefore to
establish a corresponding form-problem of the y’s, this finds its
complete expression in the equation of the fifth degree which
the y,’s satisfy, i.c., in the principal equation. We can in this
sense assert that we have been concerned in the preceding
chapter with & form-problem which arises from the consideration
of the simultaneous substitations of the A, x's.

Now in the following pages a statement of the question of a
quite similar kind (which moreover possesses essentially & still
more simple character) is to be dealt with. The simultaneous
jkosahedral substitutions of the A, u's were, as we called it,
contragredient ; we will now talke into consideration two series
of binary variables :

ETECHE R
which are in each case simultancously subjected to the same tkosa-
hedral substitutions, and so can be deseribed as cogredient, In
the case of these, again, we construct certain bilinear forms,
viz., the symmetric fanctions :
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() A= =g 4300 ARy, A= - A,
4.e., the coefficients of that quadratic form :
2 A+ 2Agz - Az,
which arises on multiplying out the factors :

Ay ~Mzp A7y =Mz
If we sabject the A, A”’s to the 120 homogeneous ikosahedral
substitutions, or interchange them with one another, these A’s
undergo ou the whole sixty ternary linear substitutions, for the
individual A’s remain altogether unaltered, not only for the
interchange of the A, A”’s, but also when we simultaneously
reverse the signs of A, Ny, A, \)*  We shall deal with the
ternary form-problem which is involved in the consideration of
the substitutions thus defined.

‘We have already stated that this form-problem of the A’s is
essentially more simple than that of the z’s. In fact, we shall
be able to return all through with our reflexions and calculations
to the ordinary ikosahedral problem, from which the results we
seek then offer themselves in virtue of a definite principle of
transference well known in modern algebra, so that indeed the
accomplishment of our problem appears almost as an exercise
in the application of certain fundamental theorems appertaining
to the theory of invariants.} According to the same scheme,
we should also be able to deal with the case of 3,4 . . . series
of binary variables which are subjected to the ikosahedral
substitations or any other group of binary substitutions in a
cogredient manner. If among these infinitely many, so to say,

iated form-probl we select the one just described, it is
because we employ it in the further consideration of equutions
of the fifth degree. We shall soon learn (at the general Jaco-
bian equations of the sizwth degree, by which Kronecker’s theory of
equations of the fifth degree is supported, are resolvents of our
problem of the A’s. By substitating for it altogether the pro-

* The substitutions of the A's m hence holohedru:nlly isomorphous with the
sixty ordinary h hedral

t The principle of fe tion is ially the same to which
Hesse hu devoted a memoir in Bd, lxvn of Crelle’s Journal (1666)
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blem of the A’s, we shall succeed in the simplest way in ander-
standing from our standpoint the varions results which have
been discovered in other quarters for the Jacobian equations of
the sixth degree, and thus in attaining for the general treat-
ment of equations of the fifth degree a uniform basis, which is
nothing else than a rational theory of the ikosahedron.*

The arrangement of the subject-matter for the following
developments is already given by what we have said. The first
thing is to establish the problem of the A’s in an explicit form,
where we shall again make free use of geometrical interpreta-
tion. On then studying the corresponding resolvents, we are
enabled to pass over to the Jacobian equations of the sixth
degree, and to the researches of Brioschi and Kronecker relative
thereto. I finally apply myself to the solution of ounr problem,
and show that it can be accomplished with the help of an
ikosahedral equation and an additional square root, in strict
analogy with the Gordan theory expounded in the preceding
chapter.t

§ 2. THE SUBSTITUTIONS OF THE A's—INVARIANT FoRMSs,

In order now to determine explicitly the substitations of our
A’s, let us recar to the generating ikosahedral substitations S,
T, and U respectively. We had for the A, A,'s

8: M=%, A=xe;
3 \/_Z..—-'.(( —e)A 2 (E-) A,
@) ~/5 AN=%(E-S)A (e —¢t)n,;
Uit a=%h A=z

* Like the Jacobian equations of the sixth degree, the general equations of the
{n+1)" degree which we described above (II. 1, § 13) can be replaced by parallel

form-problems which are related to the ("+ )vnnnb]cs Ao, Ay, . An LI

bave accompliehed this for n =7 in Bd. xv. of the Math. Ann. (1879); see in
particular PP 268-275

+ The p 1 ions 1o be employed in the fons were
laid befon the Erlmger Societiit by me on November 18, 1870 [Id Weitere Unter-
suchungen iiber das Ikosader, L"]; cf. further the second part of my memoir,
which appeared under the same title in Bd. xvii, of the Annalen (1877). The
developments § 8-13 were then added for the first time,
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Writing* down the same formulz for the A, A,, we obtain from
(1) for our A’s the following substitations:
S: A=A, A/'=éA, A/=cA,;
JE.AS= A+ A +A,
“) {Js‘. A/=2A+(2+ @) A +(c+) A,
NE. A =2A,+(c+ ) A +(2+ ) A, ;
U: Aj=-A, A'=-A, A/=-A,
which all, like (3), have the determinant + 1. From them are
composed the 60 linear substitutions of the A’s which exist
ing to the old scheme (L 1, § 12):

(5) 8, SIS, U, STSU(w =01, 2,3 4).

Now, as regards the invariant forms, 4.c., those integral homo-
geneous fanctions of the A’s which remain unaltered for the
substitutions (5), the determinant of (2):

) A=AZ2+AA,

at all events, belongs to them. In fact, this becomes, on intro-
ducing the A, 1”8, equal to (A}, Ay’—2,, 1,)? and therefore re-
mains altogether mva.rm.nt if we subject the A, A”s simultaneously
to any h itutions of determinant 1. Besides 4,
the full sp/stem of the forms which we seek will only contain, as I
assert, three more forms, of the 6th, 10th, and 15th degrees re-
spwtwely Na.mely, lf A=0, then N\/=M\, \/=M), under-
tanding by M an stbitrary number; therefore by (1):

M Ap=—Mpgy A=I075 A= - IR

The required forms are accordingly transformed into multiples
of forms of A, Ay, whose degree in the X’s is double as great as
the original degree in the A’s, and which, moreover, have the
property of being transformed into th lves by the homo-
geneous ikosahedral substitations of A, A;. But now the system
of all ikosahedral forms is constracted by the form of the 12th
order f (A, Ap), the form of the 20th order H (A, A,), and the
form of the 30th 7'(A,, A,). Hence follows our assertion by

* I hope no misunderstanding will arise from the fact that the letters My, A¢',
just employed in formula (3) on the left.hand side have been used before, ot
course with quite another meaning,
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reciprocation. We might even say that, corresponding to the
identity :

®) T?=1728f> -

a single identical relation will subsist between the new forms
which is transformed into (8) as soon as we put 4=0.

I will denote the three required forms by B, C, D. In prov-
ing their existence by reverting to the ikosahedral forms f, H,
T, we have already made use of the algebraical principle of
transference which we proposed above. This we shall do in a
higher measure by now actually establishing B, C, D, if only in
a provisional form. We are here dealing with a process of
polarisation adapted to the purpose. If ¢ (A, ;) is any form
which remains unaltered for the homogeneous ikosahedral sub-
stitations of A, Ay, and if A, A, are cogredient with A\, Ay,
then all the polars:

o o+
o n, A
*¢ 32 ¢ .
e "'Zox e N W +_"92 A%, &e.,
will be invariant for the simul bstitutions of the A, A"s.

Let us now construct in particular for £, (A,, Ap), H(A\;, N),
T (M, Ay), respectively the sixth, tenth, and fifteenth polars. We
thus obtain invariant forms which are symmetrical in the A, \"s,
and therefore rep t integral fanctions of A, A, A, On
writing them down as such, we have found the required forms
B, C, D. In fact, these forms are now necessarily invariant for
the substitutions (4) or (5); they have, moreover, the degrees 6,
10, 15, in the A’s, and are transformed into multiples of (A, A,),
H(\, A), T(M, Ny), when the formule (7) are applied. I will
commanicate here at once the result of the calculation, After
separating particular numerical factors, we find in the manner
explained :
B'=16A8—120A A A, + 90AZA ?A 2 + 21A (A5 + AS5) — 5ASA S
€' = - 512A,'0 + 11520AFA A, — 40320A5A,2A,% + 33600A A 3A,
—6300A7AJA — 18T (A0 + AJ9) + 126A5AS
©) +A (A5 + AS) (22176A.¢ — 18480AA,A, + 1980A,2A,%),
D=[Aj® - Af] { - 1024A0 + 3840ASA A, — 3840ASA A,
+1200AA A, — 100AA A + A0 + A0+ 2A %A,
+ Ay (A +AY) (352A,4 — 160A A A, + 10A7A,2)).
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I have here denoted the two first forms no longer by .B and
C,but by B and €', becanse I will hereafter modify these farther
by addition of factors which contain 4 us factor. Only when
this is done shall I establish the relation which makes I? equal
to an integral fanction of 4, B, C. 1f we apply the snbstitation
(7) to the preceding forms, where for simplicity we will put
M=1, we have, in agreement with what was said before :

B= 21. 70y %),
(10) ¢ =187. H( 2y),
D= Tyt

§ 3. GEOMETRICAL INTERPRETATION—REGULATION OF THE
INVARIANT EXPRESSIONS,

In order to facilitate onr mode of expression and the growth
of our ideas in the domain of the function-theory, we now
introduce our geometrical interpretation. Retaining through-
out the analogy with the developments of the preceding chapter,
let us regard A, : A, : A, as the projective co-ordinates of a point
in the plane, the substitntions of the A's as so many collinea-
tions.4 The individual invariant form of the A’s then repre-

* The method of calculation contained in the text is described in the text-
books on the theory of invariants, at the suggestion of Gordan, as transvection of
the quadratic forms (2), and indeod (disregarding numerical factors) B’ is the 6th,
C the J0th, 2¥ the 15th, of the di power of (2) over f, I7,
and T respectively. I have not applied this mode of expression and the oorre-
sponding symbolical relation in the text, because I wished not to presuppose in
this respect any specific preliminary knowledge on the part of the reader.

f We oan of course regard every f problem in & ponding manner. If

ded diff ly in the foregoing part, and interpreted the binary form-
pmhhm by means of pomh of the (z+ty) sphere, it was because we wished to
have intuitively before our eyes not only the real, but also the complex values of
the variables in the elemenury Qnae

I anuex hereto a h interp: ion of the problem of the A’s,
Put A=z, Aj=z+1y, Ag=7 -1y, and regard z, g, z as the rectangular co-ordi-
nates of a point in space. Observing that the uxty substitutions of the A’s have
the determnmt unity, and A is now = z* + 3% + 2% we recognise that the said

now d to ions round the origin of co-ordinates. These
are the rotations for uluch a determinate ikosahedron is brought into coincidence
with iteelf. The six fund: 1 points to be i diately introduced in the text
give on this interp ion those six di which connect two opposite

summits of the ikosahedron. On the other hand, the equation D=0 (of which we
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sents, when equated to zero, a plane curve which is transformed
into itself for the said collineations. In this respect we have
first the conic .4 =0, which we will call the fundamental conic.
If we write in accordance with formulae (7) (again taking
M=1):

A= My A=A A= -2%
we have expressed the variable point of this conic by means

of & parameter ).h Hence we shall be able to denote the two
2

parameters ;—L', ;l:l, which appear in formulse (1) by means of two
2 "2

points of the fundamental conic. These are the two points in
which the two tangents from the point A to the fundamental tonic
touch the latter. In fact, the polar of the point A with respect
to 4 =0 has the equation:

2AA,) +AA +AA,) =0,

and this equation is satisfied if we substitute for the A’s the
oxpressions (1), and for the A"s the expressions (7) or the
corresponding ones in which A’ is written instead of A.

The points of the fund: tal conic are naturally so grouped
that aggregates of twelve, twenty, thirty of them are self-
conjugate, represented respectively by :

S (p A)=0, H(¥, 2)=0, T(h,2)=0;
these are at the same time the points of intersection of 4 =0
with the curves B=0, (=0, D=0. We will now connect by
o straight line those pairs amongst these points which remain
fixed for the same collineations. Then we obtain, corresponding
to the forms f, H, 7, six, ten, and fifteen straight lines respec-
tively. Constructing, then, for this line its pole with respect
to the fundamental conic, we obtain self-conjugate groups of
six, ten, and fifteen points in the plane.
Let us now consider the form of the equation :

A=A2+AA,=0.

shall presently show that it splits up into linear factors) gives the fifteen planes
of symmetry of the configuration. |

‘We can bine this new interp ion with that of the A, \'"s on & sphere,
but I do not enter apon this, since it would lead us too far.
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Clearly, the two angles of the system of co-ordinates :
A,=0, A, =0, and A,=0, A,=0,

which appertain to 4=0, are corresponding vanishing-points
for f, for both remain unaltered for the collineation S [see supr«,
formula (41)]. Therefore A,=0 is one of the six straight lines
which belong to f; A, =0, A,=0, the corresponding pole. In
agreement herewith A, assumes, for our sixty substitutions, only
the following twelve values, each pair agreeing as to sign:

@) A, £(Ag+eA + Ay

and in accordance with the same formula only the following
five points are grouped with the point A; =0, A,=0:

(12) AgiAy: A =1:9¢ 20,

I will describe the six points thus distinguished as fundamental

points of the plane. If we connect a first fundamental point
with the five others, we obtain the five straight lines:
A, — Ay =0,

Evidently the left sides of this equation are all contained s
factors in the value of D just communicated. The curve D=0
must, however, be uniformly related to all the fundamental
points. Hence the curve D=0 splits up into the fifteen connecting
lines of the siz fundamental points. The following algebraical
decomposition corresponds to it :

(13)  D=TT(A - a) - TT(1+ V5) A+ A, + A)

TT(- V5) A+ A, + eA,),
(v=0,1,2,38,4),

as we easily verify. We could establish a number of interesting
theorems about the fifteen straight lines here presenting them-
selves; they are the fifteen lines which belong to the point-pairs
of T'; they pess in threes through the ten points which we
co-ordinated * to the point-pairs of H, &c. I do not enter

* Clebsch has incidentally dealt with the figure described in the text in the
course of considerations allied, though agnin fornulated quite differently, and has
thus announced tho last.mentioned property : the siz fundamental points form a

Q
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further here on these theorems, because we do not make further
use of them; moreover, they are easily recognised as trans-
ferences of properties of the grouping of points which occur in
connection with the ikosahedron.

As regards the curves B =0, ("=0, these have no special
relation to our six fundamental points. J¢ is this circumstance
which we will now make wse of in order to replace B’ and €’ by
two other expressions. We shall introduce instead of B’ a linear
combination B of B’ and 43 in such wise that the curve B=0
containg the fundamental point A,=0, A,=0, and therefore (as
an invariant caorve) all the fandamental points. In the same
way we shall replace (" by a linear combination C of C’, 4°B,
and 45, which, equated to zero, represents a curve which has
at A;=0, A,=0, and therefore at all the fundamental points &
singular point of the highest possible kind. In this manner we
find (after casting out particular numerical factors) :

B 2B 100 A A A AL ATAS- A (A +AD),
G 512A‘ +176042B
=TT s ’
= 320ASA2A,? - 160ASAPAS + 20A2A $AS + 6A SA
—4Ag (A® + AJB) (32A4¢ — 20APA\A, + 5A A,2) + A1 + A0
Evidently B=0 has at A, =0, A;=0, and thus at all the funda-
mental points not » merely ordinary point, but a double point,
and is therefore (since we can show that it can possess no
further double point) of deficiency 4. Similarly C=0 has at
each of the fandamental points two cusps, i.e., & 4-tuple point,
and is therefore of deficiency p=0.
If we substitute in our new B, C, in accordance with for-

mula (7):

==y Aj=AR A=
we have;
(15) B=~f(Ay d), C=-H(\, 1),

which we may compare with (10). The relation which expresses

tmfold Bnamhon Iu:umm (Math, Ann Bd. iv.: “Ueber die Anwendung der
ion aof die Gleich 5 Grades und die geometrische
Theona des ebenen Funfseits,” 1871).
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I? as an integral fanction of A, B, C, will therefore have the
following terms not involving 4 :

D= -~ 172885+ C3.

Returning to the explicit values (9), (14), and taking account
of a sufficient number of terms, we find the complete formula: *

(16) D?*= —1728B5 + 0% + 720ACB"® - 8042C?B + 64 43 (582 - AC)

§ 4. Tae PROBLEM OF THE A’s AND ITS REDUCTION.

The problem of the A’s, as we proposed it, is fully determined
by the explicit formule (6), (9), (14), now obtained for 4, B,
C, D, and the relation (16). We suppose the numerical valnes
of 4, B, C, D, given in some manner in agreement with 16;
our problem requires us to determine the corresponding systems
of values of Ay, A, A, Since 4, B, C, D, form the full system
of the invariant forms, our problem can only possess such solu-
tions as proceed from some one thereof by the 60 substitutions
(5). In fact, if we determine the number of solutions by
Bezout’s theorem, we shall be led to the number 60. Namely,
from the values of 4, B, C, arise at the outset 2.6:10=120
systems of values of the A's, of which, however, since 4, B, C,
are all even fanctions of the A’s, certain pairs can only differ by
& simultaneous change of sign of the A’s. Of these 120 systems
of values, only half can therefore satisfy the given value of D,
since D is of uneven order. All 60 systems of solution, as has
already been said, proceed from some one thereof by the sub-
stitutions (5). We can therefore say, in the sense explained
previously (L 4), that our problem is its own Galois resolvent
after the adjunction of ¢, and therefore possesses a group which
is holohedrically isomorphous with the group of the 60 ikosa-
hedral rotations.

‘We consider now, in reli on L 5, § 4, the parallel system
of equations. The ratios of A,: A, : A, are evidently determined
in sixty ways if in the equations:

‘?5,= Y, ;:'::
* Cf. Brioschi in tom. i, of the Annali di Matematica (ser. 2, 1867), p. 223,

an z
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we can regard the values of ¥ and Z as known ;¥ the required
points A are the complete intersection of the curves of the sixth
and tenth order respectively :

B-Y -A*=0. C-Z.45=0.

From the 60 solutions of the equation system we now com-
pute those of the corresponding form-problem rationally. Pat,
namely :

(18) D-x

Then if Ay: A, : Ay=a,: a, : a, is one of the systems of solution
of the equation problem, we have evidently :

(19) Ay=pay Ay=pa;, A,=pay

understanding by p the following expression :

("‘ov a, 9) . X,
D (o0 @y @)
whereupon the statement is proved.

In this respect an essential difference exists between the
binary form-problems previously studied and the present ternary
ones ; for then we required, as we showed in I. 3, § 2, one addi-
tional square root in the supplementary solution of the form-
problem. This, of course, corresponds to the circumstance that
the group of the homogeneous binary substitutions was only
hemihedrically isomorphous with the non-homogeneous ones,
while now holohedric isomorphism occurs. On the other hand,
the two agree in another point. We could in the former case
reduce the form-problem, as we called it, i.e., replace the three
magnitudes F,, Fy, F, ( cted by an equation of condition)
on which the form-problem depended, by two independent
variables, X and Y, which were themselves rational functions
of F,, F, Fy; whilst conversely the latter again depended
rationally on them. We obtain just the same result in the
problem of the A’s if we take into ideration the quotient
X, Y, Z, which we just introduced in (17), (18). These magni-
tudes X, Y, Z, are in themselves defined as rational functions

* These magnitudes, Y, Z, are the samé that we have denoted by a, 3, in II. 1,
§ 7 [forwula (36)].
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of 4, B, C, D, but we can conversely also express 4, B, C, D,
rationally by means of X, ¥, Z. In fact, if we divide in (16)
both terms by 44, we have, after an easy rearrangement, in
virtue of (17), (18):

X
@0) A= R TRV Z ST T CT G T =AY
while
@y B-Y.45 C=2.45 D=X.4',

which are the desired formule.

It is instructive to bring forward also for comparison here
the problem of the y,’s, which we studied in the preceding
chapter as the principal equation of the fifth degree. We then
supposed that, in addition to the coefficients a, B, v, of the equa~
tion, the square root V of the discriminant was given, the
square of which is an integral function of a, 8,y. We then
obtained 60 systems of solution ¥, %, ¥s %3, ¥4 Which were
again fally determined (rationally) in terms of the correspond-
ing values of the ratios 4, : 9, : 9, 93: 9, This depends on the
fact that we can construct as before from the given magnitudes

quotients, c._r).,g or %, which are of the first dimension in the

y’s. We can also reduce the form problem of the y’s, only this
is not o simply attained as in the other cases. The reduction
s actuclly given by the m, n, Z, of the principal resolvent of the
ikosahedron. We have represented, viz., in L 4, § 12, § 14,
a, B, v, V, rationally in terms of m, n, Z, while conversely we
have just now (in IL 3) given exhaustive methods in virtae of
which m, n, Z, appear as rational functions of a, 8, v, V.
If 4=0 for the form-problem of A’s, we can solve it directly

by means of the ikosahedral equation:

A0 %) O

T72875 (A, &) 17285%
namely, if we havo determined A, :, from it, we find by
formula (7):

Agi A Ay= =~ My AT

and hence, as we saw above [formula (19)], the values of

A, A, A, themselves,
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§5. ON THE SrMPLEST RESOLVENTS OF THE PROBLEM
or THE A’s.

We will now consider the simplest resolvents of the problem
of the A’s. It is evident, from what we know of the group of
the problem, that we shall have to deal here with resolvents of
the fifth and sixth degrees. Our problem will be merely to
establish the simplest rational and integral functions respec-
tively of the A’s, which assume, for the substitutions known to
us, five and six values respectively. The principle of transfer-
ence developed in § 2 here ayain serves our purpose: we take the
simplest mtcgml JSunetions of Ny, Ny, whick asswme for the homo-

! substitutions five or siz values, polarise these
wmth respect to Ny, Ny, till a function arises which is symmetrical
in the N, N8, and finally substitute the A's in place of the original
N NS,

As regards the five-valued fanctions of the Ay, \,'s, the simplest
were :

(A Ag) = E¥A0 + 2NN, — BerA g2
(22) = Bebvn I — QWA 05 4 DA S,
WAy 2g) = — 8 + A TAy — TeWA A2 — 7«0)\,")\,3
+ TN IS — TSNS — AT — A8
to them are added, further, ¢,? and ¢,W,. Now, polarising 2.
thrice, 77, four times, and introducing the A’s, we obtain
accordingly as the simplest five-valued function of the A’s:

@9 [FToUAAARDY (- IAASAD
? +@QAAL-AY +oe (= IAZA + ACS),

= (~4AA, 4 SAAAS - A)
+er(~CAIALLAAL + AAS)
+e7 (- 6AZAZ + AASD + APA)
+elr (—4APA + 3AAA, - AY)
if we want more five-valued functions, we shall take in addition
8,2 and §,8’, corresponding to 4, and £, W,. The resolvent of
the 8,’s we shall presently discuss more in detail.
Of the resolvents of the sixth degree of the ikosahedral equa-
tion, we have previously (L. 5, § 15) only considered the one
whose roots ¢ are given by the formule :




THE YACOBIAN EQUATION. 247

(24) { b =01
by = (€72 + 20 A, — VA 2)3,
‘We obtain from this by our principle of transference the follow-
ing roots of & resolvent of the sixth degree of the A's:
z_=5A2,
@9 { % = (:7\, + Ag 4 A2,

Here, h , we have tly the equations of definition of the
Jacobian equations of the sizth degree given in I1.1,§ 3 ; at most
we should have to mark the distinction that here ¢” stands where
& stood before and conversely. But this is merely a difference
in the denomination of the roots z. If we recur to the formule
which we also commaunicated, loc. ¢it., § 5, in describing the
Jacobian equations, we learn first that our present magnitudes
4, B, 0, are exactly identical with those similarly denoted
there. We can therefore, without more ado, carry over the form
of the Jacobi tion previously icated :

q

(26) (2- A)°— 44(z ~ A + 10Ba— AP - Cz - 4) + (5B~ 4C) = 0;

the only question is on what basis we shall place it from our
present standpoint. The farther question arises how far we
can replace the problem of the A’s by the equation (26), and, in
particular, what signifi is then to be attributed to our

]

form D.

§ 6. THE GENERAL JACOBIAN EQUATION OF THE SixTH DEGREE.

We have already in formula (11) come across the linear
fanctions of the A's whose squares represent the roots z (25) of
the Jacobian equation of the sixth degree; we there saw that
these, when equated to zero, represent the polars of the six
fundamental points with respect to the conic 4 =0, and there-
fore certain straight lines which do not themselves perhaps pass
through the fundamental points. We can, however, introduce
in their place curves which do so; namely, we recognise at
once that the conics :

2-4=0(=0,1,23,4)
all pass through A, =0, A,=0, and that thercfore of the conics :
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2,-4=0, 2-4=0,

each contains those five fundamental points whose indices are
different from its own. We will now consider the (z—4)’s as
the actual unknowns. Then the theorem just given permits us
to write down at once (paying regard to the definition of B, C,
contained in § 3) the coefficients of the corresponding equation,
so far as their form is concerned. Let us consider, for example,
the sum :
2 (s 4) (- 4) (- 4)

(where the summation extends over all the values of 4, %, /,
which differ from one another), which will give the third co-
efficient of that equation : it must be equal to an invariant form
of the sixth degree which vanishes twice for all the fundamental
points, and can there only differ from B by a numerical factor.
In this way we obtain directly :

(2~ AP +kAEz- AP +IBz—- AP +mC(z- 4) + (nB2+ pAC) =0,

where k, I, m, n, p, are numerical coefficients which are as yet
unknown, bat which we determine resdily hereafter by returning
to the explicit values of the expressions in the A's which pre-
sent th Ives. The coincid with formula (26) is obvious.
Let us further remark that (26) is in fact transformed into the
resolvent of the sixth degree (which we previously established)
of the ikosahedral equation, if we put in agreement with (24)
and (15):

A=0, B=-f, C=-H z=¢.

As regards the group of the equation (26) [in the Galois sense],
this is determined already by our earlier elucidation of the case
A4=0,to which we here refer (I. 4, § 15). It is a group of
60 permutations which is holohedrically isomorphous with the
group of substitutions of the A’s. It must therefore be possible
to express the A’s rationally by means of our zs. We effect
this most simply if we first compute from the equations (25) the
squares of the A’s and the products in twos, and hence derive
the quotients Aj: A, : A, and then proceed exactly as in § 4.
Here we must manifestly make use of the D in addition to
4, I, €, which alone appear in the coefficients of (26). We
can therefore say :
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The Jacobian equation (26) is an equivalent of the problem of
the A’s, if we suppose that, besides its cogfficients, D is also given,
ie., (by (16)): the square-root of a definite integral function of

‘We now ask how D? may be expressed as a rational fanction
of the roots . To this end we form from (25) the difference of
any two 2's as & fanction of the A’s, and find that this, being a
difference of two squares, can, after separation of a constant
factor, be also split up into linear factors, such as, by formula
(13), also appear in D. We get, for example:

2= 2y = (@ — &) (A, ~ A (L2 VB) A+ @A, + A,

for »=1, 2, 3, 4, where + /5 is to be taken for v=2, 3; — /5
for v=1, 4. If we now multiply all these differences together
(each taken once), we obtain on the left~hand side the square
root of the discriminant of (26), which we have already (II. 1,
§ 6) denoted by II. On the right hand, however, the constant
factors give * /55, the rest just J?, so that therefore:

E 4
@n Di=p/gy or D= \/g

Here D appears, as we see, in the form of an accessory irra-
tionality, Z.c., as an irrational function of the z's. This will
not be the case if, with Herr Kronecker, we regard not the z's,
but the «/7's as the unknowns of (26) ; for we can immediately
express Ay, A, A, linearly in terms of the ~/Zs. DBut even
then the statement of the problem is not fixed by (26) alone,
but the value of D must be given expressly besides. I belicve,
therefore, that it is not to the purpose to make the Jacobian
equations of the sixth degree the keystone of the theory, but
that it is better to begin, as we have done, with the problem of
the A’s as sach.

§ 7. BRIOSCHI'S RESOLVENT.

We follow yet farther the tion of our iderations
with the developments of Brioschi and Kronecker by now
studying, first of all, that simplest resolvent of the fifth degree
whose roots are the expressions §, (23). This mast give
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exactly Brioschi’s resolvent, of which we gave an account in
II.1,§ 5. For the §,’s are completely identical, as an actual
comparison teaches ue, with what was then denoted [formula
(22] by =,

In order to compute our equation of the fifth degree, we first
inquire again about the geometrical significance of the §,’s.
We remark at the outset that all the 8,'s vanish for A,=0,
A,=0. They therefore represent, when equated to zero, curves
of the third order which pass through all the fundamental
points. But more than this: the product of the §,’s must be,
as an invariant form of the fifteenth degree in the A’s, identical
with D save as to a factor, while D=0 represents, as we know,
the fifteen connecting lines of the six fandamental points.
Hence each of the 8.'s, when equated to zero, represents three
straight lines, which taken together contain the whole set of fun~
damental points. We verify accordingly the following decom-
position :

(28) 3,=("A,—eA) . (1+ V5)A) + A, + A,)
(1= VB) Ay + A+ eA,).

We conclude therefrom that the product 8,8,8,8,8, is actually
identical with D (uot merely to a factor prés). As regards the
other symmetric functions of the &'s, we have in any case:

33=0, 2®=0,
for there are no invariant forms of the third or ninth degree.
‘We further conclude from the relation of & to the fundamental
points that :

SB=kB, Z#=1[2+mdC,

understanding by %, I, m, appropriate numerical factors. On
determining the latter we have finally :

(29) #+10B.8+5(98 - AC)$- D=0,

agreeing with Brioschi,* and agreeing further with the special
formula which we derived in I. 4, § 11, on the supposition that
A=0. The discriminant of (29) is of course a complete square.

* In Brioschi’s memoir hat diff 1 coeffi ‘wers origi-
nally given, but these were afterwards rectified by Herr Joubert : *Sur 'équa-
tion du sixidme degré,” Comptes Rendus, t. 84 (1867, 1); see in particalar pp.
1237-1240.
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There is no difficulty in computing the product ]__T 8,—8,) as
vy

an integral function of 4, B, . For A=0 it will become
—2545.0% by 1. 4,§14.
The equation (29) is ily the more i ing b

it represents, in the sense of our previous terminology, the general
diagonal equation of the fifth degree. To express it geometri-
cally, we can say that the formualee (23) for §,, inasmuch as they
satisfy identically the relation 38=0, 38=0, give a single-
valued representation of the diagonal surface on the planc A. This
representation is a special cage of that well-known one which
was given * by Clebsch and Cremona for general surfaces of the
third order, and which Clebsch has studied for the diagonal
surface just in the form here in question.} For to the plane
sections of the diagonal sarface correspond in general, in virtue
of (23), such curves of the third order as intersect one another
in the six fundamental points of the plane which now become
the fundamental points of the representation. Here the inter-
section of the diagonal surface with the principal surface is
represented by B=0 (as follows from (29)), while the carves
A =0, =0, taken together represent those two twisted curves
of the sixth order on the diagonal surface which are the
geometrical locus of points with the pentahedral co-ordinates ¢,
(II. 3,§ 4). This is in accordance with the fact that we have,
in § 3 of the present chapter, found the deficiency p of the
carves B=0, 4=0, (=0, equal to 4, 0, 0.

§ 8. PRELIMINARY REMARKS ON THE RATIONAL TRANSFORMATION
OF OUR PROBLEM.

Of the researches mentioned above relating to Jacobian equa~
tions of the sixth degree, those still remain which relate to the
problem: from a first Jacobian equation of the sixth degree to
establish a d by a transformation rational in the ~/z’s and
as general as possible. I will expound these researches from

* Cf. Salmon-Fiedler, “Anslytische Geometrie des Raumes,” 8d edition,
1879-80.

+ Viz., in the memoir just cited : “ Ueber die Anwendung der quadratischen
Substi auf die Glei gen 5. Grades,” Math. Aunalen, Bd. iv. (1871).
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our own standpoint, without entering further into the historical
relations thereof. Our object is fo determine three magnitudes,
By, By, By, in as general a * as possidle, as rational homo-
geneous functions of the Ay, A, Ay, in such wise that they them-
selves undergo the linear substitutions of § 2 when we subject
Ay Ay A, to the same.*

Our requirement, be it understood, by no means requires that
the individual sabstitution of the B’s should be identical with
that of the A’s; it is only necessary that the totality of the sub-

tituti should be mntaally ident. We know, so far, two
possibilities of attaining such coincidence: first, by making the
substitutions of the B’s actually identical with those of the A’s;
secondly, by allowing them to proceed from the substitations of
the A’s on writing €? in place of e throughout; in the first case
we speak of cogredient, in the second case of contrugredient
variables. In the next paragraph bnt one I shall show how we
can thus arrive at a separation of the two cases a priori, and
that, besides them, no others possessing individual importance
can exist. Meanwhile let us take our cases as given empiri-
cally, and ask how they are to be substantiated by definit:
formnle,

It will be to the purpose to first deal with the corresponding
statement of the problem in the domain of binary variables,
where we came repeatedly into contact with them in onr earlier

chapters, Let «,, x,, be homogeneous rational, not ily
integral, functions of A, Ay:
(30) K= (M Ag)y k= (P )y

we require so to determine ¢,, ¢,, that x;, «,, are either cogredi-
ently or contragrediently transformed when A, A, are subjected
to the homogeneous ikosahedral substitations. To this end we
construct the form, binary in two sets of variables:

(31) Fhy Ny gy ) =gy + by (A 2o) = i+ by (g A

This evidently remains invariant if we subject A;, Ay, to the ori-

ginal ikosahedral substitations, u,, u,, to the co-ordinated ones
* Our dewand for komogeneous functions straight off is, one may say, an un-

necessary restriction, and one which wo can afterwards reruove, but which we

will retain in our expomtion in order to be able to employ our gevinotrical phirase-
ology.
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(cogredient or contragredient); for it is equal to s i, — pon, ;
and pu,, py, and «,, x,, undergo in each case identical substita-
tions of determinant unity. Conversely, if we bave a form in
the A, u's invariant in this sense, and which is linear in the u's
and homogeneons in A, A, then :

»F »F
(32) == a;‘,' Kp= 5";
will be a solutiou of the problem proposed. It simply comes to
this, therefore : to establish all invariant forms ¥.

Now let us observe the following facts. If we have found
two systems of solntion of (30) &y, &, ; &, »,, the determinant
KK,/ — Ko’ Temains invariaut for all the ikosahedral substita-
tions. But this is equal to the fanctional determinant of the
corresponding forms F, F’:

SF oF
oy opy
| F '
I oy L

and this, therefore, as a rational function of A,, A, must be a
rational fanction of the ikosahedral forms f(Ay, Ay, I (A}, A,),
T' (A, Ap). Iwill now assume that we know some two of the
required forms F,, F,, with a non-evanescent functional deter-
minant. Then, if we apply the identity:

F F, F,

F ¥R

o by oy (=0,

oF 2 OF,

oy dpy by
it follows, from the theorem just established, that each of the
forms we seek is compounded of ), F,, in the following form:

(33) F=R,-F,+ R, F,,

where R,, R, are rational fanctions of f(A, Ap), H(A, Ny,
T (M 2. But, conversely, if we assume L, E,, to be rational
functions of this kind, and then only take account of the rale
that F'is to be homogeneous in A, A, F will be a form of the
kind required. Ilence (33) contains in general the solution of



254 THE PROBLEM OF THE A's AND

our problem, provided only we regard two of our forms F,, F,, as
fnown. But this supposition is, in fact, admissible both in the
contragredient and the cogredient case. Indeed, we know in
both cases the lowest forms F,, ¥, .., those whose degree in
A A, is a8 low as possible. In the contragredient case these
are the two forms N}, M, which we always employed in the
preceding chapter :
=M=y (7"15"22 +257) + iy (- 7‘17 +TNI),
Fy= M =p, (N1 - 390825 — 263,92,19)

+ iy (26219250 — 392,528 - 2,19),
while in the cogredient case we have the two following:

(39)

Fy =2y = Mgy
of of
Fz“b)‘; ‘F1+M2'}‘2-

(36)

Thaus the question we raised is completely solved, so far as the
domain of binary forms is concerned *

§ 9. ACCOMPLISHMENT OF THE RATIONAL TRANSFORMATION.

Returning now to the A’s, we can begin in their case with a
step which is analogous to the transition from (30) to (31); in
other words, instead of seeking elements B, B,, B,, which are
covariant to Ay, A, A,, in the one sense or the other, we seek
an tnvariant which contains simultaneously both sets of vari-
ables. The feasibility of this is, geometrically speaking, founded
on the fact that an invariable conic:

B2+ B,B,=0
lies in the plane B, and that, in respect to this conic, to every
point By, B, B,, there is co-ordinated as a covariant & certain
straight line, to wit, the corresponding polar :
2B,. Ay + By. A/ +B, . A/ = 0.+
If, therefore, the following formule:
(36) Bo=g (A, Ay Ag) By= ¢, (A Ay Ay, By=g, (A, Ay A))

* As regards the contragredient case, we have already become acquainted, in
formula (25) of 11. 8, § 4, with a particular case which Is included in tbis solution.
t Here Ay, AY, A4, denote the current co-ordinates,
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co-ordinate the B's to the A's either as cogredients or as contra-
gredients, the form derived from them :
BT F(AsAuAyi A, AL A) =240 Af + ;. A) + by A,
will be invariant, provided we effect the same substitutions on the
A% as on the B's. Conversely, provided F is an invariant in the
sense explained :
1 »F OF 3F

(38) Bn=§ " 6AS Bl=b—Aei Bz'm
are formule of the nature which we are seeking.

‘We now remark that every F admits of being composed with
three such Fs, which are linearly independent, in the form :

(39) P=I\F, + RyF, + ByF,

where R,, Ry, R;, are rational functions of the invariant forms,
which depend only on A,, A,, A, t.c., rational fanctions of 4, B,
O, D. Conversely, if we teke R, B, R, as rational functions
of this kind, we shall always obtain from (39) a form ¥ of the
nature we desire, where we have it in our power, if we attach
importance thereto, to make F a homogeneous fanction of A,
A, A, Everything is therefore reduced to finding, in two cases,
three forms Fy, Fy, Fy, of as low degree in the A’s as possible.

In the case of cogredients we solve this problem directly by
the construction of polars, a process to which we sabject the
lowest invariant forms, which ouly contain A’s, s.e., 4, B, C.
We shall put, namely :

Fi=2A. Af +A;. A) +A LAY,
*B ,. B , OB ,
(40) F’=§A;'A°+5_A_I'A‘+ﬂ\;'A”
3C , . C . 00 ,
Fﬂ=m.Ao +SA_1' A +b_A_,' A,
In the case of contragredients, on the other hand, we again
recur to the principle of transference of § 2. We shall first
obtain three forms :
(N, Ay g, p)

invariant for contragredient ikosahedral substitutions, which are
of even degree 2n, of the second degree in the s, and of the
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lowest possible degree in the N’s. Then we shall polarise these
£'s n-times with respect to A, introducing A’ by the operation,
and once with respect to u, introducing sx’, and shall finally
replace the symmetric functions of the A, A”s by the A’s, those
of the u, u”s by the A’s, writing therefore :

1 R ’ g
A= -5 (0 +MN), Ai=agdy, Ag= -y
41) 1
Ay = =g () ot A=, A= -

The forms {2 which are here most snited to our purpose we
can borrow from the data of Herr Gordan previously cited. As
the £2,, we choose the form 7, which we have communicated in
§ 11 of the preceding chapter (formula (60)) :

(42) O =p2 (=25 = 3AAE) + 10y - AEAS + pi? (A 0A; — A,).
In order, then, to obtain £2,, we construct the fanctional deter-

minant of the ground-form a noted in that chapter, and the N,
similarly employed just now :

) b
dpy dty
o, N,
4y g

‘We thus obtain :

(43)  By=p® (= TOASE + 200307) — Zpuppa (— 10+ 14A A5 + A10)
+ud (= 2003 — 10A,5,8).

Finally, we bring forward as the 42, the square of X, :

(44) g =[m (= TAN = A) + i (W7 - TR

Now, applying our process of transformation first to £2,, there

arises—disregarding a numerical factor—the following as the
simplest form F}, of the third degree in Ay, A}, A,:

(45) F,=2A %A ~ SAAA) - A{BAAL + AS) - A{(BAAT + AS).
‘We now treat £2, (43) in a similar manner, but sabtract from

* Of course we could also proceed in just the same way in the case of co-
gredients ; we should not, however, obtain any resuits different from those now
communicated, and should only have to repeat once more the process of polarisa-
tion which led us above to 4, B, C, D.
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the resalt, for the sake of simplification, an appropriate multiple
of A- F,, Thus we have:

(46)  Fy=2AJ(-8ASA A + BAAAT - AP - Af)

+A (16AFA - BAZA S — A AAS + IAIA)

+ Ay (16ASA? - BAPAS — 4AAPA, + 2A A1),
We finally deal with £2, (44), and obtain, after subtracting
proper multiples of 42- F, and 4 - F,:

(A7) Fy=2A¢ B2APALAS - 4AZ (AP + AS) - 16AAAS
+3AA; (A +ASF))
+ A (—32A5A2 + 48AA 2 - 32A3A AP ~ 4A A A,
+ LAAAS - SAIAA)
+ A (- B3APAR + ABASAS — 32ASA A, ~ 4AJA A
+ HAAFAZ - 3A2A5 - AT),
On introducing the F,, F,, F,, thus obtained in (39), and through
this in (38), our task is completely accomplished in the contra-
gredient case also.

§ 10. Group-THEORY SIGNIFICANCE OF COGREDIENCE AND
CONTRAGREDIENCE.

‘We now return to the group-theory question, to which we
were led at the beginning of §8. The linear substitations of
the B’s are, at all events, holohedrically isomorphous with those
of the A’s; we have finally to deal with the problem of investi-
gating in how many different ways the group of 60 ikosahedral
sabstitations :

“9) Vo Vo Va

can be co-ordinated to itself in holohedric isomorphism. Two
sorts of this co-ordination are given by cogredience and contra~
gredience ; we will show that all others are essentially reduced
to these.

I must state at the outset what rearrangements of (48) will be
regarded as atial, They are those rearrangements which
arise from ¢ransformation in the sense previously explained (L 1,
§ 2), which, therefore, replace any ¥, by (¥7”’)"'7, V", where by
V"’ is to be understood any operation of (48). In the applica-
tions, namely, which we have to make, we can always regard
sach & rearrangement as a mere change of the system of

R
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co-ordinates. If we replace the variable z which is subjected
to the ikosahedral substitutions (48) by 2'=V"(z), (V) 'V, V'
will appear throughout in place of V;; and similarly if we
regard the 7’s as the ternary substitations of A, A,, A,.

'With the intention of again applying the “ principle of trans-
formation” just formulated, we now recur to the generation of
the ikosahedral group from two operations S and T, of which
the first has the period 5, the second the period 2 (I. 1, § 12).
‘We shall have determined the co-ordination which we seek as
soon as we declare what operations 5, 7", are to correspond to
S, T. Here S’ will in any case have to possess the period 5.
But, by I. 1, § 8, there are in the ikosahedral group 24 opera-
tions altogether of period 5, of which 12 are associated with S,
the other 12 with S% If; therefore, in the co-ordination which
we are seeking we call to our aid a modification of these by an
appropriate transformation of the group, we can in every case
put 8 equal either to S or S% If this is done, S’ remains
unaltered when we replace 7, in general by S-*7,8* (v=0, 1,
2,3, 4). Consider now the fifteen operations of period 2 which
are contamed in (48). If we choose » properly in the trans-

tion just ti , we can always reduce an individual
opemmon of period 2 to one of the three following :
T, TU, U,

where U is defined as in I. 1, § 8 (compare L 2, § 6). If, there~
Sfore, we have disposed S’ in the manner just mentioned, it is suffi-
cient to make T" equal to one of the three operations T, TU, U.
Compare now the rales of periodicity in I. 2,§ 6. In accord-
ance with them, ST has the period 3, therefore S’T” must also
have the period 3. But now we find in the same place for ST,
STU, 8U, ST, S*TU, S?U respectively, the periods 3, 5, 2, 5,
8,2 proclmmed Hence S8’T" can only be either ST or S’TU
There remain, therefore, but two possibilities: in the one case
we put $’=8, 7'=1T, in the other §'=8% I"=TU. If we
write down the corresponding ikosahedral substitutions, we
recognise that S% and I’U emanate from S and 7' when we
change e into €2, Thus we are, in fact, brought back to just the
two cases, cogredience and contragredience, a8 was to be proved.
‘We can evidently repeat for every group the question which
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is thus answered for the case of the ikosahedron. If, then, a
form-problem is proposed which belongs to a group already
investigated, we can demand algebraical developments corre-
sponding to those given in §§ 8, 9. I will not enter here on a
general exposition of this, which would lead us beyond our sub-
ject (see, however, I. 5, § 5). I will only remark that the case
of cogredience (which, of conrse, always exists) can always be
solved by the constraction of polars, when among the invariants
of the form-problem there is one of the second degree. This
occurs especially in those form-problems of which the variables
%o & . o . &,_, 6re simply permuted, and which are therefore
represented by equations of the n** degree with unconditioned
coefficients. If for these we employ the invariant 322 in just
the same way as we applied the conic B+ BB, just now
(§ 9), we are in a position to make the differential coefficients
o . a:—?—l covarient to %y, , .. .,.,, Where by ¢ is to be
understood any form which is invariant with respect to the per-
mautations of the group. We are evidently led back, as a
consequence of this method, to exactly the transformation of
Tschirnhaus when we take into consideration, in particular, as
the functions ¢ the sums of powers of the «’s. The old process
of Tschirnhaus is therefore, together with formulzw (38), embraced
by & general method relating to form-probl of a certain
class. Compare with this what was said in II. 2, § 7, on the
co-ordination of points and planes.*

§ 11. INTRODUCTORY TO THE SOLUTION OF OUR PROBLEM.

We will maintain for a t the analogy with the
Tschirnhausian transformation, and accordingly consider the
coefficients B, R,, R,, in (39) as undetermined magnitudes.
If we then pate for the corresponding B, B, B,, the expres-

sion B2+ B, B,, we obtain a quadratic form of these magnitudes

* We can generalise somewhat the remark in the text. In order that the con-
struction of polars may aid in the attainment of our object, it is not necessary
that an juvariant form quadratic in the z's should exist; the presence of an
invariant form bilinear in the x, ’'s is sufficient. In this sense the formulm (35)
come under this head, for in their case such & bilinear invariant is forthcoming
in the determinant (A - M),
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which we can reduce to zero by many different assumptions of
Ry, B, R, We can then, however, as we know, determine
By, B;, B, directly by means of an ikosahedral equation. This
being done, we again apply the formule (39) or (38), except
that we interchange the letters A and B, and therefore express
A, A, A,, in terms of By, B, B,. The coefficients &;, R,, Ry,
are then necessarily rational functions of the original 4, B, C, D,
and those irrationalities which we may have introduced in
making B 2+ B,B,=0; the original problem of the A's is there-
fore solved through the intervention of these irrationalities and
the ikosahedral equation appropriate to the B's.*

I have only explained the general process in order to allow
the applicability of formula (39) to come to light. The course
which we will now pursue in order to solve the problem of
the A’s, 1.c.,, to reduce it to an ikosahedral equation, is a much
simpler one. We had:

(49) 2Ag= - (AN + 20 ) Ap =, Ag= - g

e will now attempt the solution by supposing the ikosahedral
equation constructed on whick depends the :T: or ;,‘ respectively,

2

which here occurs. Geometrically speaking, this means that we
seek to determine the point A by means of one of the two points
on A=0 in which a tangent from A to the conic 4 meets
it, while the general method just sketched—though here we
suppose the functions in question as homogeneous fanctions of
A,, A,, A,—co-ordinates to the point A any one covariant point
lying on 4 =0, and then considers its co-ordinates B, B,, B,,
determined not merely relatively, but absolutely.

The analogy of our stat: t of the question with that which
we have dealt with in the preceding chapter, according to Herr
Gordan’s plan, is obvious. In both cases we are concerned,
as we know, with a form-problem of which the variables are
bilinear forms of two series of binary variables which are simul-
taneously subjected to the ikosahedral substitutions; in both
we seek the solution by retarning to the ikosahedral equation
on which the variables of the one series (in so far as their ratios

* We bave already mooted the same point (when speaking of the Jacobian
equations of the sixth degree) in IL. 1, § 6.



THE §ACOBIAN EQUATION. 261

are concerned) depend. We shall accordingly be able to follow
precisely the course of ideas which was developed in §§ 6-11 of
the preceding chapter ; the individual steps are so simple that
it appears superflaous to build up in detail the several results.

We began with enumerating these howogeneous integral
functions of A, Ay, and A}, A, Which remain unaltered for the
simultaneous (here cogredient) ikosahedral substitations of
these magnitudes (invariant forms). We have placed side by
side in formula (35) the two simplest forms linear in the A”’s;
they were the following two:

M - A = WA,
(50) Fy ,oof .,

167{'7"1 +b—iz.)\5=P,

(where the computed value of the first form is declared, and the
letter P is henceforth introduced for the sake of brevity). To
these belong further, as we remarked in § 2, all other forms
which arise from f (A, Ay), H (A;, Ay), T (A, A,) by polarisation
with respect to Ay, A,.* Our A, B, C, D, the “ known ” mag-
nitades of the form-problems, are those combinations of the
forms here mentioned which are symmetrical in the A, A”’s.

‘We consider now generally the interchange of the A, As,
1.¢., the replacement of A, A, by A/, A, and conversely. If an
invariant form remains unaltered for the interchange of A, X\,
it is an integral function of 4, B, C, D; if, on the other hand,
it changes its sign on permutation, it is the product of ~A (50)
and such an integral function. If an invariant is only of the
same degree in the A, \'’s, it can always be put into the follow-
ing form:

(31) F(ry, 295 4, &)=G (4, B,C, D)+ J4.II (4, B, C, 1)),
where the integral functions G, H, are defined by means of the
following equations :

26 =F (0, 25 M, &) +F O, 25 2 2),
(52) {2JZHF Y S

SH=F (A 295 2, ) = F (A5 45 Ay, 2g)—
The general course of our method of solution will now be ns
follows. We have first to construct the ikosahedral equation :

* X do not further press the point that with the forme thus cnumerated the
eutire system of the invaniants here coming under comsideration is exlisusted.
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- HE (O, %)

63 o) =5

on which A, : A, depends, and then to express the invariant
P (50) in terms of A, A, /4, and the known magnitudes.
Both steps are accomplished by appropriate applications of
formulee (51), (52). We then consider the formule (50) as
linear equations for the determination of A, A,’: the final
formula for Ay, A, A, which we sought are given on intro-
ducing in (49) the values which are found. Here A, A, A,
necessarily appear as particular linear combinations of the linear
invariants ~/4 and P.

§ 12. CoRRESPONDING FORMULE.

The formulee which are required in virtue of the general
method just given are now to be developed so far as appears
desirable for giving preciseness to the course of onr ideas. I
will here again (as in the preceding chapter) denote the forms
originally given us by the index 1, the others which arise from
them by interchange of the variables A, A’, by the index 2.
Higher indices may proclaim the degrec of iutegral functions
of the arguments adopted in euch case, on the understanding
that these arguments are considered as functions of Ay, A;, A,

‘We begin with the computation of Z (53), or, as we now say,
of Z, We have evidently, in order:

J/ CHPfS
1725 73 17"8/,5.;‘2
_HARS 4 I3 f9) + (HPLS = A1)

—Y T
_Gp(4,B,0)+ J4.D.G,(4,B, o)
3456 [Gy3 (4, B, O)P

Besides (51) and (52), I have here made use of the fact that,
amoug the given magnitudes 4, B, C, D, only D is of uneven
degree in the A’s) and also that D*® is an integral function of
4, B, C. The integral functions Gy, G,,, Gy, of 4, B, C, remain
to be estimated by recurring to the explicit values of the magni-
tudes in A, A, A,, which come under consideration. The com-

(69 z,=
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putation in question is, of course, somewhat formidable; I omit
it, because it furnishes nothing of special int

‘We now turn to the compatation of P, or rather of P, The
form P, is of the first dimension in the A”s, of the eleventh in
the M’s; if we wish to employ a process like the one applied to
Z,, we shall have to first affect P, with such factors dependent
only on A, A,, that the aggregate which arises is uniformly of
the first dimension in the A, A”s. We pat accordingly :

(5) o=t
and then have, in order:
P H P HT,
(56) n=p ==
_(PE T, Paﬂxbi’nﬂl&: PH,Ty
217,
_D-Gy(4, B, O)+ NA-Gy(4, B, C)
9T, (4, B, C)

where the integral fanctions @4, Gy, I's, remain to be evaluated.
On substituting, we have
o) p=Ti.DGu(4B O+ JA-Gy(4, B, C),
e H T2y, (4, B, 0)
We now seek, as we suggested, to obtain the Ay, A/ from /4
and P,. The formule which arise run simply :

% N
, 3.
5 11”““'12%*”"12},’
(58) o,
, o,

Comparing it with (49) we have finally:
2A,= — JA-2P,. 9%,

1%,
°f1
(59) A=+ 4 12f Sy Tof?
Ay= = VA 2Py 1"1/.

where we suppose for P, the value (37) introduced.
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We can in many respects modify the method of solution thus
given if we like to take up once more the course of development
adopted in the preceding chapt Substitute, for ple, in
(59), instead of P, the mngmtude py (65), so that the A's depend
only on ~4, p, 8nd A 12, then pute the corresp
problem of the A’s regardmg these three magnitudes as arbi-
trarily given, and compare it with the proposed problem. We
thus obtain for p, and Z, (53) determining equations which can
be applied to the actual computation of them. We can also,
as we did in the preceding chapter, interpret geometrically each
step of the method of SOlllthﬂ Leaving all these things to the
reader, I emphasise, in , the app of VA. In
the sense of our previous mode of expresston this is an accessory
irrationality, i.e., one which is not rational in the magnitudes
Ay, A, A, which are to be computed.* We shall soon see that
an irrationality of this kind is, in fact, indispensable if we waut
to reduce the problem of the A’s to an ikosahedral equation.

* In an analogous sense, the notion of the accessory irrationality is transferred
generally to fona problems.
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CHAPTER V.

THE GENERAL EQUATION OF THE FIFTH
DEGREE.

§ 1. FormuraTION OF Two METHODS OF SOLUTION.

TURNING now to the general equation of the fifth degree, let us
attack forthwith the actual problem of solution.* We are in
principle concerned with the construction, from five magni-
tudes, %, «,, . . . «,, which are subject to the single condition
=0, of a fanction ¢(xy, z,, . . . #,) =X, which undergoes ikosa-
hedral substitutions for the even permutations of the 2’s. How
we shall afterwards represent the individual 2's in terms of A is
a question in itself which at first we regard as a secondary one.
Limiting ourselves first to the main question, let us take a geo-
metrical interpretation as our basis; weregard z,:2,: . . .
as we did above, as the co-ordinates of a point in space, A as the
parameter of a generator of the first kind on the principal sur-
face of the second degree 322=0. Our problem then becomes:
to any point z in space to co-ordinate by appropriate construc-
tion a generator A in a covariant manner, i.c., to co-ordinate in
such wise that the relation between the point and the generator
remains unaltered when both are simultaneously subjected to
the even collineations.

A first solution of this problem arises of its own accord, so to
say, on the gronnd of the developments already given. Namely,
we shall at the outset exhibit in covariant relation to the point z a
point y of the principal surfuce, and then take as generator \ the
generator passing through y. Therefore, to characterise at once
the algebraical t t of the g 1 equation of the fifth
degree which arises from this, we shall transform the general

* The develop: given in the following pages are ined in their general
features in my oft-cited works in Bd. 12, 14, 15, of the Bathematische Annalen,
but they are here for the first time expounded in a connected form.
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equation of the fifth degree by an appropriate Tschirnhausian
transformation into a principal egquation, and then solve this in
accordance with the method expounded in the third chapter of the
present part,

The Tschirnhausian transformation which is required in the
process now described has been mentioned in greater detail in
II 2,§ 6, and there formulated in the following manner: we first
co-ordinated to the point x a straight line in space which joins
two rational points covariant to x, and then chose as our point
y one of the points of intersection which this straight line has
in common with the principal surface. Here, generally speak-
ing, an accessory square root would be necessary for separating
the two points of intersection. If we wish to express ourselves
briefly, we can even put aside the point  in our description of
this construction. Our object is then simply to employ one of the
two generators of the first kind on the principal surface, which
meet a straight line which is covariant to . The accessory
square root depends on the fact that alongside of a first gene-
rator of this kind which we call A, there is always a second
associated with A, which we will denote by A’ for a moment.
Expressing ourselves thus, we recognise the possibility of still
further postponing the use of the accessory irrationality. JIn-
stead of seeking at once the ikosahedral equation on which
depends, we shall first establish the equation system by which the
symmetric functions of N, N, are determined, and not till later
deduce from this equation system the aforesard tkosahedral equa-
tion. But this is manifestly the same as saying that we return
to the developments of the fourth chapter which we have just
concluded. In fact, our A, X', are cogredient variables; the
equation system of which we speak is therefore an equation
system of the A's, in the treatment of which we shall, moreover,
be led at once, as we shall see, to the homog arrang s
i.e., to the form-problem of the A's. At the same time, the ikosa-
hedral equation on which A depends is the same as we should
anyhow use in the solution of the problem of the A’s. We
therefore find a sccond method of solution of the general equation
of the fifth degree, in which we turn to account the developments of
IL. 4, exactly in the same way as we do those of IL. 3 for the first
ivethod of solution.
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For the rest, the formulation which we have just eshbhshed
for the d method of solution is ily p
Recalling the iderations which we have given in II. 2, § 9,
we recogmse that we can co-ordinate to the point z, instead of
a straight line, & g ! linear plex in orderto effect the
second method. The generators n, N, are then those two which
belong to this linear complex. The explicit, formulee, which we
shall establish later wlth a view to giving exactness to the

d th .'l 1 bed bythm lisation; we
shall therefore only quite cursorily retarn to the special formu-
lation which we just now began. We have now a twofold task
in the following paragraphs. In the first place, we shall have
to establish the more exact formule which correspond to the
two methods of solution, the feasibility of which we ascertained ;
aud then we will bring the totality of those researches on which
we reported in II. 1 into conformity with our own reflexions.
In this respect the relationship of our first method of solution
with that of Bring and of our second method with that of
Kronecker is evident at the outset. By using a theorem which
we previously established (L. 2, § 8) concerning the ikosahedral
substitations, we then succeed in proving also that fundamental
proposition of the K ker theory to which we referred in II.
1L§7

§ 2. ACCOMPLISHMENT OF oUR FrsT METHOD.

In order to give exactness to our first method, let
1) S +ad+bat+cx+d=0
be the given equation of the fifth degree (in which we have
taken 3(x)=0). We then farther put, in accordance with
IL. 2 §5:
) »=p.u"+q. 2P +r. 248 2%,
where z,%=a*— ;Z’a:”, and compate 372 This is a homogeneous
integral function of the second degree of p, ¢, 7, 5:
® (a7 ),
of which the coefficients are symmetrical integral functions of
the s, and therefore integral functions of the coefficients
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a, b, ¢, d, occurring in (1). We wish to find a solution system of
the equation S=0 which remains unaltered for the even permu-
tations of the 's.

Let us first remark that the p, g, , s, required cannot possibly
be equal to rational functions of %, %, . ..z, This follows
from the proof, to be presently brought forward, ding to
which the use of an accessory 1rmtnonahty, at least, therefore,
an accessory squarc root, is indispensable for carrying out our
method.* We return the more readily to the geometrical
construction with the covariant straight lines which we described
Jjust now, and for which we have given the necessary formulwe
inIL 2,§6. Tet:

Py, @, By, 8,5 Py, Q By S,
be two series of four magnitudes which depend rationally on
the 2's, and in such wise that they are not altered for the even
permutations of the x's, and which are therefore rational func-
tions of the coefficients a, b, ¢, d, of (1) and of the square root
of the corresponding discriminant.

‘We titen put in (2) as before :

() p=pLli+pl = Qs+ Py 7=\ By + oy, 5=p,S) + S,

By this means @ [formula (3)] is transformed iuto a binary
quadratic form of the p,, p,’s, the coefficients of which are rational
functions of the known magnitudes: we put $ =0, and deter-
mine p,, p,, from the quadratic equation which arises, whereby
the proposed accessory square root is introduced Then let us
substitute corresponding values of p,, p,, in (4) and (2) respec-
tively, and compute the principal eqnation which results for
the 3’s, which we will briefly denote as follows :

5) ¥+ Bay? + 6By +y =0.
Thus we have made every arrangement necessary for the imme-

* Conversely, if we proved the theorem in the text (concerning the irrationality
of p, q, 7, 3) directly, we should have a new proof of t.lle necessity of the square

root in question, Namely, could an ikosahedral be d from (1)
without emplo)mg accessory n-nhomlmes. e .hanld be able to construct from
this ome of the infinitely many P P 1 of the fifth
degree, and then obtain, by collecti tha ion (2) of which

the coefficients p, q, r, s, would he nuulnl funchunl of the z's, unaltered hy the
cven pennutations of the z’s.
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diate application of the developments of II. 3. If we have
then computed the roots g, of (5) by the help of these develop-
ments, we find the corresponding =,’s by reversing (2).

I should like here to make s passing remark with regard
to the inversion of the Tschirnhausian transformati It is
usually said, and we have also so expressed it farther back
(IL 1, § 1), that the z, required is computed rationally as a
common root of the equations (1) and (2) [where now g, is to
be regarded as the unknown magnitude]. Tt is essentially the
same, but more in the spirit of the rest of our considerations, if
we place opposite formula (2) another explicit one:

(6) z=p .9 +q . P+ 5P 8y,
where 3,9 = ."—;Z’ and 7', ¢, 7, ¢, denote rational functions
=yt~

of py, py» @, b, ¢, d, and of the square root of the discriminant
of (1), which are computed by the aid of elementary methods.
The determination of the x,’s can then be conceived in this
sense, that, geometrically speaking, we derive from the first
found point, y=13", three more covariant points, y*¥, ¥, ¥,
and then construct the required point # by means of invariant
coefficients.*

Let us consider that in the method of solution here explained
the computation of 2, from the root A of the ikosahedral equa-
tion finally established is divided into two steps; we have
originally, in IL 3, employed the five-valued functions of A:

L2720 60) 12709 Wi
ey YT ORM

in order to compose the y,’s linearly from them, or from v, and
usv,; We have then represented the point z as a linear com-
bination of %, ¥, ™, 4. We can evidently condense these
two steps into one: we can compose the point x from four points
which are covariants of the generator A. The simplest rational
functions of A, which assume on the whole four values for the
* The geometrical mode of expression in the text is of course only a connter-
p.\rt of the algebraical process, when the latter is so upecmliued that the law of
ity is eatisfied throughout, i.c., that the ratios of the y’s only depend on

the ratios of the 2’s. We ought really to ropeat the’same remark in all the follow-
ing developments, but for the sake of brevity we sball omit doing so.
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ikosahedral substitutions, are, by what precedes (I. 4), the
following :
LA 0)
Uyy Vpy Uylyy Ty = m
Here 3u=3v=3ur=0, while on the other hand 3'» 5 0, so

that instead of 7, we will introd the combination r,—r!’Z'r.
Then : :

() z,=11’.u,+q".1),+1".u,v,+s".(1‘,.—%21’>»

”

where ", ¢", 7", ¢,
7, 9,7, ¢

I have annexed this new formula of inversion really for the
sake of completeness, In fact, it is just this which appears to
me to be the peculiar advantage of our first method—that when
formulated in the way represented by (6) it is decomposed into
two separate parts, of which the first, which is concerned with
the cc tion of the g 1 equation of the fifth degree with
the principal equation, has throughout quite an el tary
character. We can even consider formula (6) as more simple
than formula (7). Namely, if we consider P, @, . . . B, S,
in (4) as rationally dependent on a, b, ¢, d, alone, not on the
square root of the corresponding discrimi t, then the square
root of the discriminant will also be wanting in the coefficients
of (6), while it necessarily appears throughout in the coefficients
of (7), as also in the right-hand side of the ikosahedral equation
for A.

are coefficients of the same nature as

§ 3. Crrricism OF THE METHODS OF BRING AND HERMITE.

Before going further, we shall compare our first method of
solution with the closely related kinds of solution which Bring
and Hermite have respectively given., The details which here
come under consideration have already been developed in II.
3,§§13,14. Now that we come back to these, we must describe
our method as an essential simplification of the Bring method.
Bring, too, transforms the given equation of the fifth degree
into a priuncipal equation; he, too, employs the rectilinear gene-
rators which lie on the principal surface. But beyond this Lie
comes to an u y complication : in order to obtsin a
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normal equation with only one parameter, he thinks that a new
accessory irrationality has to be introduced by the intervention
of an auxiliary equation of the third degree. I therefore main-
tain that the original process of Bring may be dispensed with,
and must be replaced by our first method, which retains the essen-
tial idea of the Bring method. The advance with which we are
concerned finds significant expression in the *“deficiency” of the
figure to be employed for the geometrical interpretation; the
family of rectilinear generators (lying on the principal surface)
of the one kind or the other form a manifoldness of deficiency
p=0; the deficiency of the Bring curve is equal to 4.*
As the crowning point we shall embrace in the critique thus
formnlated the process of Hermite also: if we wish to apply
ic functions to the solution of the principal equation of the
ﬁﬂh degree, this is done most simply by using the formula given
i L 5, § 7, for the root of the corresponding ikosahedral equa-
tion.
Hermite's use of the Bring form can only come under con-
sideration thenceforward if, instead of the rational invariant

%:, to which the right-hand side of the ikosahedral equation is

equal, we employ the corresponding 4%, In fact, we saw in II.
3, § 14, that the cubic auxiliary equation of Bring becomes
reducible when we. ider « as known, I will also here bring
into special the ad which is made by our
having deduced directly from the form of the ikosahedral equa-
tion the possibility of solving the ikosahedral equation by means

of elliptic functions.

§ 4. PREPARATION FOR OUR SECOND METHOD OF SOLUTION.

The geometrical opening which we have given for our second
thod of solution requires us to establish the quadratic equa-
tion on which depend the two generators of the first kind on
the principal surface which belong to a definite linear complex.
We have solved this very problem in II. 2, § 10, for any surface
* Starting from the value of p and the general theory of curves with p=4, we
can show (as I cannot here do in detail) that Bring’s cuhic auxiliary equation
is, in faot, indispensable if we would determine a point of the Bring curve, t.e.,
employ the trinomial equation ¥®+ 58y ++v=0 as normal equation.
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of the second degree, though only for the case, we must admat, of
a particular system of co-ordinates. 'We had then taken as the
equation of the surface the following :
® XX+ X,X,=0,
and had then defined the parameter A of the generator of the
first kind in the following manner:

- PR
) .
and, finally, understanding by A4,,,, the co-ordinates of the
linear complex, we had obtained the equation:
(10) A?+ (Aag = A1 )M+ Ayghe? = 0.
I add here at once the corresponding formula for the generator

of the second kind. We found as the defining equation of the
parameter s :

X, X
11 P P §
an # X X
and as the corresponding quadratic equation:
(12) = Ayyn® + (Aos + Ay sy + Ay = 0.

‘We now recall the method by which we introduced the para-
meters A, , for the principal equation in particular, in IL 3,
§§ 2, 3. This was done in exact agreement with (8), (9), (11),
only that instead of X, X, X;, X,, we wrote p,, P, 2y P
respectively, where p, denoted the expression of Lagrange :

(13) Pu=Zg+ @ 2+ Dot Mz ez,

We can therefore retain equations (10), (12), ltered, provided
we proceed throughout on the basis of Lagrange’s system of co-
ordinates in dealing with them,

In IL 2, § 9, where we co-ordinated to the point z a covariant
linear complex in the most general manner, this latter supposi-
tion has not been made; the co-ordinates there given for the
complex:

(14) = E {2l - 2l
Lm
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[where the ¢*™ denote any rational fanctions of the coefficients
a, b, ¢, d, and the square root of the corresponding discriminant]
are related to the fundamental pentahedron in the same way as
the point-coordinates x themselves. Our first task is there-
fore a transformation of co-ordinates: we amust determine the
co-ordinates A,, which the complex (14) assumes if we introduce,
by means of (13), the expressions p,. To this end I will denote
those p’s which belong to the points ¥ 2™, by p®, p™. We
then have :

(15) g0 - g~ E T ik _ ity (O _ o0,
4Lk

where on the right-hand side each combination (i, &)= (%, ©)
occurs once, We now add the six equations which we obtein
in this manner for the different combinations (I, m)=(m, ),
after we have multiplied each by ¢™ [formula (41)]. 'I'here
thus remain on the left side the 4,’s required, while on the
right side sets of six terms are condensed into the a,'s (14).
Henco the formulee of transformation which we seek run

thus:
(16) A= D (@it et ay,
4
‘We now introduce the A,,’s so obtained into (10), (12). I

will write the quadratic equations which here arise in the form
which we just now established in II. 4:

an { A+ 2AMA, = AgA,? =
Ay + 2Ag sty = Ay =0,

‘We then have :
2A=+dy,-A,= E’(¢b+u_£u+u+‘n rho gty g,
13
(18) A=+A4, =Z(gz+ys_zm+u)_a“;
A= -4y - z ’(e"““—c'*“)-a,‘,

X3

likewise also :
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2A;'= — Ay - Ayy= Z"‘”“‘ S A48 g,
o) AY=+4y, Z,‘(«M ).y,
A=+4, = E (43— &4 ay
“k

§ 5. OF THE SUBSTITUTIONS OF THE A, A”s—DEFINITE
FORMULATION,

In virtue of the g trical jderati which we have
placed in the foreground, it is manifest that the ratios of the
Ay, A, A,, just established undergo exactly the same linear
substitutions for the even permutations of z,, z,, &y, x,,, x‘,
the ratios of magnitudes established in the p
and denoted by the same letters; it is hkewnse evndent ﬂmt the
ratios of the A”s introduced in (19) behave contragrediently to
the ratios of the A’s. I say now that this correspondence holds
good if we regard, instead of the ratios of the A, A”s, the A, A”s
themselves. It would not be hard to prove the accuracy of this
agsertion on general grounds. We shall presently, § 9, indicate
the method of doing so; hile let us be satisfied with veri-
fying its accuracy from the formulz. We have evidently only to
take the two operations S, 7, into consideration, all the others
being composed from these by iteration and combinati First,
a8 regards the even permutations of the z's, we have in IL 3,
§ 2, introduced for S, 7, the following :

S:a/=z,4,,
20) { T: ) =2 &) =2y, &' =2), ¥y =7, ¥/ =2y
Corresponding to them, we obtain definite permutations of the
ag’s (14), and, if we take account of these, we have the follow-
ing substitutions for the A’s defined by (18):
S: Ao_'=Ao» Al=¢A;, Af=cA,;
(»,/5-A0’=A0+A,+A,,
N5 A =2A) 4 (24 ) A +(e+ ) Ay
5 Ay =280+ (e + ) A + (2 + M)A,

i.c., exactly the same substitutions as we have given in II 4,

21)



THE FIFTH DEGREE. 275

§2*% As ds, h , the cont di of the magui-
tudes A’ (19) and the A's (18), it is sufficient to remark that
the values of the A”s proceed from those of the A’s if in the
latter we change e into € throughout.

‘We now snppose any of the invariant forms of the A, A”s
(18), (19) constructed, such as we described in the preceding
chapter ; either therefore the expressions .4, B, C, D, from the
A’s alone, or from the A, A’’s simult ly the functi
F,, F,, F,, linear in the A”s, which we have considered in § 9
of the same [see especially formule (45), (46), (47)]. On
introducing for the A, A”s the corresponding values in
%y, &y, . . . %, We obtain thronghout rational functions of the
«'s such as do not alter for the even permutations of the 2's,
and which therefore admit of expression, by the help of elemen-
tary methods which we do not carry out, as rational functions
of the coefficients a, b, ¢, d, occurring in (1), and of the square
root of the corresponding discriminant. In order to formulate
our d method in a definit , we at first employ
only the problem of the A’s, and therefore the values of the
magritudes just tioned, 4, B, C, D. We then follow the
developments which we have given in the two concluding
paragraphs of the preceding chapter, and construct, after
adjoining the accessory irrationality ~/4, a corresponding ikosa-
hedral equation for the determination of A. The only ques-
tion which remains is how we will conversely express the roots
Zgy Xy, + - « %, by the help of this A. This is to be dealt with
in the following paragraph.

§ 6. THE FoRMULZE oF INVERSION OF OUR SECOND METHOD.

In order to solve the problem which still remains, no less
than three openings p th Ives, viz., ding as we
wish to solve our problem at one stroke or decompose it into
two or three steps.

In the former case we make immediate use of the formula (7),

* The letters Ay, A, Ay, are employed in (21) in quito a different sense from
that of (19) ; as I do mot recur b to (21), no misund, ding will, I hopo,
arise from this,




276 THE GENERAL EQUATION OF

which produce again (laying sside now the accents there em-
ployed for (p, ¢, 7, 8):

1
(22) z-,=p.u,+q.v,+r.u.v.,+s(r,—52r2)

Here p, g, 7, s, are rational functions of , b, ¢, d, of the square
root of the corresponding discriminant, and the accessory square
root ~/4.

In the second case we first express A, A, A,, as we did in
detail in § 12 of the preceding chapter, in terms of the root A
of the ikosahedral equation. 'We then further bring to our aid
the lowest five-valued integral functions of the A’s. According
to § 5 of the preceding chapter these are:

8, &, 82 03,

Here again 38 =38 =588 =0, while 38 is different from zero,
80 that for the expression of the z,'s we will introduce, instead

of the individual 3,%’s, the combination (8,’—};282). We have
then again formule of the following kind :

©3) =y a,+q'.a,'+¢.(a,ﬂ_%>:a)+s'.a,a,',

where 2, ¢, 7/, §, are rational functions of o, b, ¢, d, and the
square root of the discriminant, but no longer contain the acces-
sory square root NA.

Finally, in the third case, we suppose A,, A,, A,, again com-
puted fiest from the root A of the ikosahedral equation; but
then, instead of seeking the z,'s directly, we first seek the
corresponding A/, A, A, (19). We effect this by calculations
analogous to those which we previously made on expressing
the forms F,, F, F, just tioned, which depend on the
A, A”’s, as functions of a, b, ¢, d, and of the square root of the
discriminant, and determining Ay, A, A,’, as unknowns occur-
ring linearly. This being done, we seek the simplest possible
functions of the A, A”’s, which are five-valued and at the same
time symmetric in the A, A”’s, We find a first function of this
kind if we square the 3, of IL 3:

Yr=€ Ny = € Ny, + € Ny + €L Agpay
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and submit it to the p of transfe tinually em-
ployed in § 2 of the preceding chapter. In this manner - there
arises a form bilinear in the A, A”s:

(24)  x=2A) (A, +€A) + A (- 27A  + @A, + Ay

+A) (- 2A - €A, + A,y).
As other fanctions with the same properties we will employ the
powers x.%, x°, x»% Where, however, we must consider that
none of the power-sums Zx?% 3y, Jx*, vanish identically. We
shall therefore do best to write the formula which corresponds
to (22), (23), with an extra term, as follows:
(23) Z,=p"  xp+q A+ I A+
Here p", ¢”, 7", 5", ", are again at the outset rational functions
of a, b, ¢, d, and of the square root of the discriminant. More-
over, we can bring it to pass that they shall be merely rational
JSunctions of a, b, ¢,d. We have only to then make the ¢*™s
in the original opening (14) th Ives depend rationally only
ona,b,cd.

I have brought together these data without detailed elabora-
tion, because they, so to say, of necessity proceed from the pre-
vious developments. The third kind of opening appears to me
unquestionably the most effective. Decomposing, as it does,
the computation of the z,’s into not less than three separate
steps, it employs three times over the same elements of the
typical exposition with which we have become acquainted under
varying forms in the three preceding chapters.

§ 7. RELATIONS To KRONECKER AND DBRroscul.

Our second method of solution is, as we have often said before,
only a modification and extension of the Kronecker method. In
fact, we have seen in detail in II. 4 that the problem of the
A’s, in the sense there explained, can be replaced by its simplest
resolvent of the sixth d , the Jacobi ti In the
details many points of dlﬂ'erence certainly preaent themselves.
T will here only call attention to two, of which the second is the
more important.

‘We first remark that the way in which Herr Kronecker,
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in his first communication to Hermite,* reduces the general
Jacobian equation of the sixth degree to the case A4 =0, or, as
we now say, to an ikosahedral equation, is different from the
method applied in the preceding chapter. Herr Kronecker so
Sormulates his method that Ay, A, A,, contain a parameter v
which occurs linearly, and which is afterwards so determined that
Az2+A A=A becomes zro. We can, of course, combine this
idea with our formulw, viz, by providing at the outset the
4*'g themselves [formula (14)] with a parameter A occurring
linearly. Then, instead of distinguishing by an accessory square
root the two generators of the first kind, which the linear com-
plex in question for any value of v has in common with the
principal surface, we proceed thus: we first make the complex
variable in a linear fasciculus, and then fix its position by
the condition that it shall contain two coincident generators of
the first kind belonging to the principal surface. This condi-
tion itself brings with it an accessory square root. I have in
what precedes dispensed with the formulation thus pointed out,
because it is only applicable if we treat the problem of the A’s
as a resolvent of the proposed equation of the fifth degree, while
I wished to first consider the problem of the A’s independently
of such connections.

We further remark that the general formule which Signor
Brioschi has given for the accomplishment of the Kromecker
method, formule of which we gave a detailed account in II. 1,
§ 6, are throughout different from our formule (18). Signor
Bnosclu employs for the construction of his A, A,, A,, six
linearly independent itudes, %, % . . . %, while we use
twenty magnitudes a,, botwean whxch the relations a,= —ay,
Zn,k %aa,—o subsist. Again we are eatisfied with the same
mngmtudes, @y, when we wish to take under consideration the
A”s alongside of the A's, while Signor Brioschi would have to
snnex six new magnitudes, u’, %), . . . %, I will not pursne
this comparison, which only concerns the eaternal configuration
of the formule, any further. Let us remark, above all, that
our formule (quite as much as those of Brioschi) are in any case
us general as they can be. If, namely, the A, A”s are arbitrarily

* Sec IL 1, § 6.
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given, we can from them determine conversely the correspond-
ing a,’s and ¢¢™s respectively [formula (14)]. We have only
to repeat the transformation of co-ordinates of § 4 in a reverse
sense,

The calculation in question takes the following form. We
have first, on returning from (18), (19), to the co-ordinates,

4, (16):
4p= A, Ay=A/,

(26) A= -A, A,=A,
Ay=-A,-Aj, Ay =Ay— Ay

‘We then replace the formul® (13) by their reciprocals:
27 br=ef.p+eM.prePpiret.p,
Hence:

26 (05— o0 — Zl( wierk _ vy () 000

where the sammation on the right-hand side extends over all
combinations (s, ¥)= (v, u), and now, on multiplying the indi-
vidual equation by *® and adding the several terms for
¢, my=(m, l):

(28) 25u = E (e-mvk~ennk) A,
which is the formula we sought.
I should like, in lusion, to fc lat isely once more

the geometrical idea which lies at the root of our treatment
of the Kronecker method, and which probably possesses far-
reaching significance. The first thing is, that we substitate
in general for the point z a linear complex, considering, there-
fore, instead of the eqnation of the fifth degree, an equation
of the 20th degree whose roots a; satisfy the oft-mentioned
relations ay= —a,, Jag=3ay,=0. The second thing is, that
we refer this oomple‘x by means of (18), (19), to & new system
of co-ordinates. I will not enter* into any details concerning
the significance of the A, A”s, but only remark that the first of

* Oonsult my essay in the second volume 0{ the Annalen (1869) : ““Die allge-
meine Jincare Tran-f jon der Linid ” Consider, in particular,

that the linear complex becumes a special ome, f.c.,, & straight line, when
At +AA =AY+ AVAY
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the two equations (17) vanishes identically when all the A's are
equal to zero, the second when all the A”s are zero. Therefore,
Jfor the generators of the first kind, Ay=A,=A,=0, for the gene-
rators of the second kind, Ay =A=A/=0. What is the object
of this transformation of co-ordinates? By its means we are
enabled to replace the equation of the 20th degree for the ay's
by the form-problem of the A’s or the A"s. In fact, we have
seen that, for the 60 even collineations of space, A, A, A,, and
likewise Ay, A/, A, are linearly substituted in their own right,
and therefore as ternary forms. Let us now remark that we
could have premised, @ prior, this property of our geometrical
conception. Namely, for the even collineations of space each of
the two sy of rectili g tors b transformed,
as we know, into itself. Hence of necessity the two threefold
Samilies of linear complexes to which these systems of generators
respectively belong are also transformed into themselves for these
collineations. But from this follows directly the property of the
A, A”s described, provided we further postulate that to every
collineation corresponds & linear transformation of the line co-
ordinates. The possibility of reducing our equation of the ag’s to
a ternary form-problem thus appears as an immediate outcome of
the elcmentary wntuitions of line geometry. This is the particalar
point of view under which I should like to see the second method
considered.

§ 8. CoMranisoN oF oUR Two METHODS.

The two methods for the solution of the equation of the fifth
degree which we have contrasted with one another are, never-
theless, as follows from the considerations of § 1 of the present
chapter, very intimately related: we will here show that it is
only in non-essential points that they differ, inasmuch as every
ikosahedral equation which is co-ordinated to a proposed equa-
tion of the fifth degree by virtue of the one method can always
be deduced by means of the other method.

The passage in this sense, from the first method to the second,
is immediately evident. In order to co-ordinate a point y of the
principal surface as a covariant to the point z, we have just now
(§ 2) coustructed first a straight line covariant to x, and have
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then intersected with this the principal surface. We can now
start from this very line as the special linear complex of the second
method : we have only to compute the corresponding co-ordinates
ay. If we, then, constract the correspouding problem of the
A's, one of the two ikosahedral equations by which we can solve
this problem will i diately become identical with the ikosa-
hedral equation to which the determination of the #,’s leads.

The converse of this argument is not much more complicated.
‘We assume that we have by meauns of our second method co-
ordinated to the equation of the fifth degree an ikosahedral
equation, and therefore to the point x a generator A of the
principal surface. Then we can always find in a rational
manner (and this in many different ways) a point y which lies
on the generator \: we need only, for example, make the y,'s
proportional to the W,(A)'s or to the other expressions which
oceur in the principal resolvent of the ikosahedral equation.
But this point is co-ordinated to the point « in any case as &
covariant; we have therefore at once a Tschirnhavsian transfor-
mation which co-ordinates to the point x a pomt y on the mmpal
surfuce. If we now make this Tschirnh
the basis of our second method, we return of course to the
initial ikosahedral equation.

In this sense we can say that in reality only one solution
of the equation of the fifth degree is found. The difference
between the two methods which we proposed lies only in the
order of the individual steps. In the first method we give
prominence to the accessory square root, in the second we do
not introduce it till after separating the two systems of gene-
rators, Ageinst this, the first method, as we have said before,
has the advantage of operating at first with quite elementary
material. Howbeit the common foundation of the two methods
in our exposition appears to be first the theory of the ikosa-
hedron, and then further the consideration of the rectilinear
generators of the principal surface. That the first gives the
actual normal equations to which we must once for all reduce
the solution of the equation of the fifth degree, I cannot doubt.
On the other hand, I form a different estimate of our geometrical
reflexions and constructions, useful as they have been to us. I
believe that we shall be enabled to develop the general theory
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of form-problems algebraically, and in such wise that our
reduction of equations of the fifth degree to the ikosahedron
appears as a mere corollary, and does not need to be established
in a special manner. I have myself attempted this in Bd. xv.
of the Mathematische Anualen, where I brought the connection
between the problem of the A’s and of the equation of the fifth
degree—and, in fact, the formula of Brioschi appertaining hereto
as well as our formuls with the a,'s—to the single fact that
the substitutions of the A’s can be co-ordinated to the even
permutations of the 2’s isomorphously and uniquely.* My
reason for not entering upon these matters in the foregoing
exposition is that I do not consider these wider speculations to
which I have referred in L 5 (§ 4, 5, 9) as yet conclusive. I
heve the more readily confined myself to geometrical construc-
tions of individual characteristics, believing that it is just by
these that we shall be able to pass to a true insight into the
general theory.

§9. ON THE NECESSITY OF THE ACCESSORY SQUARE RooT.

‘We are at the end of our exposition; what we have yet to
add cc the ity of that 'y square root which
occurred in our first method in the Tschirnhaunsian transforma-
tion, in our second method, when we wished to effect the solu-
tion of the problem of the A's. We shall show that this square
root is in fact indispensable if an ikosshedral equation is to be
reached at all; we shall farther prove that from this follows that
theorem of Kronecker’s which we have mentioned in IL 1, § 7,
and which declares the general impossibility of a rational re-
solvent with only one p ter for the ordinary equation of
the fifth degree.

In order now to prove the first point, let us formulate our
assertion as follows. Let ), 2, . . . @, be suy five variable
magnitudes, ¢, ¥, two integral functions thereof without a

* “Ueber die Auflé Gleich vom sieb und achten
Grade” (1879). See e:pccmlly §§ 1-5. The mode of expression in the text
supposes that to every permutation of the :n correrponds only one i
of the A’s ; singl lued in the recip 1 sense occurs also, bat it would not
be necessary for the suocess of the algebraical process,
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common divisor. Then i is impossible, we assert, fo choose ¢, v,
in such wise that

_® (’o‘”l’fﬁql
@9 M= G
undergoes the ikosahedral substitutions for the even permutations
of the «'s.

The proof presents itself at once if we consider that the
original question, one belonging to the theory of functions, is
trausformed by virtue of the arbitrary choice of the a’s into &
question of the theory of forms. Namely, if, corresponding to
any permutation of the 2’s, the substitution formala:

_¢ _wbt By

=¥ TP Y
) ¥ re R
were to occur, we could at once, on account of the arbitrary
nature of the z's, write

31 ¢'=Cad+py), V=COd+y),

understanding by € an appropriate constant, so that, therefore,
with the permutations of the &’s, the two integral functions ¢
and + are transformed bilinearly. But now, as we showed in
detail in L 2, § 8, every group of binary substitutions which is
to be isomorphous with the group of non-homogeneous ikosa~
hedral substitutions contains, of necessity, more than 60 opera-
tions, while to the 60 even permutations of the a's not more
than 60 transformations of the integral rational functions ¢, +,
can correspond. This is an insurmountable contradiction, and
therefore the method proposed in (29) is, in fact, proved to be
impossible, ¢g.e.d.* The contradiction is not even removed if
we now assume Jx=0, for every equation of the fifth degree
can be transformed rationally into one with J2=0.

For the sake of a better grasp of the essence of the proof, let
us compare the theory of the principal equations of the fifth
degree. In them we have, besides Sx=0, 32*=0 also; let us
therefore write equation (30) as follows:

(32 & (y6+ M) =V (ap+ BY),
* Cf. here and in the following paragraphs my oft-cited memoir in Bd. xii. of

the Math. Anvalen (1877), and also my communjcation to the Erlanger Societat
of Januvary 15, 1877,
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then, in the case of principal equations, it is by no means
necessary that the two surfaces:
¢ (rp+3)=0, Y (2d+pY)=0

are identical with one another, but only that they intersect in
the same curve the principal equation of the second degree repre-
sented by those conditions. Now we have in any case decided
that ¢, ¥, and so likewise ¢, ¥, have no common divisor.
‘We shall also require that no factor shall be capable of being
detached when we modify the functions which arise from the
addition of proper multiples of 3z, 322 Nevertheless, the
curves of intersection of the principal surface with ¢'=0, '=0,
may have a portion in common; this portion must be only an
incomplete curve of intersection, and must not admit of being
traced out by a surface appended to the principal surface. If
we assume that this is the case, no ground appears in fact for
the existence of formula (31) (from which we deduced the
contradiction). I must omit to work out in greater detail what
I have said, and to show that in fact, in the reflexions thus
given, our former treatment of the principal equations of the
fifth degree is absorbed. The proof which we have given of
our primary assertion is extended without any important modi-
fication to other cases also. First, we might substitute at once
the problem of the A’s in place of the general equation of the
fifth degree: we learn that it is impossible, in reducing this
problem to an ikosahedral equation, to dispense with the square
root VA4 (or an equivalent irrationality) as previously employed.
‘We learn, further, that it is impossible to reduce the general
equation of the fourth degree, by means of rational construction
of resolvents, to an octahedral equation, or even, after adjunc-
tion of the square root of the discriminant, to a tetrahedral
equation.* Moreover, we can now make & practical application

* As regards equations of the fourth degree, a aolution can be effected in their
case, as I here cursorily indicate, with the help of the octabedral equation (or of
the tetrabedral equation), which iy, 80 to #ay, a blending of the two methods,
which for equations of the fifth degree are distinct. Denote as before the roots
g, %1, 2, %3, Which are to be subject to the dition Zz=0, by quadril 1
cv-ordinates in the plane, Then we have the principal conic Zx*=0, and we saw

above (H_ 3, § 2) how a point belongmg to lt can be determined directly by an
b tion or a hed We shall now co-ordinate to an

arbitrary puint z of the plane a point y of the principal conic as a covariant, by
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of our train of thought. In this respect I only remark that the
property of A), A, A,, which was described just now (§ 5), may
be deduced in the way thus indicated.

§ 10. SpeciaL EquarioNs oF ToE FrerA DEGREE WHICH CAN
BE RATIONALLY REDUCED To AN IKOSAHEDRAL EQUATION,

‘We must now interrupt our general considerations, and make

tion of special equations of the fifth degres which furnish an

exception to the theorem just proved. In I 2, § 4, we have

given a g trical interpretation of the resolvents of the fifth

degree, and have seen that they can be represented by two half-

regular twisted curves of deficiency zero. Our object now is to
reverse this result. Let:

(33) F(z, 2)=0
be an equation of the fifth degree with one parameter which
admits of an iuterpretation of the kind mentioned. I assert that
we can always reduce it by rational mesns to an ikosahedral
equation,
The proof is essentially the same as we have given in a some-
what different form in IL 3,§ 1, in considering the principal
Juati By hypothesis the five roots of (33) admit of repre-
sentation as rational fanctions of au auxiliary magnitude A:

(34) =R, (2),
in such wise, that for appropriate variation of A the z,’s under-

go any even permutation. We must now apply the proposition
from the theory of rational curves, that this A can always be

drawing from z the two possible tnngenu h the conic, and choosing one of the

two points of contact. We can then h the hedral jon (or tetra-

hedral equation) on which y depends, and lence by inversion find z, &e.,, &, all

in nt.nct analogy with the developrments which we have opened wp in the two
hs of the ding chapter.

In the case ol cquations of the third degree, all snch prolixity, as we remarked
in IL 8, § 2, disappears. 1n fact, we saw in L 2, § 8, that the dihedral group of
six substitutions, which comes under consideration in connection with them, can
be very well d into the h form, without the number of its
substitutions being increased ; the grounds for the ocenrrence of the accessy
irrationality which we have recognised as appropriute for equations of the fourth
aud fifth degrees are therefore wanting.
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introduced as & rational function of the zs, and therefore in
such wise that to every point of the carve corresponds only one
A* T will assume, for the sake of L , that the A appeari

in (33) is already chosen in the manner here indicated. Then
every one-valued transformation which transforms our curve into
itself, in particular therefore every even permutation of the x,’s,
establishes for A a one-valued transformation having a oue-
valued reciprocal and therefore a linear transformation. Thus
we obtain corresponding to the 60 even permutations of the ,’s
a group of linear substitutions, holohedrically isomorphous with
them, of the variable A. By I. 5, § 2, this is of necessity the
ikosahedral group; it appears in the canonical form which we
have always maintained as soon as we introduce in place of A a

proper linear function x—"; :; as parameter. This N, which

s dtself a rational function of the x,’s, then depends directly on
an ikosahedral equation, wherewpon the proof of our assertion is
disposed of.

‘We append to what has been said a few stray remarks. First
we see that we can reiterate our theorem with unimportant
modifications in the problem of the A’s, or, if we like to take
into consideration the octahedron or tetrahedron instead of
the ikosahedron, in the equation of the fourth degree. We
recognise, further, that for the equation of the fifth degree there
can be no rational twisted curves which for the whole of the
permutations of the w,’s pass over into themselves. Finally,
we remark that the occurrence of rational invariant curves (as
we will express it) is altogether limited to those form-problems
of which the group is holohedrically isomorphous one of the
group of linear substitutions of a variable which we have pre-
viously enumerated.

§ 11. KrONECKER'S THEOREM,

‘We have now all the requisite materials for completing the
proof of the oft~-mentioned theorem of Kronecker. OQur object
s to prove that it is impossible, in the case of any proposed equa-

* Cf. the proof of this theorem in Luroth’s paper in Bd. ix. of the Mathema.
tische Annalen (1875),
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tion of the fifth degree, even after ad]wrwtwn of the square root qf
the discriminant, to construct a rati resolvent which cont,
only one parameter.

Let us first remark that we can at once impart an apparently
more precise fc lation to this th , 0 h as the group
of the even permutations of five things is primitive* Namely,
we shall be able to derive, on the grounds stated, from every
rational resolvent a fresh equation of the fifth degree F(X)=0
by means of renewed resolvent construction; and here we may
at once subject the X’s to the condition S.X=0. The roots X,
are here severally co-ordinated to the original «,'s in such wise
that the co-ordination remains unaltered for any even permuta-
tions of the z,’s. 'We can therefore write as before :

(35) X,=p ala+g-a@sr.a¥ 4.

where :d,“’=a:f—é£a:‘ and p, g, 7, s, depend rationally on the

coefficients of the proposed equation and the square root of the
ponding discriminant. Al that we now have to show is
this: that it s impossible to form from the general equation of
the fifth degree, by means of a Tschirnhausian transformation
(35), an equation of the fifth degree with only one parameter.

To this end we first reflect generally as to what geometrical
interpretation such an equation would have to receive. The
totality of the arbitrary values x,, x,, &,, &3, &,, form a simply con-
nected continoum. If we therefore allow &y, 2,, . . . @, in (35)
to alter arbitrarily, the point X will, at all events, trace out an
irreduciblelocus. If we now add the supposition that the equa-
tion of the X,’s contains only one parameter, the irreducible
locus in question will have to be a curve. I say now that the
irreducible curve so obtained will be transformed into itself for
the 60 even collineations of space. In fact, in virtne of the con-
vention which we have made concerning the coefficients p, g, 7, s,
occurring in (35), the even permutations of the X,’s correspond
to the even permutations of the «,’s; while, on the other hand,
we can attain to every permutation of the «,'s (and therefore in
particular to every even permutation thereof) by allowing the

cor

* Cf. the definition in L 1, § 2.
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«,’s, beginning from any initial values, to move continuonsly in
a suitable manner.

‘We now return specially to the developments of the preceding
chapter. Namely, it is evident that the curve of the X,’s just
described must in every case be rational. For we can suppose
the z,, 7}, . . . @, in (35) rationslly dependent in some way
on a parameter A, whereupon the X,’s themselves become
rational fanctions of this A: we need not regard the objection
that in special cases the A\ may altogether disappear from the
X.’s, since we can evidently always avoid such a contingency.
The premises of the preceding paragraph are therefore in fact
given. We conclude that we can establish a rational function
of the X,’s which for the even permutations of the X,'s undergoes
the ikosahedral substitutions. This function would by virtue of
(35) also depend rationally on the 2,’s in such wise that it
would undergo ikosahedral substitutions for the even permuta-
tions of the z,’s. But now we have expressly proved in § 9 that
such a rational function of the z,’s is impossible. We therefore
arrive at « complete contradiction, and must therefore give up
our assumption that & Tschirnhausian transformation (35) exists
with the property more precisely described above, g.c.d.

I couclude by adding a few more general observations on the
theory of equations.

First, if in the foregoing exposition we substitute through-
out the octahedron or tetrahedron for the ikosahedron, we can
repeat all our considerations unaltered for the equation of the
Jourth degree till we come to the one that treats of the primitivity
of the corresponding group. The group of the equation of the
fourth degree is composite. If, therefore, we wish to recover
Kronecker’s theorem for the equation of the fourth degree, we
must expressly attach to them the condition that the group of
the resolvent coming under consideration is to be holohedrically
isomorphous 1with the group of the twenty-four or the twelve per-
mutations of T,, @, Ty By, T, If we leave out this condition,
rational resolvents of the general equation of the fourth degree
may very well occar which contain only one parameter. The
empirical proof thereof is effected by the ordinary solution of
the equation of the fourth degree. In fact, this operates merely
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with nunhnry equations wluch contain only one parameter,
ly, with binomial

In the case of equmons of the third degree, there can, of
course, on the grouuds of our previous remarks, be no question
of a theorem corresponding to Kronecker’s.

Concerning equations of a higher degree, I will here, in order
not to be prolix, only make one remark, retaining therein, for
the sake of simplification, the restriction which we formulated
just now for the fourth degree. On the supposition mentioned,
resolvents with only one parameter—disregarding special and
easily-recognised cases—are impossible in the case of the general
equation, for the reason that, according to the observation of
§ 10, among the corresponding invariant curves mo rational
ones can exist.







APPENDIX.

BY THE TRANSLATOR.

Note A.—Glass models of the Tkosahedron are sold as letter-
weights by stationers for eighteen pence. They may be ob-
tained at No. 355 Strand.

Note B.—The formule of I. 1, § 3, are illastrated by the
following problem, which appeared in the Educational Tines:—

Take three points on a sphere:
_(d +ic)z,— (b-da) (A +14c') 29— (V' — 2a’)
2= (b dayg +d—de * T (b +m)zz @ =)
G AR (]
=@ +za.")zl—(d"—w )
and show that the polar triangle is formed by the points:
(@+iy) 2, — (B “‘)
Zo Z,— (B+ia) Z,+ (§—17)
_Fiy) By (f ey (" 4y By~ (B~ ia")
T (Bria) Zy (¥ —dy) T (BT Zyw (-0

2)y

where
@ ” " &

b “Fe cd—ca ab ~ab  J(1-d®)(l~d®)—ag - 0 —cc

Nore C.—Mr. Greenhill points out that some interestiug
numerical cases are obtained for the resolvent of the #’s, I. 4,

10, hy putting:
§10, by putting r=3 or 11 or 19,

Note D.—I collect here such data as I can obtain wi:ih
regard to the important advance which has recently been mu-le
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by Professor Klein and his, pupils in a most interesting field of
analysis. The connection of the twenty-seven straight lines on
a cubic surface with the trisection of the hyperelliptic functions
of the first order has long been known ; it is treated from the
point of view of the theory of substitutions in the “Traité des
Substitutions” of M. Camille Jordan. In a recent article in the
Journal de Mathematiques (4° série, tome iv., fasc. ii., 1888),
“Sar la résolution, par les fonctions hyperelliptiques, de I'équa-
tion du vingt-septidme degré, de laquelle dépend la détermina-
tion des vingt-sept droites d’une surface cubique,” Professor
Klein indicates briefly how the methods employed in this treati

&4

may be extended to the equation of the 27th degree. The
details will shortly appear in the Mathematische Annalen,
Meanwhile reference should be made to the Inaugural Disser-
tation of Dr. Alexander Witting (Teabner, Dresden), “ Ueber
eine der Hesse’schen Configuration der eb Carve dritter
Ordnung anpaloge Configuration in Raume auf welche die
Transformationstheorie der Hyperelliptischen Fanctionen (p= 2)
fihrt.” To these sources I am indebted for much of what
follows.

‘We consider the integrals
@+ Bz _frt&
“= f 71.7) Uy= 7@ dz,

where f(2) is a rational integral function of 2 of the sixth degree.
Between the four pairs of penods of these integrals

wyy oy, ((=1,2,3,4)
there exists the relation :
0y 0dg ~ Gg0igy + oy, — Gygutyy =0

If we take a new pair of integrals

vy= DTty o, Sty b iy,
W) Wao — Wty gy Oy — Gyg
the periods of v are:

Wyggy — Wyglyg Wy Wan ~ Wyglyy
L0, my= ot sy =y s
W) Wgg — EaWy 11922 — Pra%

W, Wog — @ W, o, . W, W,
0,1, oy =N T et ST
Wy g = Wy gy — g0y
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and the identical relation is
T2 ="Toe
A double S-functiun of the first order with characteristic

;",Ilss

1 g,l (o ”n HEATR PN
gy b

+ o
=7 Gibtitah) o (— I)mhetnahy gie (BRtg)ei (e tors)
Br

X ¢y $ERHOn Maks),
where
e 1D =1y % 4 2 g0 7 + Then T

Here each of the letters in the characteristic may have the
valoe 0 or 1; there are thus sixteen double S-functions, ten
even and six uneven, viz., an even function has the determinant
|;:" ‘;] ‘I even, and vice versa. To each of the six nneven functions

1 A}
corresponds & root of the sextic fanction, and to each of the
ten even fanctions corresponds a grouping of the roots into two
triplets.

‘We now consider the four functions

P ei;(v. 101 +271308+7338%) § (“"n + prw ary + ﬁ"n ; 3,.1" 3,,"' 3',ﬂ)'
e, $=0,1;1,0;1,1; 1,2

p is an indeterminate factor, 9 any uneven 9-function. The
quotients of these four functions undergo linear substitutions
with constant coefficients for every linear transformation of the
748 which leaves the characteristic of the S-fanction unaltered.
It is shown in the “Traité des Substitutions” that the group
of the equation of the twenty-seven straight lines on a cubic
surface, after adjunction of a square root, is holohedrically
isomorphous with the group of the 25920 fractional substitu-
tions of the quotients of the #’s. This latter groap not being
holohedrically isomorphous with the group of homogeneous
transformations of the 2’s, it is necessary to find one which is.
To this end Professor Klein considers the six quantities

D=2, — 2%

formed from two sets of cogredient
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‘We have then a corresponding group of transformations on
the co-ordinates ay, of the linear complex
Zay pu=0.

The next step depends on a fundamental theorem given in
Bd. xv. of the Mathematische Annalen. If to a group of sub-

stitations among #» letters «, . . . x, there be co-ordinated in
holohedric or merihedric isomorphism a group of linear trans-
formations of x letters z, . . . ¥, it is always possible to find
p functions of the «'s, ¥, . . . ¥,, which, when the substita-

tions of the first group are effected on the «'s, are themselves
transformed by the corresponding linear transformations of the
y’s. Let us then form six fuuctions of the roots z, . . . x,; of
the equation of the twenty-seven right lines, such that they
undergo the transformations of the a;’s when the substitutions
of the group of the equation are effected on the «’s. These six
functions being taken as the co-ordinates of & linear complex
a, let us co-ordinate to this in a covariant and rational manner
three other linear complexes «, a”, a””, and then find two linear
combinations of these, A, A’, fulfilling the conditions
SA2=0, TAA,=0, SA7=0,

The first and third equations imply that they are to be special
complexes, 4.e., right lines, and the second equation that these
lines intersect. Their point of intersection is the point z which
we required, namely, it is covariant to the complex a.. We
finally substitate for the co-ordinates z,, 2, 2, #,, their values
a3 9-fanctions.

PRINTE D RY RALLANTYNE, HANSON AND €O,
EDIASIBULR ARD LONDON.
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